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New slope methods for sharper interval 
functions and a note on Fischer's acceleration 
method 
JoXo B. OLr~a 

This paper presents algorithms evaluating sharper txatnds fi~r interval fimcti, ms F ( X )  : I R  '~ ~ I R .  
We revisit two methods that use partial derivatives of  the fimctitm, and develop four other induskm 
methods using the set of  slopes S t(::l:, z) of  f at z ~ g with respect to some z E I R  n, All methtmls can 
he implemented using urals that automatically ewaluate gradient and slope vectors by using a forward 
strategy, so the complex management nf reverse accumulation methocLs is awfided. The  sharpest methtk-'ls 
compute each comptment of  gradients and slopes separately, by  substittltlng each interval variable at 
a time. Backward methtKis bring no great advantage in the sharpest algorithms, since ob~ct-oriented 
forward implementatitms are easy and imn|ediate. 

Fibber's acceleratkm scherne [2] was alu~ tested with interval variables. This I ne th~  allows the 
direct evaluation of the pnmluct f~(:r.) * (x  - z) as a single real mnnber (instead of working witl'L.two 
vectors) and we used i~ to cmr~pute F~(X)  * (X  - z) fi~r an interval vector X .  We are led to decide 
against such acceleratkm when interval variables are inwdved. 

HOBble MeTOAbl HaKAOHOB %AX 60ACe TOqHOFO 

BblqHCAeHI~ l/IHTepBahbHblX c y Imfi ri 
3aMeqaHHe rio HOBOAy MeTOAa ycKopeHmI 
 l/rrrrepa 
) K .  OAI4"BEFIPA 

HpeacraaaeHu aaropuTu~ .nLas aumtcaemia  &mee *OqHbZX rpamm HHrepaa~ttux 0pyHgUlifi F ( X )  : 
I R  a ~ _rR. 3axo~) paccMo'rpeHm ,amt meToaa, nomabaysmam ~acrHue Ill.~n3ao21xble cl)yxgttHI.i , tt 
pa3pa~oTaHo el.lie MeTL4pe .rl(1Kaa|i3allHOHHblX MeTO/la, B KoTOphlX ltpliMeH.qeTC,.q MHtDKCL'Tm) HaK,'IOHOB 

S. t (z ,z )  qbyagumt f Wla z E X no nTHOIIIeHHIO g HegoTOpOMy Z ~ I R  n. Bee MeTo/lhl MO~KH¢) pe- 
a,'iH3OBaTb C HOM(}nu~R) cpeJICT ~t, KOTOphte aBTOMaTIIqeCKH BMtlHCJIHR}'I7 BeKTOpbl I'paBJieHTa H HagJIoHa 

C |IOMOIKtbR) onepe~Kaltlluel;i CTpaTeFHH, TaKtIM ¢~Spa3OM HCKJIR)MHB TpyitHt~'U, CB~I3aHHble C MeTOJIaMH 

{R~paTHOFO HaKonBeHHJL (~aMble T(~Hhle t!3 3T|IX MeT~)aoe BI~IqHCIIR1OT ~a~,tys~ KOMHOtiettTy Fpa2tHeHTOB 

IT HaKdlOHOB OT/IC.rlbHO, IUIIICI-dM$1$t IlO ¢)rIHOl~l HH'repBadlbHOl~l ilepeMeHH|)fl 3a pa3. Mer0au c 3alla321bi- 

BaHHeM He aaK~T &mbmoro BlblHrpL,.Inla a TaKHX aBrnpHTMaX, IIOCKO21bKy Ot~'beKTHt~)pHeHTHpC)BaHHbie 

MeTOAId C Ollepe,x~.eHHeM peaJtn3yloTc:4 c Ma.rlhtMll 3aTpaTaMll rpyaa tt BpeMeHIL 

C, xeMa yc.gopenlt~l ~muepa  [2] xaroze 6taaa npovecrul~maaa c tlnTep~aJlbm,iMH itepeMel-tlthlMt|. 
:->r,,r Mer, m aeaaer  ra,3M,,x~auM npaMoe Bumtc.'ie, ae npotoaeaenaa ] ' ( z )  * (z  - z) KaK ,mnol'o I~|lie- 
crlmnHoro qncaa (a lie aByx BeKTO~,B). i u  ncnoJlbaoaadm 3TOT MeTtm 21/lfl auqncaeMna F ' ( X ) * ( X - z )  
C IIHT~B~IJII~.HI21M BeKTOpOM X ,  HO IIplIIIIAH K B l ~ J l y ,  qTO 3TOT Me'r0/t yCKOpeHHH He tlptiMeHnM K Hn- 

TepBallbHbIM llepeMeHHblM. 

(~) J. B. Oliveira, 1996 
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Introduction 
J. B. OLIVEIRA 

Slopes and gradients can be used to compute sharper bounds for interval functions, and this 
is essential to many applications, as in the case of global optimization, where intervals offer 
a sail way of finding all minima of a function 'without the danger of missing a minimum, 
and guarantee that the found minima are the true minima of the function. The evaluation of 
sharper bounds for interval functions can considerably accelerate these interval-based algorithms. 
The  methods that allow us to evaluate sharper bounds through the use of gradients and slopes 
are based on the Mean Value Theorem, and are quite simple in their basic form. We present 
some variations on these methods, so that more elaborated versions are able to evaluate sharper 
bounds than a naive interval evaluation, through the use of different evaluation strategies and 
a clever management of the already available information. First of  all, we present dopes and 
a forward method to evaluate them. 

IO Defining slopes 
Definition: Slope. From Neumaier [9], a dope S l ( z , z  ) : R"  × R n -* t ~  for a continuous 
function f ( z )  : D C_ R" --~ R with respect to a given point z 6 D is any function for which 
the relation 

/ (z)  - / (z . )  = &(x, ,) * (x - z) (1) 

holds for all x 6 D. 

For monovariate functions the slope Sf (x ,  z) can be reduced to a difference quotient when 
z # z. For the multivariate case, however, both ( x -  z) and Sf(x ,  z) are vectors, and the 
multiplication turns into a scalar product. In this case slopes are no more uniquely determined, 
as different vectors Sl(x ,  z) can be chosen as long as the scalar product remains constant. 

For the case of a monovariate function f E C 1, we notice that when x tends to z the 
definition of S i ( z ,  z) reduces to the same as the derivative of ] ,  thus allowing us to rewrite 
the above definition as 

(2) 

This is just a matter of convenience, and in reality Sl(x ,  z) may. assume any value for 
x = z, as in this case the equation that defines slopes wilt he always satisfied. 

