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New slope methods for sharper interval
functions and a note on Fischer's acceleration
method

Jozo B. Ouvara

This paper presents algorithms evaluating sharper bounds for interval funaions F(X) : IR® — IR.
We revisit two methods that use partial derivatives of the funetion, and develop four other inclusion
methods using the set of slopes S¢{z, 2) of f at £ € X with respea w some z € JR™. All methods can
be implemented using tools that automatically evaluate gradient and slope vectors by using a forward
strategy, so the complex management of reverse accumulation methods is avoided. The sharpest methods
compute each component of gradients and slopes separately, by substituting each interval variable at
a time. Backward methods bring no great advantage in the sharpest algorithms, since object-oriented
forward implementations are easy and immediate,

Fischer's aceeleration scheme [2] was also tested with interval variables. This method allows the
direct evaluation of the product f'(z)* (z ~ z) as a single real number (instead of working with. two
vectors) and we used it o compute F/(X) * (X — z) for an interval vector X. We are led to decide
against such acceleration when interval variables are involved.

HoBble MeTOABI HaKAOHOB AAsL GOAee TOYHOTO
BBIYVICACHIST MHTEPBaAbHBIX (PYHKIIA 1
3aMeyYaHie 10 IIOBOAY METOAA YCKOPEHIL
Oyamepa

X. Onausenra

Tpencrapnessl anropHTME MIS BBEIYHCTIEHHA (o/lee TOMHWX rpaHHL uurepsansubix dyuxuua F(X) :
IR™ — IR. 3anoBo paccMoTpenst iBa METOMA, HCHOMBIYIOUDIE YACTHHE NpoHIBOmHBE (QYHKIMK, M
PaspaboTaHO €Hle METHpPE JOKAMBAIMOHHLIX METOA, B KOTOPHX HPHMEHAETCS MHOXECTBO HAKJOHOB
Sr(z,z) dysxum f s £ € X no otsomenno k wexotopomy z € IR™. Bce Metoas Moxwo pe-
AIMI0BATL € MOMONILKY CPEACTB, KUTOPLIE ABTOMATHYECKH BHMHCIAKT BEKTOPH IPAAHEHTA M HAKJIOHA
€ NOMOIBKY ONEPEXAIIEH CTPITErHH, TaKHM 00DPA3OM MCKAOMHB TPYAHOCTH, CBAJAHHBIE € METOMAMM
OBPATHOTO HAKOMAEHHA. CaMble TOYHNE W3 ITHX METOOB BRIMHCIANT KAXKAYK KOMIOHERTY TPARHEHTOS
H HAKJOHOB OTAEABHO, NONCTABAAA 110 OAHOR NHTEPBANLHOM llEPEMEHHON 3a pa3. MeToas ¢ janasasi-
BAHHEM HE AT GOABINORO BHHUIPHIA B TAKHX AATOPHTMAX, TOCKOMBKY OGBERTHO-OPHEHTHPORAHHKIE
METORBE € OlEPEXEHHEM PEAIMIYITCA C MANKIMI 3aTPATAMM TPYAA M BPEMEHH.

Cxema yekopenns ®umepa [2] Takke 6bina RPOTECTHPOBAHZ C HHTEPBANLHMIMI HEPEMEHHBIMI.
3T0T METON AEMAET BUBMOXHBIM RpAMoe BouucaeHme npoussenewnun f'{x) * (z — z) xak oanoro sewe-
CTBEHHOIO YHOIA (4 HE ABYX BeKTOpOB). Mbl HCHOMBI0BAMM 3TOT Meton pis Buuncaenns F' (X )x(X —-z)
€ MHTEPBAALHBM BEKTOPOM X, HO NIPHULIK X BBIBOJLY, YTO 3TUT METOA YCKOPEHHA HE NPHMEHHM K MH-
TEPBAARHLIM HEPEMEHHBIM,
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Introduction

Slopes and gradients can be used to compute sharper bounds for interval functions, and this
is essential to many applications, as in the case of global optimization, where intervals offer
a safe way of finding all minima of a function without the danger of missing a minimum,
and guarantee that the found minima are the frue minima of the function. The evaluation of
sharper bounds for interval functions can considerably accelerate these interval-based algorithms.
The methods that allow us to evaluate sharper bounds through the use of gradients and slopes
are based on the Mean Value Theorem, and are quite simple in their basic form. We present
some variations on these methods, so that more elaborated versions are able to evaluate sharper
bounds than a naive interval evaluation, through the use of different evaluation strategies and
a clever management of the already available information. First of all, we present slopes and
a forward method to evaluate them.

1. Defining slopes

Definition: Slope. From Neumaier [9], a slope Sy{(z,z) : R* x R* — R" for a continuous
function f(z): D C R® — R with respect to a given point z € D is any function for which
the relation

fl@) = f(2) = 5¢(z, 2) % (z - 2) (1)

holds for all z € D.

For monovariate functions the slope Sf(z, z) can be reduced to a difference quotient when
T # z. For the multivariate case, however, both {z — z} and Sy(z,z) are vectors, and the
multiplication turns into a scalar product. In this case slopes are no more uniquely determined,
as different vectors Sy(z,z) can be chosen as long as the scalar product remains constant.

For the case of a monovariate function f € C!, we notice that when z tends to z the
definition of Sf(z, z) reduces to the same as the derivative of ;f‘, thus allowing us to rewrite
the above definition as

Si(z, 2) = { (f(:z) - f(Z))/(x -2), z#1z, "

fiz), z=2z

This is just a matter of convenience, and in reality Sf(x,z) may.assume any value for
Z = z, as in this case the equation that defines slopes will be always satisfied.

