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If we 
What if we 
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measure a number, we get an interval. 
measure a function or an 

Assume that we measure a physical ~mntity x with a measuring device whose accuracy is ~ (i.e., whose 
prtniucers guarantee that the difference a: - ~ between the actual value :r and the measured value 
d{ms m~t exceed 5). If the result of  this measurement is ~, then Ix~ssible values of a: fiwm an interval 
[~-~,~+~]. 

Suppose nnw that we know that a physical qtiantity y is a function of the physical quantity :2: 
(in other words, we know that V = f ( x )  for .~,me ftinction f ( z ) ) ,  but we do not know f .  How to 
determine f ?  We can nmasure only finitely many values, with finite precisitm, .~, alter finitely ninny 
measurements, we get a set of  possible functions f ( x ) .  This set can be called a fiow21on inten*td (function 
intervals were first analyzed by R. Mt~re himself). 

T h e  situation can bectnne even more ceanplicated.. For example, if we analyze how phyfical fields 
evolve, then in addititm to functitms, we must  d e . ~ h e  tWrators, i.e., mappings that transfi~rm a functitm 
(current value f(~')  of  a physical field) into a function (predicted futtire value of this field). Again, since 
we can perfi~rm only finitely many measurements, at any moment of  time, tmr meastirement results are 
consistem with the whole hunch of different operators. So, at any moment of  time, we have a .set of 
operators; we can call it an ~urrator imerwd. 

One can apply different ideas to describe f imaion intervals, operator intervals, etc. But it is desirable 
to develop a general fi~mmlism that would cover all these cams. In this paper, we proI~se and justify 
such a fi~rmalism. 
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~TOI~} FIO/DI). l/l OIt~lTb~ H3o3a TOf~ t qTo MM MO~KeM BhlIIOJ1BtITb "RLqhgO KOHftltl[~ qllC/IO it3MepeH$1ft, B 

~ 1 ~  MOMeHT BpeMeHt! pe3y//bTaTM Halllttx H3MepeHHIYl cor/laCylOTOl c Re,lOft rpymmfi pa3aaquhtx  

~mepaTopoe. Tar, aM o6pa3oM, B gaaxau~ MOMeaT BpeMemt Mta aMeeM MtloxgeCT~ o ,epaTopo- ,  goTopoe 

MOgHO HaZBaTh t n t ~ u ~ t a ~  ,¢ame~£u~tt. 

Mo~gtlo npHMC2H~lTb pa3/IKqHMe IIO~O/IM /b'I.q Oll|IcaHH~-(~yHKRIR)HI;IllbHblX ;mTepmaatm, ollepaTop- 

aux .avepeaaoe a T.a. Ho a~eaaTeahao pa3pa6oTa-rb c~meaays~ dy~pmaabaya) cacreMy, rlp~Lao~gt4Mys~ 
KO ttCeM 3THM C21yttagM. B pafoTe npewlarae ' rca  a c ~ c a o B u B a e r c a  va~aa qbopMaJlb~la~I C|tCTeMR. 

1. Introduction 
When we measure  a quantity that is characterized by a real number,  intervals are appropri- 
ate for  describing measurement  results. Suppose that we measure a physical quantity x (e.g., 
length 1). The actual value x of this quantity is a real number. The result :~ that is produced 
by a real measuring device is always approximate. The producers o f  measuring devices supply 
them with the accuracy estimates. In other words, they give a value 5, and they guarantee 
that the absolute value of the difference x - :~ between the actual value x and the measured 
value ~: does not exceed 6. So, if we apply a measuring device, and get ~ as a result, then the 
possible values of the physical quantity x form an interval [~ - 6, ~ + 6] (see, e.g., [5-7]). 

What if we want to determine  an unknown function experimentally? Suppose now that 
we know that a physical quantity y is a function of a physical quantity x (in other words, 
we know that y = / ( z )  for some function f (z)) ,  but we do not know this function. How 
to determine f ?  Again, since we can measure only finitely many values, with finite precision, 
so, after finitely many measurements, we get a set of possible functions f (x) .  This set can 
be called a function inter~. Function intervals were first considered by R. Moore (see, e.g., [5, 
Section 5.1; 6, Section 2.5]). 