11. Evaluating slopes from factorizations 

As computations can be represented by a sequence of unary/binary operations, we can define a 
large class of functions representable as factorizations: 

Definition: Factorization, factorable function. Let L C C t be a set of monadic olyerators used 
in the definition of  a function f : D C_ R" --~ R. The function f is said to be computed by 
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some sequence ( f )  = ( f l , - - . ,  fk) of  functions fi : R n "* R, with 1 <_ i <_ k satisfying 
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A ( z )  = :~ e R,  or 

f~(x) = x~, l < j <_n, or 

A(z) = 9(fj(x)),  j < i, g e L, or 
£(z)  = £ , (x )oh2(x ) ,  i:,i2 < i ,  o e  {+,-,,,/} 

and i f  for all x E D the values f i(x)  are well-clelined and f ( x )  = fk(x). 

Additionally, the sequence (f)  is said to be afaaorization of f ,  and has k steps. The function 
f is also said to be a factorable function. For vector valued functions f ( x )  = ( f l ( x ) , . . . ,  fS(x)),  
the definition of a factorable function can be extended in the following way: f : D C R n ---* R s 
is factorable if all component functions f k (x ) ,  t < k < s are factorable. 

Being able to evaluate the broad class of factorizable functions, we can present the rules 
used to evaluate slopes for these functions: 

Definition: Slope sequence. A sequence (Sf:) = ( S l , ( x , z ) , . . . , S l k ( x , z ) )  is said to be a 
slope sequence corresponding to some sequence ( f )  = (fa . . . . .  fk) that computes a function 
f : D C_ R" -* R i f x ,  z G D and each element Slp(x,z)  E R n from (SI) is computed 
according to the following rules: 

A(z) =a e R ~ s:,(~,z) = (o,...,o), (3) 

A(~) = xj ~ s:,(~, ~) = d = (~j,..., ~,j), (4) 

A(z) = :~(x) ± fj(~) ~ s/,(~, z) = s:,(z, z) + s:,(x, z), (5) 

fp(x)= fi(x)* fj(x) =>" S.:,(x,z)= fj(x)*Sf,(x,z)+ fi(z)*S/,(x,z), (6) 

= (s,,(.,.)- s,,(.,.). 

:.(.) =,(::,(.)). s,.<.,z) = s.(:,(.),:,(.)) . .,,:.,.), . L. :,) 

At the end of the computing process we have the value of S l ( x , z  ) for initially given 
values of x and z. Following the rules, arises the necessity of keeping the partial values 
of fp(z) as well as former values of fv(x),  and we also need a sequence (fz) to compute 
f ( z )  : D C R '~ ~ R. (As z E D, the sequence fz is also computable and has as many steps as 
f(z).) 

This set of rules is very similar to the set that evaluates gradients in forward mode [3], 
and the correctness of the rules can be proved in a similar way. The only difference from 
the gradient algorithm is a small change in the evaluation rules to consider the values of 
fp(z) and the necessity of evaluating and storing f (z) :  this means the extra effort of having 
another factorization evaluated, but as fp(z) is a real number it also assures that the computed 
values are sharper (the gradient evaluation uses intervals where the slope evaluation uses real 
values fp(z)). The rules presented above can also be easily generalized to be used with interval 
variables, and a consequence of this generalization is the possibility of computing sharper 
interval inclusions, as will be shown in the following section. 

Factorizations can be easily extended through the use of interval variables: if a function 
f has a corresponding factorization (f) ,  then if we substitute all real operations in ( f )  by its 
corresponding interval operations the new sequence (denoted (b")) will be a factorization of 
F,  thus evaluating an interval extension of f .  In the same way, slopes and gradients can be 
evaluated if the variables and operations being used are interval operations. 
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2~ Gradient and slope indusions for interval functions 
We start with two possibilities that are based on the partial derivatives of the function (in the 
rest of this paper we call these methods grad/era methods due to the use of partial derivatives, 
assuming that gradients are row vectors), and develop others that are based on slopes. The aim 
of these variations is to sharpen the obtained inclusion within a moderate amount of effort. In 
this sense, dopes are a very interesting source of variations and different versions for methods 
already existing, since we are able to vary the evaluation method, the values of z (possibly 
using more than one value of z), and a few other characteristics. 

2.t.  T h e  i n d u s i o n s  

The first inclusion is obtained from the Mean Value Theorem, Then a second, possibly sharper 
method is presented, still Using gradients. Thereafter we present methods that use slopes: a 
classical method and three variations on it. The methods here presented make use of slopes 
and gradients, but it is not important whether these are calculated in forward or backward 
mode. 

2.12. Gradient inclusion I 

From the Mean Value Theorem ([t, 8, 9] and references therein) we know that, given a function 
f : R" --* R defined and continuously differendahle in z U X with z E R n, X C__ I R  n, the 
following relation holds: 

f (x)  E f (z)  + f ' ( z  U_. X ) *  ( x -  z) C f ( z )  + f ( z  U X ) *  (X - z), for all x E X. 

This gradient inclusion would begin by evaluating the row vector f ' ( z  U_. X)  and use 
this vector to obtain an inclusion by performing an scalar product with the column vector 
(X - z). The evaluadon of f (z )  is also necessary for the process, but the point is that any 
method of gradient evaluation could be used here, either forward or backward. In the process 
of computing a gradient we also evaluate a naive interval evaluation F(X) ,  so that at the end 
the intersection between this partial result and the final inclusions can be built: 

f(x) c F(X)n  (y(z) + f (z  ~ X).(X-~)) .  

2.t.2. Gradient indusion 1I 

In thissecond inclusion the same relationship as above is used, but the way we evaluate the 
gradients changes. In fact we use ideas presented by Hansen [5, 6], in a strategy aimed to 
reduce the diameter of the final result, even if the effort increases. This method will be stated 
as a theorem, originated from Hansen: 

Theorem 1. Let f : D C_ R" --* R continuously differentiable in D and Z E D. Let X E I t~ ,  
X C D. Then For any arbitrary x E X,  x = (z1 , . . . , xn)  it holds that. 

" o f  
fCx) = fCz) + ~= b-~z (xl, .... , x,-1, ~,, ~+1,..., z.) • (x, - z~) 

for values ~i E z~ ~ zi. 



NEW SLOPE METHODS FOR SHARPER INTERVAL FUNCTIONS... 303 

Proof Let us define a family of functions fi  : /{ --* R, 1 < i < n, given by fi(w) := 
f ( x t  . . . .  , x i - i , w ,  z i+i , . . . , z , , ) .  Then it follows from the definition of the fi that for some 
~ z ~  ~ z~ 

t f~(zO = f~(~) + / ~ ( ~ )  * (zi - z~) 
= y~(z~) + o / / o z ~ ( z ~ , . . . ,  z~_~, ~,  Z~+l,... ,  z , )  • (z~ - ~) .  