11 Evaluating slopes from factorizations

As computations can be represented by a sequence of unary/binary operations, we can define a
large class of functions representable as factorizations:

Definition: Factorization, factorable function. Let L C C* be a set of monadic operators used
in the definition of a function f : D € R® — R. The function f is said to be computed by
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some sequence {f) = (fi1,..., fx) of functions f;: R* — R, with 1 <i < k satisfying

f;(.’l)) = @€ R, or
filz) = =z, 1<j<n, or
fi{x) = g(fj(x)); j<i, g€ L, or

fi(x) fit(x)ofiz(z)a il’i2 <i’ o€ {+1—)*r/}
and if for all £ € D the values f;(z) are well-defined and f(z) = fi(z).

i

Additionally, the sequence (f) is said to be a factorization of f, and has k steps. The function
f is also said to be a factorable function. For vector valued functions f(z) = (f}(z),..., f*(z)),
the definition of a factorable function can be extended in the following way: f: D C R" — R®
is factorable if all component functions f¥(z), I < k < s are factorable.

Being able to evaluate the broad class of factorizable functions, we can present the rules
used to evaluate slopes for these functions:

Definition: Slope sequence. A sequence (Sy) = (Sy(z,z),...,8(z,z)) is said to be a
slope sequence corresponding to some sequence (f) = (fi,..., fe) that computes a function
f:DCR"— R ifxr,z €D and each element Sy, (z,2) € R" from (Sy) is computed
according to the following rules:

flr)=a€R = Sgfx,z)=(0,...,0), (3)
fz)=z; = Splz,2)=¢ =(65,...,60), “)

f(z) = filz) £ fi(z) = Sz, 2) = Splz, 2) + Sp(z. 2), (5)
Fol2) = filz) * fi{z) = S (z,2) = fi(x) * Splz, 2) + filz) * Sy (x, 2), (6)
Fole) = fi@)/fi(2) = Spz,2) = (Si(z,2) — S, 2) * fo(2))/ f(=), (7
@) =9(filz)) = Shlx.2) =5,(f) fi(2)) * Spyz,2),  gel. 8

At the end of the computing process we have the value of Sy(z,z) for initially given
values of z and z. Following the rules, arises the necessity of keeping the partial values
of fp{z) as well as former values of fy(z), and we also need a sequence (f,) to compute
f(z): DC R* — R. (As z € D, the sequence f, is also computable and has as many steps as
flz))

This set of rules is very similar to the set that evaluates gradients in forward mode [3],
and the correctness of the rules can be proved in a similar way. The only difference from
the gradient algorithm is a small change in the evaluation rules to consider the values of
fo(2) and the necessity of evaluating and storing f(z): this means the extra effort of having
another factorization evaluated, but as f,,(z) is a real number it also assures that the computed
values are sharper (the gradient evaluation uses intervals where the slope evaluation uses real
values f,(z)). The rules presented above can also be easily generalized to be used with interval
variables, and a consequence of this generalization is the possibility of computing sharper
interval inclusions, as will be shown in the following section.

Factorizations can be easily extended through the use of interval variables: if a function
f has a corresponding factorization (f), then if we substitute all real operations in {f) by its
corresponding interval operations the new sequence (denoted (F')) will be a factorization of
F, thus evaluating an interval extension of f. In the same way, slopes and gradients can be
evaluated if the variables and operations being used are interval operations.
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2. Gradient and slope inclusions for interval functions

We start with two possibilities that are based on the partial derivatives of the function (in the
rest of this paper we call these methods gradient methods due to the use of partial derivatives,
assuming that gradients are row vectors), and develop others that are based on slopes. The aim
of these variations is to sharpen the obtained inclusion within a moderate amount of effort. In
this sense, slopes are a very interesting source of variations and different versions for methods
already existing, since we are able to vary the evaluation method, the values of z (possibly
using more than one value of z), and a few other characteristics.

21. The inclusions

The first inclusion is obtained from the Mean Value Theorem. Then a second, possibly sharper
method is presented, still using gradients. Thereafter we present methods that use slopes: a
classical method and three variations on it. The methods here presented make use of slopes
and gradients, but it is not important whether these are calculated in forward or backward
mode.

211 Gradient inclusion I

From the Mean Value Theorem ([1, 8, 9] and references therein) we know that, given a function
f : B® — R defined and continuously differentiable in z U X with z € R*, X C IR", the
following relation holds:

f@efl+/UX)x(z-2)Cf(a)+fz U X)*(X-2), foraizeX.

This gradient inclusion would begin by evaluating the row vector f'(z U X) and use
this vector to obtain an inclusion by performing an scalar product with the column vector
(X — z). The evaluation of f(z) is also necessary for the process, but the point is that any
method of gradient evaluation could be used here, either forward or backward. In the process
of computing a gradient we also evaluate a naive interval evaluation F(X), so that at the end
the intersection between this partial result and the final inclusions can be built:

FX) S FX) N (f(2) + F(z 4 X)* (X -2)).

212. Gradient inclusion II

In this second inclusion the same relationship as above is used, but the way we evaluate the
gradients changes. In fact we use ideas presented by Hansen [5, 6], in a strategy aimed to
reduce the diameter of the final result, even if the effort increases. This method will be stated
as a theorem, originated from Hansen:

Theorem 1. Let f: D C R — R continuously differentiable in D and z € D. Let X € IR",
X C D. Then for any arbitrary z € X, z = (z3,...,Zn) it holds that.

f(x) = f(Z) + zn: %(zl’ svey Timly fi) Zigly -1zn) * (Ii - zi)

i=1 4

for values §; € z; U z;.
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Proof. Let us define a family of functions f; : R — R, 1 < i < n, given by fi(w) :=
f(zl,'...,:c;_l,w, Zitl,- -+, Zn). Then it follows from the definition of the f; that for some
L€z U

filzi) = filz)+ fil&) * (zi — z)
= filz)+8f/0zi(zy,. .., Ticy, &y Zigy - - o0 Zn) * (Ti — 2).

From the definition of the functions we also have that f(z) = fi(z1) and f(z) = fu(z,). We
use the inclusion above for f(z) to obtain

F(@) = falzn) = falzn) + 0F/8Za(x1, . .., Tno1,En) * (Tn — 2n).