From the definition of the functions we also have t h a t / ( z )  =/~(z~)  a n d / ( z )  = / , ( ~ , ) .  We 
use the inclusion above for f ( x )  to obtain 

f ( x )  = fn(xn)  = fn(zn) + Of  /Oac,(:rq,.. . ,  xn-x, ~n) * (xn - z~). 

Knowing that in general 

/~(xO = f~(~) + Of /Oz~(z~,. .  ., z~_~, ~, ~+~,..., z , )  • (z~ - ~) 

and that f i(zi)  = f i - t ( z i - t ) ,  it is possible to make successive substitutions starting from the 
inclusion for fn (z , )  and getting at the end 

f(:r.) = f l ( z t )  + Of /Oz t (~ l ,  z2 , . . . ,  zn) * (271 - zt) 
- 3 1 - . . .  

+ Of /Ox ,~ (x l , . . . ,  x,~-l, ~,~) * (x ,  - z , ) .  

Joining all terms in a sum, we finally have 

0 /  
f (x)  = f (z )  + ).L ~ _  (~:1,..., x,_l, ~,  z ,+t , . . . ,  ~ )  * (z, - z,) 

i---1 

for values ~i E zi U_U_ zi.  [] 
As the estimation F ( X )  also needs to be computed to perform the gradient evaluation, 

at the end we may indude f ( X )  using 

/ ( x )  c F ( x )  n f ( z )  + O f  
- O z ~ ( X " ' " '  Xi-1, ~i, z i+ l , . . . ,  z , )  • (X~ - z~) 

i = l  

for values ~i E zi U Xi. 

The strategy ~ behind this algorithm is the following: as the gradient evaluation is now 
transformed into a sequence of n derivatives, we notice that many (in fact, n - t) of these 
derivatives have less than n interval variables to be used in its evaluation. That  is, the 
derivatives Of/Oz i  calculated in this way are possibly sharper than the corresponding elements 
in the vector f l ( X ) ,  and we are able to evaluate sharper indusions. 

2 .1 .3 .  Remarks on gradients 

At this point, some remarks about the use of gradients to achieve inclusions can be made, these 
remarks being valid also for the two methods above. 

These algorithms can only be applied if the function to be included is differentiable in 
z U X. Although this does not seem to be a severe restriction, it may turn up to a problem 
when trying to achieve inclusions for functions defined by algorithms. These are relatively 
complex expressions obtained by running programs, and cannot be easily defined in an explicit 
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form. It is also possible that at the end of the evaluation algorithm no information about the 
differentiability of the function exists (after an unknown number of tFs, GOTOs or loops), so 
this exigence may be too strong in practice. 

As we compute the inclusion with the term ~i E zi t.J Xi ,  the derivatives evaluated are 
inclusions for all existing derivatives in zi U Xi. In other words, we are able to substitute the 
used zi by any ~i 6 zi t_J Xi  and the above inclusions would still be valid. So, the derivatives 
are intervals with a relatively large diameter, maybe too large to be really useful. 

As an extra nuisance, if we need to use some zi outside Xi, then we still have to compute 
the gradient for the region zi U_ Xi. This brings two major problems: 

I. The  diameter turns to be even larger. 

2. To  evaluate this gradient we have to evaluate the function F(zi U_ Xi),  thereafter eval- 
uating the derivative. Unfortunately the function F(Xi)  is no more evaluated, and thus 
we are not able to perform an effective "error-reducing" intersection as in the methods 
above. 

2£4.  Slope indusion I 

Similarly to the classical gradient inclusion, the basic slope inclusion is also very simple: 

f(D) C_ f(z) + SF(D, z) • (D - z). (9) 

Again, ](z)  must be evaluated and a slope SF(D, z) is necessary to compute the inclusion. 
Once more, when evaluating the slopes we also compute the common interval evaluation F ( X ) ,  
and at the end they may be intersected, reducing the final diameter. This is all, and in the 
following methods we wilt try to enhance the sharpness of the final answer taking different 
variations on this process. 

215. Slope inclusion II 

The dope evaluation depends in subtle ways from the value z used as reference to the slopes, 
and there remains the question about what are the better choices for z for a given function in 
a given domain. 

This dependance "suggests other possibilities to effectively use dopes to evaluate safe bounds 
for a function f ( X )  : X 6 I R  n ~ IR.  Here we depict one of such variations: as an effective 
strategy we could use two dopes taken with respect to two different values zt, zu E R n to 
compute estimations for the range of [ ( X ) .  Thereafter, the intersection between such estimates 
is built, achieving a possibly better value. Natural candidates for such values zi, z2 would be 

zl = rain(X) and z2 = max(X).  
We point out that this idea has cost lower than the costs of the evaluation methods that 

will be immediately proposed, even if its results are possibly not so sharp, tn this sense we 
have a kind of balance between cost and performance. 

2.1.6. Slope inclusion ItI 

To develop this method we use the same functions fi defined in the proof of the gradient 
method III. For the moment, suppose that we may evaluate slope functions S/j (xj, zj) : R x R  -'* 
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R that will expand f~(x~) with respect to z~ in the form below: 

fJ(~J) = h ( zA  + s~,(~j, ~j) • ( ~  - ~) ,  

If such slope functions exist, we have the following theorem relative to the evaluation of 

f(~):  

Theorem 9. I f  there are functions Syj(zj, zj) : R x R -* R as above, then for all y, E X,  
z = (Zl . . . .  ,zn) it follows that 

n 

f ( z )  = f ( z )  + ~ s:,  (~ ,  ~) • (z~ - ~). 
i=1 

Proof. Also in this case we have the identities f ( z )  = fn(zn) and f (z )  = fl(Zl),  as well as 
f~(zj) = f~-l(zj-x) .  Then we may still include fj(z~) using the value of f j -x(z j -1) .  This 
succeeds as follows: the evaluation for f j (z j )  is given by 

f J (~ )  = fA*A + si~ (~ ,  ~j) * (xj - . j )  

and now we make use of the equality f j(zj)  = f j - l (Zj -1)  to substitute 

~ ( Z j )  = f j_1(gEi_ l )  = f j _ l ( Z j _ l )  + S f j _ I ( X j _ I ,  Z j_ I )  * (Xj_ 1 --  Z j_ I )  

in the inclusion for f j(xj),  getting at the end 

Starting from fn(zn) and substituting successively each fj(zj), we obtain the followi~:g 
inclusion: 

f(gr) -- fx(zx) + Sf~(:Zx, Zx)* (Zl - zx) 

+ s f . (~ . ,  z.) • (~. - z.) .  
Joining all terms in a sum, we finally have 

n 
f (x )  = f ( z )  + ~-~Sf,(xi, zi) * (xi - -  zl). 

i= l  

This is the slope version of the gradient method that breaks UP the gradient evaluation into 
smaller pieces to achieve interval inclusions with smaller final diameters. The terms Sf~(Xi, zi) 
are evaluated with i interval variables each, and the results are sharper than in other methods 
where slopes are calculated with the maximum number n of interval variables. Unfortunately, 
the price to be paid for such sharpness is the impressive amount of computations that are 
necessary to perform the complete process, since for a function f ( X )  : It{ n ~ I R  the effort 
approaches to 2n dmes the cost of computing the function just once. 