Knowing that in general
filzi) = filz:) + 8f [0z, . . ., Bim1, Gy Zigts - - -, Zn) * (T3 — 23)

and that fi(z) = fi1{zi-3), it is possible to make successive substitutions starting from the
inclusion for f,(z,) and getting at the end

fl@)y = filz1) +0f/021(61, 22, ..., 2a) * (21 ~ 21)
e

+ Bf/a:z:,,(a:l, iy Tp-i, En) * (xn e Z").

Joining all terms in a sum, we finally have

f(x) = f(Z) + Eﬂ: g(xh .. "37:'-1;5:‘; Zigly .- -!21'&} * (xi - Z{)
i=1 t

for values & € z; U z;. O

As the estimation F(X) also needs to be computed to perform the gradient evaluation,
at the end we may include f(X) using

f(X) c F(X) rjf(z) + Z af (Xh i—lafi,zi+11 v ’,zn) * (Xz - Zi)
i=1
for values §; € z; U X,.

The strategy behind this algorithm is the following: as the gradient evaluation is now
transformed into a sequence of n derivatives, we notice that many (in fact, n — 1) of these
derivatives have less than n interval variables to be used in its evaluation. That is, the
derivatives 0f /0x; calculated in this way are possibly sharper than the corresponding elements
in the vector f'(X), and we are able to evaluate sharper inclusions.

213. Remarks on gradients

At this point, some remarks about the use of gradients to achieve inclusions can be made, these
remarks being valid also for the two methods above.

These algorithms can only be applied if the function to be included is differentiable in
z U X. Although this does not seem to be a severe restriction, it may turn up to a problem
when trying to achieve inclusions for functions defined by algorithms. These are relatively
complex expressions obtained by running programs, and cannot be easily defined in an explicit
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form. It is also possible that at the end of the evaluation algorithm no information about the
differentiability of the function exists {after an unknown number of IFs, GOTOs or loops), so
this exigence may be too strong in practice.

As we compute the inclusion with the term § € z; U X, the derivatives evaluated are
inclusions for all existing derivatives in z; U Xj. In other words, we are able to substitute the
used 2; by any & € z; U X; and the above inclusions would still be valid. So, the derivatives
are intervals with a relatively large diameter, maybe too large to be really useful.

As an extra nuisance, if we need to use some z; outside X;, then we still have to compute
the gradient for the region z; U Xj. This brings two major problems:

1. The diameter turns to be even larger.

2. To evaluate this gradient we have to evaluate the function F(z; U X;), thereafter eval-
uating the derivative. Unfortunately the function F(X;) is no more evaluated, and thus
we are not able to perform an effective “error-reducing” intersection as in the methods
abeove.

214. Slope inclusion 1

Similarly to the classical gradient inclusion, the basic slope inclusion is also very simple:
f(D) € f(z) + Sp(D, z) * (D - 2). (9)

Again, f(z) must be evaluated and a slope Sp{D, z) is necessary to compute the inclusion.
Onece more, when evaluating the slopes we also compute the common interval evaluation F(X),
and at the end they may be intersected, reducing the final diameter. This is all, and in the
following methods we will try to enhance the sharpness of the final answer taking different
variations on this process.

215. Slope inclusion II

The stope evaluation depends in subtle ways from the value z used as reference to the slopes,
and there remains the question about what are the better choices for z for a given function in
a given domain.

This dependance 'suggests other possibilities to effectively use slopes to evaluate safe bounds
for a function f{X): X € IR" — IR. Here we depict one of such variations: as an effective
strategy we could use two slopes taken with respect to two different values 21,2, € R" to
compute estimations for the range of f{X). Thereafter, the intersection between such estimates
is built, achieving a possibly better value. Natural candidates for such values z;, z; would be
z1 = min(X) and z; = max(X).

We point out that this idea has cost lower than the costs of the evaluation methods that
will be immediately propesed, even if its results are possibly not so sharp. In this sense we
have a kind of balance between cost and performance.

2.16. Slope inclusion It

To develop this method we use the same functions f; defined in the proef of the gradient
method IIL For the moment, suppose that we may evaluate slope functions Sy, (z;, z;) : RXR —
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R that will expand f;(z;) with respect to z; in the form below:
Fi=5) = fi(z) + Sp, (25, z3) * (25 ~ 7).

If such slope functions exist, we have the following theorem relative to the evaluation of

f(=):

Theorem 2. If there are functions Sg,(z;,2;) : R X R — R as above, then for all z € X,
z={z1,...,Zn) it follows that

n
f(.’»“') = f(Z) + Z‘Sfi (zia Z,;) * (xi - Z,').
=1
Proof. Also in this case we have the identities f(z) = fa(2n) and f(2) = fi(z1), as well as
fi(23) = fi-1(xj-1). Then we may still include f;(z;) using the value of fj_i(z;_1). This
succeeds as follows: the evaluation for f;(z;) is given by

£(@5) = £(25) + S50 2)  (x = 2)
and now we make use of the equality f;(z;) = fi—1(z;_1) to substitute

Fi(z) = fima(zia) = fi1(z5-1) + S0 (T30, 25-1) * (2521 = 25-1)
in the inclusion for f;{z;), getting at the end
fi(z5) = fi-1(z-1) + Sy (%=1, 25-1) * (€51 — 25-1) + S(25, 25) * (75 — 25).-
Starting from fn(z,) and substituting successively each f;(z;), we obtain the following

inclusion:
fz) = flz)+ Sp(z,2) * (1 = 21)
+ [
+ 84, (Tn, 2n) * (Tn — zn).

Joining all terms in a sum, we finally have

f(z) = f(z)+ f: Sp(zi, z:) * (i — z). 0

i=1

This is the slope version of the gradient method that breaks up the gradient evaluation into
smaller pieces to achieve interval inclusions with smaller final diameters. The terms Sy, (X, ;)
are evaluated with 7 interval variables each, and the results are sharper than in other methods
where slopes are calculated with the maximum number n of interval variables. Unfortunately,
the price to be paid for such sharpness is the impressive amount of computations that are
necessary to perform the complete process, since for a function f(X): IR" — IR the effort
approaches to 2n times the cost of computing the function just once.