A good characteristic of these methods is that the value of f (Xx , . . . ,X~ ,z i+l , . . . , zn )  
to be  used when evaluating f f~,~(Xl, . . . ,Xi-l ,~,Zi+l,. . . ,zn) or the slope Sl,(Xi, zi) can be 
easily updated from f ( X x , . . . , X  i-l, z i , . . . , zn)  if we only recompute the intermediate steps 
depending on Xi. 

Although not explicitly said in the proof, the process of substituting real by interval 
variables does not depend on a predefined or constant sequence. For our proof we used the 
quite natural sequence 1 . . . n ,  but we are free to substitute the variables in any order. 
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A subtle consequence of this method is that after substituting the first variable by an 
interval it is no more true that all slopes in the factorization will be evaluated between some 
interval X and a real z. It will be sometimes necessary to evaluate the slope between one 
interval and another interval. To give an example, we will use the following function: 

s(x) =  /Xl 2 + x= 2 

To begin with, we evaluate the function for z = (zl, z2), then insert the first interval variable. 
Denoting by fs(X) a function with s interval variables, we start by evaluating f°(X) (that is, 
the true f(z)) and a function fl(X). Using these two, we evaluate a slope between them to 
make fl(X) sharper. Thereafter we evaluate some f2(X) and use it with fl(X) to evaluate a 
slope and make f2(X)  sharper. Performing these operations in the above function, we have a 
sequence like the following (the slope evaluation between the functions is not shown, to enhance 
readability): 

Factorization fo (X) f x (X) 

]1 = X1 zl X1 
f~ = X2 z2 z2 
f3 = f l  * f t  zl 2 Xl 2 

f4 = f2 * f2 Z2 2 Z2 2 

f5 ------ f3 + f4 Zl 2 "4" Z2 2 X I  2 -~ z2 2 

 /x12 + 

The point here is that the steps ] i ,  f3, fs, and f6 of the new function f l ( X )  are intervals. 
This would be not important for f l  and f3, since the other variable does not appear in their 
evaluation, so they do not need to be evaluated in further steps. But ]s and f6 need to be 
reevaluated when we substitute the second interval variable, and thus we will need to compute 
a slope between the corresponding intervals from fl(X) and fu(X). This leads us to the 
computadon of slopes between intervals. 

2,1,7, Slope inclusion IV 

Up to this point, the approach to the use of slopes was more or less the same for any methods: 
first evaluate an inclusion for f(X) with interval arithmetic (obtaining, say, FI(X)), then f (z) ,  
then a slope and the corresponding indusion (say, Fs(X)) obtained by using it. Thereafter, we 
join both results in the final inclusion 

f ( x )  ~ El(X) n fs(X). 

It is interesting to notice that this kind of enhancement can only make the last term of 
the factorization sharper and no other terms take advantage from the slope-evaluation process, 
due do the rather intuitive process of first evaluating all steps of the factorization for f(X), 
then all steps for f(z) and finally computing all steps of the gradient or slope. This is a very 
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natural implementation separating f ( X ) ,  f (z)  and ,..qf(X, z), but we can make much better by 
interleaving these computing steps and make all possible intermediate steps sharper. 

To start, we remind the reader of  an interesting property of a factorization: If  we 
delete any number of steps from the end of a factorization, the remaining sequence is also a 
factorization. Conversely, any number of steps from the beginning of a factorization also form 
a factorization, and we will use this fact to work gradually from the beginning, sharpening the 
intermediate results as we advance to the end. 

This new method works as follows1: 

• First, create an array S = 0 of already evaluated slopes. 

• For every step fi in the factorization, do: 

- Evaluate fi(X). 

- Evaluate fi(z). 

- If  ,S'l~ (X, z) ~ ,S', then evaluate S A (X, z) (using other slope values from 5') and insert 
it in S. 

- After that, do f i (g)  = f i (X)N (f i (z)  + Sy,(X, z) * ( g  - z)).  

This seems to be quite an improvement, and may be used either with forward or backward 
slope evaluation. As intermediate results are enhanced and their slopes are stored in S for 
further use, it is clear that the slope for any step is evaluated with operations on at most 
two other slope vectors, namely the slopes of  its operands, that were already evaluated and 
are ready to use. When the slopes are evaluated in forward form, the method has ahnost 
the same performance as the forward slopes method, but a much increased sharpness since all 
intermediate results are possibly enhanced. 

3. An interesting speedup 
Here we describe a very interesting idea to have a faster evaluation of both gradients and 
slopes in forward mode. The method was elegantly described by Fischer [2], but we reproduce 
here its essence, already adapted to gradients and slopes2: 

It is not uncommon that in the course of some computation we need to evahtate the 
product 9(u) * v, where u, 9(u) and v are vectors somehow defined. The typical case to be 
explored in this section would be the evaluation of an interval valued f (X)  as the inclusion 
below: 

f ( X )  ~ f(z)  + V f ( X )  * (X - z). 

In the above case, u = X,  9 = V f  and v = X - z. Common sense says that we evaluate 
first 9(u), then evaluate v and finally evaluate the scalar product 9(u) * v. 

Both slope and gradient evaluations implement exactly this "common sense" approach. 
They store whole vectors and operate on them progressively, reaching at the end a final vector 

1We assume that .~mle function f ( x )  : R n --* R has a factt,rization ( f )  with length k. 
2In this description we talk mainly about gradients since they prtntuce better examples and more readily under- 

standable situations. The situations described are easily adapted u~ slopes. 
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that represents g(u). But let us take a doser look at the rules that specify the computation of 
gradients from a factorization: 

/ i ( x )  = ~ ~ R 

f i (x )  = x j  

f i (x )  = g i f t ( x ) )  
/ ((x)  = fi~(x) ± / , , i x )  

f i (X)  ---- f lx(X) * f i , (X)  

f i (X)  ---- f i x (X) / f i , (X)  

W ,  = ( 0 , . . . , 0 ) ,  

vs ,  = 9 ' ( h ( x ) )  • v f j ,  

=# Vfi  = V fix 4-Vfi , ,  

Vf i  = f i , (X)  * Vfix q= f i , (X)  * Vf i , ,  

=*. Vfl  = (Vfq  - f i (X)  * V f i , ) / f i , (X ) .  