A good characteristic of these methods is that the value of f(Xi,..., X zi41,...,25)
to be used when evaluating %(X;,...,Xg_l,ﬁ, Zity1,...,2Zn) or the slope Sy (X;, z) can be
easily updated from f(Xi,...,Xi-1,2,...,2,) if we only recompute the intermediate steps
depending on X.

Although not explicitly said in the proof, the process of substituting real by interval
variables does not depend on a predefined or constant sequence. For our proof we used the
quite natural sequence 1...7n, but we are free to substitute the variables in any order.
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A subtle consequence of this method is that after substituting the first variable by an
interval it is no more true that all slopes in the factorization will be evaluated between some
interval X and a real z. It will be sometimes necessary to evaluate the slope between one
interval and another interval. To give an example, we will use the following function:

f(X) =4 X12 <+ Xzz.

To begin with, we evaluate the function for z = (21, 22}, then insert the first interval variable.
Denoting by f*(X) a function with s interval variables, we start by evaluating f%(X) (that is,
the true f(z)) and a function f1(X). Using these two, we evaluate a slope between them to
make f1(X) sharper. Thereafter we evaluate some f2(X) and use it with f1(X) to evaluate a
slope and make f%(X) sharper. Performing these operations in the above function, we have a
sequence like the following (the slope evaluation between the functions is not shown, to enhance
readability):

Factorization FUX) FUX)
h=X; zZy X3
fa=2X2 2z 2z
fs=hixfi z? X?
fa=faxfa z? z?

fo=fa+fo zl+z?  Xi*+2?

fo=VTs Val+z2 Xk + 29

The point here is that the steps fi, f3, f5, and fg of the new function f'(X) are intervals.
This would be not important for f; and f3, since the other variable does not appear in their
evaluation, so they do not need to be evaluated in further steps. But f; and fs need to be
reevaluated when we substitute the second interval variable, and thus we will need to compute
a slope between the corresponding intervals from f!(X) and f3(X). This leads us to the
computation of slopes between intervals.

217. Slope inclusion IV

Up to this point, the approach to the use of slopes was more or less the same for any methods:
first evaluate an inclusion for f(X) with interval arithmetic (obtaining, say, F1(X)), then f(z),
then a slope and the corresponding inclusion (say, Fs(X)) obtained by using it. Thereafter, we
join both results in the final inclusion

f(X) € F(X) N Fs(X).

It is interesting to notice that this kind of enhancement can only make the last term of
the factorization sharper and no other terms take advantage from the slope—evaluation process,
due do the rather intuitive process of first evaluating all steps of the factorization for f(X),
then all steps for f(z) and finally computing all steps of the gradient or slope. This is a very
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natural implementation separating f(X), f(z) and S;(X, z), but we can make much better by
interleaving these computing steps and make all possible intermediate steps sharper.

To start, we remind the reader of an interesting property of a factorization: If we
delete any number of steps from the end of a factorization, the remaining sequence is also a
factorization. Conversely, any number of steps from the beginning of a factorization also form
a factorization, and we will use this fact to work gradually from the beginning, sharpening the
intermediate results as we advance to the end.

This new method works as follows:

o First, create an array S = @ of already evaluated slopes.

e For every step f; in the factorization, do:

= Evaluate f;(X).
— Evaluate f;(2).

= If §5,(X,z) € S, then evaluate Sy,(X, z) (using other slope values from S) and insert
itin S.

= Afier that, do fi(X) = fi(X) N (fi(2) + Sx(X,2) (X - 2)).

This seems to be quite an improvement, and may be used either with forward or backward
slope evaluation. As intermediate results are enhanced and their slopes are stored in S for
further use, it is clear that the slope for any step is evaluated with operations on at most
two other slope vectors, namely the slopes of its operands, that were already evaluated and
are ready to use. When the slopes are evaluated in forward form, the method has almost
the same performance as the forward slopes method, but a much increased sharpness since all
intermediate results are possibly enhanced.

3. An interesting speedup

Here we describe a very interesting idea to have a faster evaluation of both gradients and
slopes in forward mode. The method was elegantly described by Fischer [2], but we reproduce
here its essence, already adapted to gradients and slopes®:

It is not uncommon that in the course of some computation we need to evaluate the
product g(u) * v, where u, g(u) and v are vectors somehow defined. The typical case to be
explored in this section would be the evaluation of an interval valued f(X) as the inclusion
below:

FX) € f(2) + VAX) * (X - 2).

In the above case, u = X, g = Vf and v = X — z. Common sense says that we evaluate
first g(u), then evaluate v and finally evaluate the scalar product g(u) * v.

Both slope and gradient evaluations implement exactly this “common sense” approach.
They store whole vectors and operate on them progressively, reaching at the end a final vector

'We assume that some function f(z) : R® — R has a factorization (f) with length k.
%In this description we talk mainly about gradients since they produce better examples and more readily under-
standable situations. The situations described are easily adapted to slopes.
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that represents g(u). But let us take a closer look at the rules that specify the computation of
gradients from a factorization:

fiX)=a€R = Vf=(0,...,0),
fX)=X; = Vfi= é= (81js -« 1 6nj)s
F0 =g(£(X)) = V=g (H(X)*VS,
X)) =f(X) 2 fi,(X) = Vfi=Vfi £Vfy,,
[iX) = Fu(X) * fio(X) = Vfi=fiu,(X)*xVfi, + [, (X)* Vi,
FX) = (X £l X) = V= (Vi = f(X) % Vi) [l X).

Looking at that set of rules, we are tempted to forget about storing whole vectors and
to store and operate between the final products. That is, we have for each stored step fi(X)
the vector Vf;(X). Would it then be possible to replace it by the interval Vf;(X) * (X — z)?
Possibly yes, if we are able to operate between these values. This approach would save a lot of
effort and storage.

Interestingly, we can prove that the rules computing Vf(X) are also valid to compute
the scalar product Vf(X) * (X — z). In other words, the rules are practically the same, the
only difference being the rule that defines V f; for steps that introduce the elements X;. This
rule was given as

X)=X;=>Vfi=¢
and now this will need to be changed into

f,(X) = X,’ = Vf;= X;, - Zj.

Instead of working with unit vectors €’, we have now the result of the scalar product
of these vectors with X — z, namely X; — z;. Being all other rules valid, we have no vectors
anymore, computing with a single interval associated to each step all through the computation.
Doing this, the problem of evaluating the scalar product turns to be indepedent of the number
of variables, depending only on the number of operations.

As a consequence, to work with slopes we need to change the same rule in the same way.
The other rules for computation with slopes are immediately valid. The above method is very
promising: compurations using this method are really faster and spare lots of storage, but now
we should examine what we are really doing when using this method with real and interval
variables.

o Real variables.
Working with real variables no problems of any type arise, and we may easily compute
results much faster and with the same éxactness as when operating with whole vectors.

¢ Interval variables.

Unfortunately, there is a major problem arising when we have to deal with interval
variables. To present it, we give the following reasoning:

In the original method we used unit vectors ¢’ (that is, real vectors), that in the course
of the computation were transformed into interval vectors. That is, the computation was
started with real numbers as vector components, and these real numbers were progressively
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operated with the intervals originated as intermediate values from the evaluation of F(X).
Thus, we have as many intervals being used in the computation as there are steps in the
evaluation of F(X). This is the point: the only intervals used in the computation of
the slope vector are the ones associated to F'(X). After the gradient or slope vector is
evaluated, we multiply it by (X — z), another interval vector, and the inclusion is ready.
This acceleration method does things a bit differently:

Adapting the new method we already start from intervals (we start from X — z, by
using the starting values X; — z1,...,Xn — 2»), and operate them among themselves and
among the intervals originated from the evaluation of F(X). That is, instead of using
the difference X — z only at the end, we use these intervals from the start, inserting new
intervals in the process and increasing the chance of enlarging the overestimation of the
final result.

Example

As an example, we take f(z,y) = (z% + ¥?)/y. To evaluate a slope inclusion for f(z,y) with
z =[1,3] and y = [2,4], we use z = (3,4). Doing the computation using vectors, we have. the
factorization below (for the sake of readability we insert a new column in the table, namely the
value of fi(z) + Sy,(z,2) * (z — z) for each step):

Factorization Value f(z) S¢(z, 2) f(2) + Ss(z,2) * (z - 2)
h==z [1,3] 3 (1,0) 1,3

fa=y (2,4] 4 (01 2,4]

fs=hxf [1,9 9 ([4,6],0) (-3,9]
fa=faxfy  [4,16] 16 (0,[6,8]) [0, 16]
fs=fa+fo [5,29 25 ([4,6],[6,8]) [~3, 28]
fo=fi/fa  [125125] 625 ([1,3],[~0.125,0.875)) [~1.5,6.5]

This slope vector leads us to the inclusion [~1.5,6.5]. Now we evaluate the forward slope

using the new method:

Factorization Value f(z) Splz,z)x(x—2z) f(z)+ Sf(z,2)*(z—2)
h=z [1,3] 3 [-2,0] (1,3]

fi=y P4 4 |20 2.4
fa=fixfi (1,9 9 [-12,0] [-3,9]
fi=foxfo  [416] 16 (~16,0] [0,16)
fs=fi+fi 5,25 25 (=28, 0] [=3,25]
fo=fs/fr [1.25,125] 6325  [-14,6.25] [~7.75,12.5]

This leads to the inclusion [~7.75,12.5]. We see that both factorizations have the same

results up to the step fs, and then suddenly get different. In this example, the division step
leads to the overestimation in the new method. This is a consequence of using intervals since
from the start.
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4, Implementations

We describe the implementation of the previously presented methods, being able to use them to
evaluate inclusions for a continuous, differentiable real function f(z): R® — R in an interval
domain X C IR" in the following ways:

Common interval evaluation:

This method simply includes f(X) by substituting the variables zi,...,2, in f(z) by
its interval correspondents Xi,..., X, from X. Thereafter, the steps of the factorization are
computed and the result is ready. This is the most common form of interval evaluation.

Classic gradient:

This method implements an idea previously presented in Section 2.1.1 (the gradient in-
clusion I), and using it we obtain an inclusion by expanding the function around z using its
gradient to obtain the final inclusion:

FIX) € (f(2) + f(z U X) = (X = 2)).

Thereafter we are able to build an intersection with the inclusion for f(z U X) computed
by the common interval evaluation, as this value is obtained as an intermediate result in the
process of evaluating the gradient in the domain. More formally, we have a pseudo-code like

this:

interval gradient.inclusion(function f, vec_interval X, vec_point z)
{

interval res, tmp, tmp2;

int %;

tmp = f(X3 U 21, X2 U 20,....Xn U Za);

tmp2 = gradient(X; U z;, X2 U 22,...,Xn U z);

res = f(Z],Zz,..-,Zn);

fori=1...n
res += tmp2; * (X; — 2;);
return res 1 tmp;

The intersection between res and tmp represents exactly the effort of increasing the
sharpness by intersecting an older, possibly not so good inclusion {tmp, the result of a2 common
evaluation) and a possibly better one (computed by res, the inclusion using a gradient). If
this were not tried, we would simply return res. The use of this intersection assures that this
method evaluates inclusions at most as large as the common interval evaluation of f(z U X).
As this is the first algorithm presented, we use this opportunity to explain the following points:

e When reading these algorithms, we must keep in mind that they were implemented
operating on factorizations of functions, and not on program pieces. That is, after evaluating
f for some set of variables, the intermediate set of values used in its computation is
preserved, while it would be lost if f were implemented as a piece of compiled code.
Thus, after computing f we may compute its gradient without re-evaluating any values
from f, just by “finishing” the gradient computation.
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o Of course, it is necessary to include some error handling to return appropriate values or
set appropriate flags if some function cannot be evaluated due to a division by zero, etc.
This error handling is not shown, as it varies on each application.