Looking at that set of rules, we are tempted to forget about storing whole vectors and 
to store and operate between the final products. That is, we have for each stored step f i (X)  
the vector VIi(X).  Would it then be possible to replace it by the interval Vf i (X)  * (X - Z)? 
Possibly yes, if we are able to operate between these values. This approach would save a lot of 
effort and storage. 

Interestingly, we can prove that the rules computing V f i X )  are also valid to compute 
the scalar product V f i X ) *  ( X -  z). In other words, the rules are practically the same, the 
only difference being the rule that defines Vfi  for steps that introduce the elements Xj. This 
rule was given as 

f i (X) = Xj ~ Vj'i = e ~ 

and now this will need to be changed into 

/ ~ ( x )  = x~  ~ v / i  = x~  - zj. 

Instead of working with unit vectors e 3, we have now the result of the scalar product 
of these vectors.with X - z, namely Xj - zj. Being all other rules valid, we have no vectors 
anymore, computing with a single interval associated to each step all through the computation. 
Doing this, the problem of evaluating the scalar product turns to be indepedent of the number 
of variables, depending only on the number of operations. 

As a consequence, to work with slopes we need to change the same rule in the same way. 
The other rules for computation with slopes are immediately valid. The above method is very 
promising: computations using this method are really faster and spare lots of storage, but now 
we should examine what we are really doing when using this method with real and  interval 
variables. 

• Real variables. 

Working with real variables no problems of any type arise, and we may easily compute 
results much faster and with the same exactness as when operating with whole vectors. 

• Interval variables. 

Unfortunately, there is a major problem arising when we have to deal with interval 
variables. To present it, we give the following reasoning: 

In the original method we used unit vectors e j (that is, real vectors), that in the course 
of the computation were transformed into interval vectors. That is, the computation was 
started with real numbers as vector components, and these real numbers were progressively 
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operated with the intervals originated as intermediate values from the evaluation of F(X). 
Thus, we have as many intervals being used in the computation as there are steps in the 
evaluation of F (X) .  This is the point: the only intervals used in the computation of 
the slope vector are the ones associated to F (X) .  After the gradient or slope vector is 
evaluated, we muldply it by (X - z), another interval vector, and the inclusion is ready. 
This acceleration method does things a bit differently: 

Adapting the new method we already start from intervals (we start from X -  z, by 
using the starting values Xl - Z l , . . . ,  X n -  z~), and operate them among themselves and 
among the intervals originated from the evaluation of F(X) .  That is, instead of using 
the difference X -  z only at the end, we use these intervals from the start, inserting new 
intervals in the process and increasing, the chance of enlarging the overestimation of the 
final result. 

3.1. E x a m p l e  

As an example, we take f (x,  y) = (x 2 + yZ)/y. To evaluate a slope inclusion for f (x,  y) with 
z = [1, 3] and y = [2, 4], we use z = (3, 4).  Doing the computation using vectors, we have the 
factorization below (for the sake of readability we insert a new column in the table, namely the 
value of fi(z) + Sf,(x, z) * (x - z) for each step): 

Factorization Value f (z)  Sf(x, z) f (z)  + Sf(z, z) * (x - z) 
f~ = ~ [1, 3] 3 (1, o) [1, 3] 
f2 = Y [2, 4] 4 (0, 1) [2, 4] 
f3 = f l  * fl  [1, 9] 9 ([4, 6], O) [-3,  9] 
/ ,  = 1:5,/2 [4,16] 16 (o, [6, 8]) [o, 16] 
fs = Y3 + f4 [5, 25] 25 ([4, 6], [6, 8]) [-3,  25] 

..... f6 = fs/f2 [1.25,12.5] 6.25 ([1,3].,[-0.125,0.875]) [-1.5,6...5] 

This slope vector leads us to the indusion [-1.5, 6.5]. Now we evaluate the forward slope 
using the new method: 

Factoriz~uon Value f (z)  S / x ,  z) * (x -- z) f (z)  + S / ~ ,  ~) * (~ -- z) 
f l  = z [1, 3] 3 [-2,  0] [1, 3] 
1:5 = v [2, 4] 4 [-2,0]  [2, 4] 
J:3 = A , A  [t,9] 9 [-12,0] [-3,9] 
f ,  = A * A [4, 16] 16 [-16, 0] [0, 16] 
fs = fa + f4 [5, 25] 25 [-28, O] [-3,  25] 
f6 = fs /f2 [1.25,12.5] 6.25 [-14,6.25] [--7.7~, 12.5] 

This leads to the inclusion [-7.75, 12.5]. We see that both factorizations have the same 
results up to the step fs, and then suddenly get different. In this example, the division step 
leads to the overestimation in the new method. This is a consequence of using intervals since 
from the start. 
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4. Implementations 
We describe the implementation of the previously presented methods, being able to use them to 
evaluate inclusions for a continuous, differentiable real function f ( z )  : R n --, R in an interval 
domain X C / R  r' in the following ways: 

Common interval evaluation: 
This method simply includes f ( X )  by substituting the variables 2:1 . . . .  , zn in f (z)  by 

its interval correspondents X1 , . . . , S t ,  from X. Thereafter, the steps of the factorization are 
computed and the result is ready. This is the most common form of interval evaluation. 

Classic gradient: 
This method implements an idea previously presented in Section 2.1.1 (the gradient in- 

clusion I), and using it we obtain an inclusion by expanding the function around z using its 
gradient to obtain the final inclusion: 

f ( x )  c_ ( / ( z )  + f ' ( z  u x )  • ( x  - z)) . 

Thereafter we are able to build an intersection with the inclusion for f(Z U_ X)  computed 
by the common interval evaluation, as this value is obtained as an intermediate resuh in the 
process of evaluating the gradient in the domain. More formally, we have a pseudo-code like 
this: 

interval gradient_inclusion(function f, vec_interval X, vec_point z) 
{ 

interval res, imp, imp2; 
in~ i ;  

trap = / ( X l  U z~, X2 _u z2, . . . ,  X,, _u z.); 
t~ap2 = g r a d i e n t ( X 1  _.U zt ,X2 U z 2 , . . . , X ,  U_ z , ) ;  

r e s  = f(zl ,  z 2 , . . . ,  z,~) ; 

f o r  i = 1 . . . n  
r e s  += tmp2i * (X~ - zi); 

r e t u r n  r e s  n trap; 

The intersection between r e s  and trap represents exactly the effort of increasing the 
sharpness by intersecting an older, possibly not so good inclusion (trap, the result of a common 
evaluation) and a possibly better one (computed by r e s ,  the inclusion using a gradient). If 
this were not tried, we would simply return r e s .  The use of this intersection assures that this 
method evaluates inclusions at most as large as the common interval evaluation of f ( z  U__ X).  
As this is the first algorithm presented, we use this opportunity to explain the following points: 

• When reading these algorithms, we must keep in mind that they were implemented 
operating on factorizations of functions, and not on program pieces. That is, after evaluating 
f for some set of variables, the intermediate set of values used in its computation is 
preserved, while it would be lost if ] were implemented as a piece of compiled code. 
Thus, after computing f we may compute its gradient without re-evaluating any values 
from f ,  just by "finishing" the gradient computation. 
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• Of course, it is necessary to include some error handling to return appropriate values or 
set appropriate flags if some function cannot be evaluated due to a division by zero, etc. 
This error handling is not shown, as it varies on each application. 