¢ The separation between the evaluation of f and its gradient was made only for clarity
purposes, but usually this operation is performed at once by some automatic routine. In
other algorithms, similar operations will be done separately with the same purpose.

¢ Experience shows that if z € X, then the gradients evaluated are usually large enough to
make the estimate computed by the algorithm worse than the intermediate value f(X).

Gradient inclusion II:
This method implements the idea embedded in the first theorem of section 2.1, thus
originating the gradient inclusion IL

28
fX)Cflaa+ Zb—;f—.(){l, v Xicn zi U XiyZiga, o, 20) % (X — ).
i=1 1

To perform the above calculations, we implement the following pseudo-code:

interval gradient.inclusionII(function f, vec_interval X, vec.point z)

{

interval res, tmpl, tmp2;

int i;
res = f(Zl,Zg,...,Zn);
for i = 1...n {
thi = f(le'-wX'—lin LJ zivz‘H-ls"-;zn);
tmp2 = gradient(Xy,...,Xi—1, Xi U 2, Zit1,-. -, 20);
res += tmp2 * (X; — 2;);
}
return res;

The process is similar to the others already presented, but in this implementation we do
not perform any Intersections with previously obtained estimations. To implement this, we
include an intersection as follows:

res += tmpl N (tmp2 * (X; - z));

It is important to notice that on each iteration just one variable is changed. That is, at
each time only the i-th variable will have its value changed from z; to z; U X;. Thus, we are
able to examine the factorization and recompute just that steps that depend of this variable,
avoiding the effort of recomputing any steps that do not change value. The same is true for
the slope computation in the next method.

Classic slopes:

This method implements the basic slope inclusion from equation (1): we compute the slope
for the function f(X) with respect to z, finally obtaining the inclusion as

F(X) € f(2) + 5¢(X, 2) % (X - 2)
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and thereafter we build an intersection with the common inclusion for f(X). (This value was
also an intermediate result from the slope evaluation.)

In this case, the final results must be at least as sharp as the values obtained by the
forward gradients, since the set of slopes is always a subset of the gradient, but as before
nothing can be said about the quality of the results if z € X. The pseudo—code would be:

interval slope.inclusion(function f, vec_interval X, vec_point z)
interval res, tmp, slp;
int i;

tmp = f(X1,Xz,...,Xa);
res = f(zlfz%"'azn);
slp = slope(f, X, z2);

fori=1...n
res += slp; * (X —z);
return res 1 tmp;

}

In the case of this routine, we use the factorizations to evaluate f(X) and f(z}, also
storing its intermediary steps. Thereafter, a simple call to a routine returning the slope vector
S¢(X, z) used in the loop to compute the scalar product Sy(X,z) * (X — z). After that we
have a final intersection with the common evaluation and the result is ready.

Slope inclusion II-IV:

Here we develop two methods, and use the second one as implementation. The differences
between them are related to the better use of available information, as will be explained in
the text. Informally speaking, the first method will implement the slope inclusion III from
Section 2.1, and the second method will adapt it to use all information possible, since that
method does not fully use it. This produces slope inclusion IV, the one that has presented the
best results.

We implement the idea presented in the second theorem of Section 2.1, namely

F(X)C f(z)+ iSf‘(Xi, z) * (X; - z).

i=1
To perform the computation, we could implement the following pseudo-code:

interval slope.inclusionIII(function f, vec.interval X, vec_point z)

{

interval res, tmp;
vec.interval now, previous;
int %;

now = (z3,23,...,2n);
res = f{(now);

fori=1...n {
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previous = now;

now; = X;;
tmp = f{(now);
tmp = slope(f, now, previous);

res += tmp * (X; — z);

}

return res;

There are two sets of variables, to keep track of the already used interval values. We
start with a set of real variables, and as each new X component is used, this new component
is included in the now set and we evaluate the slope of the function between the two sets of
interval variables. Doing this, we are silently computing the functions f;(w) that were presented
in section 2.1, as well as the slope between fi(X;) and f;_1(Xi-1), as the method requires.

In this method, we recompute in the factorization only the steps that are directly dependent
of the i-th variable, that is, the only variable that changed its value. This idea applies both to
the evaluation of f as well as its slope.

This was indeed a very clear pseudo-code, since it implements literally the method pre-
viously presented. Looking at it more carefully, we notice that the computation of f occurs
completely before the computation of its slope, that is, all steps of f are recomputed before
any steps of its slope are evaluated. This may lead us to an important quality improvement:
interleave the steps from f and from its slope, to get advantages from both with a very little
cost. To perform this new idea, we change the code to run like this:

interval new.inclusionIV(function f, vec_interval X, vec_point 2)

{

interval res, tmp;
vec_interval now, previous, base;

int 2, 7;
now = (z1,20,...,25);
res = f(now);

for i = 1...n {
for j = 1.. steps base; = f;(now);
previous = now;
now; = X;;

for j = 1...steps
if f; depends on X; {
tmp = slope(f;, now, previous);
fi=f;N (base; + tmp * (X; — z));
}
}

return value_ last_step(f);
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The idea behind is: as we interleave the steps of the function and of its slope (say, in the
j-th step), we are immediately able to sharpen the value computed to f; by using the slope
and making the intersection f; N base; + Sy, (now, previous) * (X; — z;). That is, we make
intermediate steps sharper, and this will make the following steps also sharper, their slopes are
sharper. .. and so on.

In a formal sense, we are no more considering f; as a step in a factorization, but
as a function itself, and sharpening it with a slope computation, before turning to its next
step, fi+1. This increase in sharpness may lead to surprising results when compared to the
first implementation presented. Although not so obvious, this version has another important
advantage: it runs through the factorization only n times, instead of 2n times as for the
previous version. This represents a considerable speedup if the factorization is long, as for
example factorizations generated by running programs, because we are able to do a sharper
job with much less memory swaps. The more important conclusion is ‘that this idea may be
applied to all methods that compute inclusions by considering one variable at each time, either
with slopes or gradients.