• The separation between the evaluation of f and its gradient was made only for clarity 
purposes, but usually this operation is performed at once by some automatic routine. In 
other algorithms, similar operations will be done separately with the same purpose. 

• Experience shows that if z ~ X, then the gradients evaluated are usually large enough to 
make the estimate computed by the algorithm worse than the intermediate value f (X) .  

Gradient inclusion II: 

This method implements the idea embedded in the first theorem of section 2.1, thus 
originating the gradient inclusion II: 

I (X)  C _ f(z)  + ~g f -~z-(Xl,... ,  X,_l, z, ~ X,, =,+, , . . . ,  z~) * (X, - Z,). 
i = 1  v a ,  i 

To perform the above calculations, we implement the following pseudo-code: 

±nl;erva]. g r a d i e n t _ i n c l u s i o n I i ( f u n c t i o n  f ,  vec_5.nterval  X ,  roe_po in t  z) 
{ 

interval res, tmpl, imp2; 
int i; 

r e s  = / ( z x ,  z2,. . . ,  z.); 

for i = 1...r~ { 

t m p l  = / ( X 1 , . . . , X ~ _ a ,  X~ L:J z . ,  z~+~ . . . .  , z.); 
"crop2 = grad±eat (X1 . . . .  , Xi- l ,  Xi LJ zi, z i+l , . . . ,  z ,)  ; 
r e s  +ffi t l ~ p 2  * ( X i -  zi); 
} 

re~urn res; 

The process is similar to the others already presented, but in this implementation we do 
not perform any intersections with previously obtained estimations. To implement this, we 
include an intersection as follows: 

res  += tmp l  CI (1;rap2 * ( X i - - Z  i ) ) ;  

It is important to notice that on each iteration just one variable is changed. That  is, at 
each time only the i-th variable will have its value changed from zi to zl t J Xi. Thus, we are 
able to examine the factorization and recompute just that steps that depend of this variable, 
avoiding the effort of recomputing any steps that do not change value. The same is true for 
the slope computation in the next method. 

CLassic slopes: 

This method implements the basic slope inclusion from equation (1): we compute the slope 
for the function f ( X )  with respect to z, finally obtaining the inclusion as 

/ ( x )  c_/(z) + s : ( x ,  z) • ( x  - z) 
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and thereafter we build an intersection with the common inclusion for f (X).  (This value was 
also an intermediate result from the slope evaluation.) 

In this case, the final results must be at least as sharp as the values obtained by the 
forward gradients, since the set of slopes is always a subset of the gradient, but as before 
nothing can be said about the quality of the results if z 9~ X. The pseudo-code would be: 

interval slope_inclusion(function f ,  vec_interval X ,  vec_point z) 
{ 

interval res, imp, slp; 

int i; 

trap = f(X~, X2 , . . . ,  X . ) ;  
res = f(Zl, Z2, . . . .  Zn);  
sip = s lope( f ,  X, z) ; 

for i = 1 . . . n  
res += slpi * ( X i -  zl); 

return res N trap; 

In the case of this routine, we use the factorizations to evaluate f (X)  and f(z), also 
storing its intermediary steps. Thereafter, a simple call to a routine returning the slope vector 
SI(X, z) used in the loop to compute the scalar product SI(X, z)* ( X -  z). After that we 
have a final intersection with the common evaluation and the result is ready. 

Slope inclusion m - I V :  
Here we develop two methods, and use the second one as implementation. The differences 

between them are related to the better use of available information, as will be explained in 
the text. Informally speaking, the first method will implement the slope inclusion Ill from 
Section 2.1, and the second method will adapt it to use all information possible, since that 
method does not fully use it. This produces slope inclusion IV, the one that has presented the 
best results. 

We implement the idea presented in the second theorem of Section 2.1, namely 

n 

f (X)  C_ f(z) + ~ SA(X,,z, ) • (Xi - z,). 
i----1 

TO perform the computation, we could implement the following pseudo-code: 

interval slope_inclusionIll (function f, vet_interval X, vec_poinZ z) 
( 

interval res, imp; 
vec_interval now, previous ; 

int i; 

now = (Zl, Z2,.. . ,z,); 
res = f(now) ; 

for i = 1 . . . n  { 
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previous = now; 

nowi = Xi ; 

trap = /(now); 
imp = slope(f, now, previous); 

res += imp * (Xi- zi); 
} 

return res; 

There are two sets of variables, to keep track of the already used interval values. We 
start with a set of real variables, and as each new X component is used. this new component 
is included in the now set and we evaluate the slope of the function between the two sets of 
interval variables. Doing this, we are silently computing the functions fi(w) that were presented 
in section 2.t, as well as the slope between f i(Xi)  and fi-l(Xi-1), as the method requires. 

tn this method, we recompute in the factorization o,aly the steps that are directly dependent 
of the i-th variable, that is, the only variable that changed its value. This idea applies both to 
the evaluation of f as welt as its slope. 

This was indeed a very clear pseudo-code, since it implements literally the method pre- 
viously presented. Looking at it more carefully, we notice that the computation of f occurs 
completely before the computation of its slope, that is, all steps of f are recomputed before 
any steps of its slope are evaluated. This may lead us to an important quality improvement: 
interleave the steps from f and from its slope, to get advantages from both with a very little 
cost. To perform this new idea, we change the code to run like this: 

interval new_inclusionIV(function f, vec_interval X, vec_point z) 
{ 

interval res, imp; 

vec_interval now, previous, base; 

int i, J ; 

now = ( z b z 2 , . . . , z n ) ;  
res = / ( n o w ) ;  

for i = l...n { 

for j = l...steps bassi = f](now); 
previous = now; 

nowi = X{ ; 

for j = l...steps 

if ~ depends on Xi { 
imp = slope(~, now, previous); 

=~A (basej + trap * (Xi-~)); 
} 

} 
return valuelast_step(f); 
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The idea behind is: as we interleave the steps of the function and of its slope (say, in the 
j- th step), we are immediately able to sharpen the value computed to f~ by using the slope 
and making the intersection f j  f3 basej  + Sf~(now, previous)  • (Xi - zi). That is, we make 
intermediate steps sharper, and this will make the following steps also sharper, their slopes are 
sharper.. ,  and so on. 