5. Examples

In this example we will use the following function:

X—Y)x(SX—Y_ Y )
X+Y 2X-Y Y-X

with the variables being X = [10.708010, 11.274770], Y = [9.301460,9.583840]. When slope
methods need a value to be used as z, we used z = (10.666667,9.333333). Maybe some
algebraic simplification could be done reducing the differences among the various inclusion
methods, but we evaluate the function in this form since it is probably nearer to the results
obtained by using these inclusion methods on functions defined by algorithms as more redun-
dancies and dependences are expected to appear. Testing the methods on the function, we
obtained the following results®:

FX,Y) = ((X +3V)(X -Y)+

Method Inclusion Diameter Effort
Common interval evaluation [349.0581,988.8205] 639.7624 51
Gradient inclusion If [335.2089,935.1833] 599.9744 265
Gradient inclusion Ib [335.2089,954.1338] 618.9249 213
Gradient inclusion 11 [481.8828,767.136] 285.2532 274
Slope inclusion 1 [487.8473,772.0643] 284.217 233
Slope inclusion IV [484.795,759.1293]  274.3343 436

Gradient Inclusion I is presented in two versions: If and Ib. This means that the gradient
vector was evaluated in forward and backward mode, respectively®. As we can easily see, there

3The effort measured in the table is the total amount of arithmetical operations used in the computation, aute-

matically computed by the methods.

4There are différences in the results obtained from both methods when interval variables are used, and wsually the
gradient obtained in backward mode is an inclusion for the gradient obtained in the forward version. Once again, a
consequence of using interval variables in the computation.
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is a great improvement when more advanced methods are used. The table presents the relative
diameters of the obtained inclusions for the different methods:

Method Diameter ratio
Common interval evaluation 2.33
Gradient inclusion If 2.19
Gradient inclusion Ib 2.26
Gradient inclusion II 1.04
Slope inclusion I 1.04
Slope inclusion IV 1
As a second example we use
X N rX Y\?
FIX.Y) =2X (9+2x+ (Ié -Y) ) (E*’?) ‘

Using this description of the function and evaluating it for X = [9.7,10.4], Y = [8.8, 9.6
and z = (Mid(X), Mid(Y)), the different inclusions give the following results:

Method Inclusion Diameter  Effort
Common interval evaluation [5670.5735,8935.342] 3264.7685 36
Gradient inclusion If [5809.2835,8461.7934] 2652.5099 212
Gradient inclusion Ib [5724.5959,8546.4809] 2821.885 164
[
[
[

Gradient inclusion II 5909.7141,8361.3628] 2451.6486 214
Slope inclusion I 5918.6285, 8352.4483] 2433.8198 184
Slope inclusion IV 6096.3915, 8289.8854] 2193.4939 316

Finally, we try the different inclusions with the function given by

2X (184 - 2XY)Y

FXY) =55 (—9.2+2XYY - 2XY)

The results obtained evaluating the function for X = [0.25,1.25], ¥ = [8.5,9.2] and
z = (Mid(X), Mid(Y)) are given below:

Method Inclusion’ Diameter Effort
Common iuterval evaluation [-53.9108,165.8344] 219.7452 37
Gradient inclusion If [-53.9108,165.8344] 219.7452 211
Gradient inclusion Ib [—53.9108,165.8344] 219.7452 157
Gradient inclusion 1I [~53.9108,165.8344] 219.7452 226

Slope inclusion 1 [~53.9108,165.8344] 219.7452 183
Slope inclusion IV [-21.336, 48.7762] 70.1122 328
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Supposing that the function is not determined by a running program but known in
advance, the repeated term 2X can be elimined from the expression. Evaluating the inclusions
with this simplification, we have the intervals below:

Method Inclusion Diameter Effort
Common interval evaluation [—10.7822,33.1669] 43.949 29
Gradient inclusion If [~10.7822,33.1669] 43.949 163
Gradient inclusion Ib [-10.7822,33.1669] 43.949 125
Gradient inclusion I [-10.7822,33.1669] 43.949 170
Slope inclusion 1 [-10.7822,33.1648] 43.9469 143
Slope inclusion IV [-4.2672,13.1263] 17.3935 248

We think that the extra management and computing effort that are applied in the more
complicated approaches using both gradients and slopes are a-good price to be paid for the
better quality provided by their results.

6. Implementation

The major problem with more sophisticated methods based on introducing an interval variable
at a time is that they need to store the whole sequence of evaluation steps, so that all
computations can be retraced several times, one for each interval variable. This leds directly
to serious management problems, very similar to the ones found in the backward gradient
evaluation. In fact, these management problems are so similar that it would be very easy
to embed these gradient inclusions in any already developed system that performs reverse
accumulation.

For the simplest methods, we can very easily implement forward versions of the inclusions,
using for example support systems like Profil/BIAS and others. These systems provide properly
rounded interval routines, vector and matrix facilities, as well as an object-oriented environment
that allows easy customization over a wide range of Unix and PC platforms. The routines
that evaluate slopes were programmed under Profil/BIAS as an extra package (Profil already
provides a gradient package)®.

As an example, the program that evaluates inclusions for the last function above from its
gradient or slope is given by the code in Figure 1, and it can be seen that the changes needed
to get either gradients or slopes as resulis are quite small. The data types can be automatically
changed with macros, as well as the access functions. The only extra care {in this example}
is the separate evaluation of the function at the reference point z, since gradients have no
automatic evaluation of this value, while slopes perform the evaluation automatically. So, the
value of the function at the development point needs to be separately evaluated in the case of
gradients, introducing some extra management. On the other hand, if only the gradient and
slope vectors were needed, this evaluation could be left out of the program.

In the BIAS/Profil package used in the above example we implemented the slope compu-
tation as presented in the Classic Slopes, that is, a rather straightforward implementation very
similar to forward differentiation. As a late development, we also implemented an algorithm

5Profil and BIAS are available for anonymous ftp at the site ti3sun.ti3.tu-harburg.de.
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// To be defined below: *GRADIENT" or "SLOPE"
// This automatically adapts the whole code to operate
// with gradients or slopes.