In a formal sense, we are no more considering f j  as a step in a factorization, but 
as a function itself, and sharpening it with a slope computation, before turning to its next 
step, f j+l.  This increase in sharpness may lead to surprising results when compared to the 
first implementation presented. Although not so obvious, this version has another important 
advantage: it runs through the factorization only n times, instead of 2n times as for the 
previous version. This represents a considerable speedup if the factorization is long, as for 
example factorizations generated by running programs, because we are able to do a sharper 
job with much less memory swaps. The more important conclusion is ~that this idea may be 
applied to all methods that compute inclusions by considering one variable at each time, either 
with slopes or gradients. 

5. Examples 
In this example we will use the following function: 

[ X - Y  \ 
/ ( x , y )  = [ Ix  + 3 Y ) I x -  r )  + 

k 

(5X - Y 
x \ 2 X - Y  Y Y x )  

with the variables being X = [10.708010, 11.274770], Y = [9.301460,9.583840]. When SlOpe 
methods need a value to be used as z, we used z = (10.666667,9.333333). Maybe some 
algebraic simplification could be done reducing the differences among the various inclusion 
methods, but we evaluate the function in this form since it is probably nearer to the results 
obtained by using these inclusion methods on functions defined by algorithms as more redun- 
dancies and dependences are expected to appear. Testing the methods on the function, we 
obtained the following resultsa: 

Method Inclusion Diameter Effort 

Common interval evaluation [349.0581, 988.8205] 639.7624 ....... 5i ............ 
Gradient inclusion If  [335.2089, 935.1833] 599.9744 265 
Gradient inclusion Ib [335.2089, 954.1338] 618.9249 213 
Gradient inclusion II [481.8828, 767.136] 285.2532 274 
Slope inclusion I [487.8473, 772.0643] 284.217 233 
Slope inclusion IV [484.795,759.1293] 274.3343 436 

Gradient Inclusion I is presented in two versions: If and lb. This means that the gradient 
vector was evaluated in forward and backward mode, respectively 4. As we can easily see, there 

aThe effort measured in the table is the total amount of arithmetical operations used in the computation, auto- 
matically computed by the methods. 

4There are differences in the results obtained f~ml both methods when interval variables are used, and usually the 
gradient obtained in backward rotate is an inclusion fi~r the gradient 4~tained in the fi~rward versi~m. Once again, a 
consequence of  using interval variables in ~he c~m~putati~m. 
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is a great improvement when more advanced methods are used. The table presents the relative 
diameters of the obtained inclusions for the different methods: 

Method Diameter ratio 
Common interval evaluation 2.33 
Gradient inclusion If 2.19 
Gradient inclusion Ib 2.26 
Gradient inclusion II 1.04 
Slope inclusion I 1.04 
Slope inclusion IV 1 

As a second example we use 

Using this description of the function and evaluating it for X = [9.7, 10.4], Y = [8.8, 9.6] 
and z = (Mid(X), Mid(Y)), the different inclusions give the following results: 

Method Indusion Diameter Effort 
Common interval evaluation [5670.5735, 8935.342 i ....... 3264.7685 36 
Gradient inclusion If [5809.2835, 8461.7934] 2652.5099 212 
Gradient inclusion Ib [5724.5959, 8546.4809] 2821.885 164 
Gradient inclusion II [5909.7141,8361.3628] 2451.6486 214 
Slope inclusion I [5918.6285, 8352.4483] 2433.8198 184 

........ Sl0Pe indusion IV [6096.3915,8289.8854 ] 2193.4939 316 

Finally, we try the different inclusions with the function given by 

f (X ,  Y) = 2X (18.4 - 2XY) Y 
2X (-9 .2  + 2 X Y Y  - 2XY)" 

The results obtained evaluating the function for X = [0.25, 1.25], Y = [8.5,9.2] and 
z = (Mid(X), Mid(Y)) are given below: 

Method 
Common imerval evaluation 
Gradient inclusion If 
Gradient inclusion Ib 
Gradient inclusion II 
Slope inclusion I 
Slope inclusion IV 

Inclusion Diameter Effort 
[-53.9108, 165.8344] 219.7452 37 
[-53.9108, 165.8344] 219.7452 211 
[-53.9108, 165.8344] 219.7452 157 
[-53.9108, 165.8344] 219.7452 226 
[-53.9108, 165.8344] 219.7452 183 
[-21.336, 48.7762] 70.1122 328 
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Supposing that the function is not determined by a running program but known in 
advance, the repeated term 2X can be elimined from the expression. Evaluating the inclusions 
with this simplification, we have the intervals below: 

Method Inclusion Diameter Effort 

Common interval evaluation [-10.7822,3311669] 43.949 29 
Gradient inclusion If [-10.7822, 33.1669] 43.949 163 
Gradient inclusion Ib [-10.7822, 33.1669] 43.949 125 
Gradient inclusion tI [-10.7822,33.1669] 43.949 170 
Slope inclusion I [-10.7822, 33.t648] 43.9469 143 
Slope inclusion I V  [-4.2672, 13.1263 ] t7.3935 248 

We think that the extra management and computing effort that are applied in the more 
complicated approaches using both gradients and slopes are a good price to be paid for the 
better quality provided by their results. 

6. Implementation 
The major problem with more sophisticated methods based on introducing an interval variable 
at a time is that they need to store the whole sequence of evaluation steps, so that  all 
computations can be retraced several times, one for each interval variable. This leds directly 
to serious management problems, very similar to the ones found in the backward gradient 
evaluation. In fact, these management problems are so similar that it would be very easy 
to embed these gradient inclusions in any already developed system that performs reverse 
accumulation. 

For the simplest methods, we can very easily implement forward versions of the indusions, 
using for example support systems like Profil/BIAS and others. These systems provide properly 
rounded interval routines, vector and matrix facilities, as well as an object-oriented environment 
that allows easy customization over a wide range of 'Unix and PC platforms. The routines 
that evaluate slopes were programmed under ProfilIBIAS as an extra package (Profil already 
provides a gradient package)S. 

As an example, the program that evaluates inclusions for the last function above from its 
gradient or slope is given by the code in Figure 1, and it can be seen that the changes needed 
to get either gradients or slopes as results are quite small. "l'he data types can be automatically 
changed with macros, as well as the access functions. The only extra care (in this .example) 
is the separate evaluation of the function at the reference point z, since gradients have no 
automatic evaluation of this value, while slopes perform the evaluation automatically. $6, the 
value of the function at the development point needs to be separately evaluated in the case of 
gradients, introducing some extra management. On the other hand, if only the gradient and 
slope vectors were needed, this evaluation could be left out of the program. 

In the BIAS/Profil package used in the above example we implemented the slope compu- 
tation as presented in the Classic Slopes, that is, a rather straightforward implementation very 
similar to forward differentiation. As a late development, we also implemented an algorithm 

Spr,~fil and BIAS are available for anonymous ftp at the site "ei3slra.1;i3.1;u-harbmrg.de. 
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// To be defined below: "GRADIENT" or "SLOPE" 
// This automatically adapts the whole code to operate 
// with gradients or slopes. 

#define GRADIENT 

#ifdef GRADIENT 
#define TheVector GradientValue 
#define INTERVAL_TYPE INTERVAL_GKADIENT 
#else 
#define TheVector SlopeValue 
#define INTERVAL_TYPE INTERVAL_SLOPE 
#endif 

#include "IntervalSlopes.h" 
#include "In~ervalGradient.h" 

INTERVAL_TYPE f(INTERVAL_VECTOR & v) { 
INTE/~VAL_TYPE x(v); 
INTERVAL_TYPE auxl = 2 * x(1) * x(2); 
return ((18.4 - auxl) * x(2)) / (-9.2 + auxl * x(2) - auxl); 

} 

void main() { 
INTERVAL_VECTOR x(2); 
x(1) = INTERVAL(0.25, 1.25); 
x(2) = INTERVAL(8.25, 9.2); 

VECTOR z(2) ; 
z(1) -- 0.75; 
z(2) -- 8.85; 
SeZDevelopmentPoinZ (z) ; 

INTERVAL_TYPE y = f(x); 

#ifdef GRADIENT 

INTERVAL_VECTOR Iz (2) = z; 
INTERVAL RefValue = FunctionValue (f (Iz)) ; 

#else 
INTERVAL RefValue = DevValue(y); 

#endif 

COUt << "X = " << X << endl; 
cout << "F(x) = " << FunctionValue(y) << endl; 

cout << "z = " << z << endl; 
cout << "F(z) = " << RefValue << endl; 
cout << "Vector = " << TheVec~or(y) << end~; 
cout << "Result = " << RefValue + TheVector(y)*(x-z) << endl; 

} 

Figure 1. A simple implementat ion using slopes or  gradients under  Profil 
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that evaluates Slope Method IV without having to store the computational graph, that is, in 
a forward version similar to the one suggested in [9]. This was done in a rather simple and 
elegant way that allows us to avoid all the memory management problems of a backward 
approach. As the slope computations are implemented using C++, there would be no changes 
in the program above if this new version were to be used, the only difference that would be 
noticed is that the slopes evaluated would be sharper. 

To implement this new version we need to associate some more information to each 
variable. It is important to notice that although the amount of memory needed for each variable 
markedly increases, even more memory is made free by avoiding to store the sequence of 
operations, and the development effort to be invested in this algorithm is practically insignificant 
if compared to the effort of implementing a backward system with all its management. Further 
still, an object-oriented version of this algorithm can be made in very short time. 

6.1. N e w  i m p l e m e n t a t i o n  

To obtain a complete version of the algorithm, we present it substituting of real variables for 
interval ones from first variable to the last. A slighdy changed version using other sequencing 
is easy to obtain. We associate two vectors to a variable, performing computations with them as 
each operation is performed with the variables. One of these vectors will contain the function 
values that would be obtained by inserting a few interval variables in the operation being 
performed, and the other vector will store the slopes obtained for these partial values. More 
formally, we have: 

Definition: Associated vectors. Let X = ( X I , . . . ,  Xn)  E I R '~ and z = ( z l , . . . ,  zn) E R n be the 

values o f  the variables used in the computation o f  S f ( X ,  z),  and suppose that the function f 
has a factorization ( f ) .  Then  we associate vectors P E I R  n+l and V E I R  n to each evMuation 

step, det ined as follows: 

] , ( X )  - 7 ~ R : .  

~ ( x )  = ~ ( X ) o h ( X )  

{ Pt --- (%%.. . ,7) ;  
v~ _= (o,o,. . . ,o); 

Pl - ( so , . . . ,  O/,), 
z j,  O < _ i < j ,  

O/i=- X j ,  i > j ;  

V/_~ (o/1, . . . ,  O/n), 

O/i ---- t~ij; 

Pt = (So, . . . ,  an), {  oovo, ( 
a i -  ( ~ o v i ) n  a i _ l + s ~ . ( X ~ - z ~ ) ,  / > o ,  

with u =  P~,v = P ~ , S  = V,; 
Yl = ( o/ ~ , . . . , O/~ ) , 

{ u~ o vi, o e {+, -},  

O/' - ( ~  - v ,  • r , _ t ) f t , ,  o = 1, 
with u = V j , v  = V~,s = Pj, t = Pk, r -- Pt; 
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s,{x)=9(sj(x)) 

= (~0,..., a,), 
{ g(uo), 

- n + s ,  • ( x ,  - 

with  u = P , , S  = v~: 

V l  = (~1 . . . .  , ~ , , ) ,  

{ G(r~, r,_~) • u~, i > o, 
a i  = ,¢ia~ r = P~ ,  u = V~. 

i > 0 ,  
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The above algorithm works as follows: as each interval variable Xj is used, its associated 
vector P represents the evaluations that would be obtained by substituting the j-th interval 
variable, and V stores the slopes between consecutive elements of P. So, V has one element 
less than P. After each variable is introduced, monadic and dyadic operations are performed 
accordingly to the known rules, and intersections are built consecutively. For each step, the 
final value of the inclusion is stored in the last element of P. 

It is important to notice that for each step ft that represents an arithmetical operation 
the vectors P~ and Vt are computed practically together, since elements of one are necessary to 
compute elements of the other. At the end of a factorization with k steps, the last element of 
Pk contains the value of the desired inclusion. Although it may seem to be a rather complicated 
algorithm, it can be easily programmed. 

The memory requirements are clear: to each one of the n variables (and any temporary 
variable) or arithmetic operation we associate 2n + 1 intervals. This may be a large memory 
amount, but probably tess than the amount that would be used to store the list of already 
performed operations, plus intermediary data, pointers and any other necessary information. 
In any case, the vectors associated tO the arithmetical operations are volatile: after some 
operation is performed and its result is used (either stored in a temporary variable or used as 
argument in other operation) the vectors can be deleted and so no memory remains allocated 
to any already performed operation. So, if a routine has 400 operations, 16 variables and 24 
temporary variables, then 2 * (400 + 16 + 24) vectors will be created during the computation, 
but the number of stored vectors at a given time is bounded by 2 .  (16 + 24) plus the maximal 
number of arithmetical operations used in an expression. 

An object-oriented implementation will gracefully allocate memory automatically for each 
new partial result or new arithmetical operation, and this memory will be immediately deal- 
located after no more references to it exist, thus automatically using the minimum possible 
amount of memory, providing a rather elegant implementation of the whole algorithm. 
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