#define GRADIENT

#ifdef GRADIENT

#define TheVector GradientValue
#tdefine INTERVAL_TYPE INTERVAL_GRADIENT

#else

#define TheVector SlopeValue
#define INTERVAL_TYPE INTERVAL_SLOPE

#endif

#include "IntervalSlopes.h"
#include "IntervalGradient.h"

INTERVAL_TYPE f(INTERVAL_VECTOR & v) {

INTERVAL_TYPE x{(v);
INTERVAL_TYPE auxi = 2

* x(1) * x(2);

return (€18.4 - aux1) * x(2)) / (-9.2 + auxl * x(2) - auxl);

)

void main() {
INTERVAL_VECTOR x(2);

.25);

x{1) = INTERVAL(0.25, 1
x{2) = INTERVAL(8.25, 9.2);
VECTOR z(2);

z{1) = 0.75;

z(2) = 8.85;

SetDevelopmentPoint(z);
INTERVAL_TYPE y = £(x);

#ifdef GRADIENT

INTERVAL_VECTOR Iz(2) =

z;

INTERVAL RefValue = FunctionValue(f(¥z));

x <<
FunctionValue(y) <<
z <<
RefValue <<
TheVector (y) <<

#telse

INTERVAL RefValue = DevValue(y);
#endif

cout << "x = " <<

cout << "F(x) =" <«

cout << "z =" <<

cout << "F(z) =" <<

cout << "Vector = " <«

cout << “Result LR <4

Figure 1. A simple implementation using slopes or gradients under Profil

RefValue + TheVector(y)*(x-z) <<

endl;
endl;
endl;
endl;
endl;
endl;

317
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that evaluates Slope Method IV without having to store the computational graph, that is, in
a forward version similar to the one suggested in [9] This was done in a rather simple and
elegant way that allows us to avoid all the memory management problems of a backward
approach. As the slope computations are implemented using C++, there would be no changes
in the program above if this new version were to be used, the only difference that would be
noticed is that the slopes evaluated would be sharper.

To implement this new version we need to associate some more information to each
variable. It is important to notice that although the amount of memory needed for each variable
markedly increases, even more memory is made free by avoiding to store the sequence of
operations, and the development effort to be invested in this algorithm is practically insignificant
if compared to the effort of implementing a backward system with all its management. Further
still, an object-oriented version of this algorithm can be made in very short time.

6.1 New implementation

To obtain a complete version of the algorithm, we present it substituting of real variables for
interval ones from first variable to the last. A slightly changed version using other sequencing
is easy to obtain. We associate two vectors to a varjable, performing computations with them as
each operation is performed with the variables. One of these vectors will contain the function
values that would be obtained by inserting a few interval variables in the operation being
performed, and the other vector will store the slopes obtained for these partial values. More
formaily, we have:

Definition: Associated vectors. Let X = (X),....X,) € IR™ and z = (z3,...,2,) € R™ be the
values of the variables used in the computation of S¢(X,z), and suppose that the function f
has a factorization {f). Then we associate vectors P € IR™! and V € IR" to each evaluation
step, defined as follows:

B=(y-a7);
X) = R
filX)=7eR = {1/,5(0,0,..,,0);
( PIE(ao,--',an)v
.___.:{Zj, OSi<j;
=X =4 0 L iz
Vi= (a1 an),
$ a,-E5='j;
( H:(ao,.--,an):
Up © Vg, z=0’

o = (uiovi)ﬂ(a,-_1+S,~*(X,~-z,-)), 1> 0,
. with u=P;v=F, 5=V
X)) =f(X)o fil(X) = { Vi=(ay,...,00),

uU; © U, o0& {+'_}’
= ] BRUT S, o =%,
P (wi—vxri)/t, o=/,

with u = Vj,v =V, s = Pj,t = P, = B



NEW SLOPE METHODS FOR SHARPER INTERVAL FUNCTIONS... 319

4

sz(ao,,..,an),
9(uo), i=0,
a; =4 glu;)N (ai_l + 8 (X; — zi)), 1> 0,
X)) = Q(fj(X)) = withu=P, 5=V
W = (al,...,an),
- Sg(Ti,Ti—l) * Uy, i>0,
| a;:{ withr = Pju=V,.

The above algorithm works as follows: as each interval variable X is used, its associated
vector P represents the evaluations that would be obtained by substituting the j-th interval
variable, and V' stores the slopes between consecutive elements of P. So, V has one element
less than P. After each variable is introduced, monadic and dyadic operations are performed
accordingly to the known rules, and intersections are built consecutively. For each step, the
final value of the inclusion is stored in the last element of P.

It is important to notice that for each step f; that represents an arithmetical operation
the vectors P, and V) are computed practically together, since elements of one are necessary to
compute elements of the other. At the end of a factorization with k steps, the last element of
Py contains the value of the desired inclusion. Although it may seem to be a rather complicated
algorithm, it can be easily programmed.

The memory requirements are clear: to each one of the n variables (and any temporary
variable) or arithmetic operation we associate 2n + 1 intervals. This may be a large memory
amount, but probably less than the amount that would be used to store the list of already
performed operations, plus intermediary data, pointers and any other necessary information.
In any case, the vectors associated to the arithmetical operations are volatile: after some
operation is performed and its result is used (either stored in a temporary variable or used as
argument in other operation) the vectors can be deleted and so no memory remains allocated
to any already performed operation. So, if a routine has 400 operations, 16 variables and 24
temporary variables, then 2 * (400 + 16 + 24) vectors will be created during the computation,
but the number of stored vectors at a given time is bounded by 2% (16 + 24) plus the maximal
number of arithmetical operations used in an expression.

An object-oriented implementation will gracefully allocate memory automatically for each
new partial result or new arithmetical operation, and this memory will be immediately deal-
located after no more references to it exist, thus automatically using the minimum possible
amount of memory, providing a rather elegant implementation of the whole algorithm.
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