A more  complicated case: how to describe the uncertainty with which we k n o w  an 
operator? The situation can become even more complicated. For example, if we analyze how 
physical fields evolve, then in addition to functions, we must describe o/~rators, i.e., mappings 
that transform a function (current value f(a?) of the physical fidd) into a function (predicted 
future value of this field). Again, since we can perform only finitdy many measurements, at 
any moment of time, our measurement results are consistent with the whole bunch of different 
operators. So, at any moment of time, we have a set of operators: an operator inter~2. 

Physical examples in which these problems are important. These problems are especially 
important for quantum mechanics, where to describe even a single particle, we need a field 
¢(:~) (called a wave function). 

Even more complicated mathematical structures appear in quantum field theory and in 
quantum theory of space-time. 

Formulation of the problem. One can apply different ideas to describe function intervals, 
operator intervals, etc. But / t /~  desirable to develop a general formlism that would allow us, given 
a natural definition of an interval for the sets X and Y, to design an appropriate definition 
of an interval for the set y X  of all the functions from X to Y. 

What we are planning to do.  In this paper, we propose such a general definition, and 
show that it is physically natural. 

As a basis of our definition, we take a theory of semant/c domains developed by Dana Scott  
to describe effidency in mathematics and computer science [8, 9]. 

Some preliminary results of this paper appeared in [2]. 
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2. What is a semantic domain? 
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Main idea. The  theory of  semantic domains was developed by D. Scott [8, 9] to provide a 
semantics for p rogramming  languages. 

Its main idea is as follows. Let's assume that we are analyzing a class X of objects. These 
objects can be real numbers,  or  p rograms given as "black boxes" (so that we can use (i.e., call) 
them, but we have no access to their source codes), or real-life objects. 

In atl these cases, at any given moment  of  time, we have only a finite information about 
an object (finite in the sense that it can be represented inside a computer  as a finite sequence 
of O's and l's). This information can be obtained f rom the measurements (if we consider 
real-life objects), f rom experts, f rom computer  experiments  (if we are talking about programs),  
etc. In the majority of  the cases, this information I does not determine an unknown object x 
uniquely. In other words, the set X ( I )  of  all the objects f rom X that are consistent with this 
information consists of  more  than one element of  X .  

There  are denumerably many different finite sequences of  0 and 1. Therefore ,  there 
are only denumerably many different informations. So, we arrive at the following structure: 
(X, { X ( I ) } ) ,  where X is a set that is called a domain, and { X ( I ) }  is a denumerable  sequence 
of subsets of  X.  There  is a set X ,  and a denumerable  sequence of  its subsets X(I) C_ X. T h e  
sets X(I)  are called approximations. 

Intervals:  an example  of  a semantic domain. Let's consider the case when we are 
measuring a physical quantity that is characterized by a real number.  We usually have several 
different measuring devices for  measuring a quantity. Very often, the only information that 
we have about each of  these devices is the guaranteed total accuracy. 

In this case, the only possible information about an actual value z comes from the 
measuring devices. Suppose that we have per formed measurements with n devices. The  
accuracy of  i-th device is 6i, the result of  i-th measurement  is xi. From the fact that the result 
of  i-th measurement  is 5:i, we conclude that :r belongs to an interval [fib - 6i, :ri + 6i]. After n 
measurements,  we can conclude that x belongs to n such intervals. Therefore,  the set X(I)  of 
possible values of  x is the intersection of  these intervals, i.e., an interval 

X(I~ = [max(:~i - 6i), min(~i + 6i)]. 

So, here, approximations are intervals. Let's show that not all intervals are approximations. Indeed, 
modern  measuring devices are hooked up to computers: they generate a measuring result as 
a binary fixed-point number.  In other words, a binary representation of  a number  xi is a 
finite sequence of O's and t ' s  (e.g., 0.1010011). All these numbers  have the form p/2 q for some 
integers p and q. Such numbers  are called binary-rational. 

T h e  accuracy 6/ of  a measuring device is also estimated by a computer  (as a result of  
automated testing), so it is also a binary-rational number.  Therefore,  both endpoints of  the 
above-described interval X(I) are binary rational. 

In this case, we have a semantic domain in which the domain X is the set of  all real 
numbers R ,  and approximations are arbitrary intervals with binary-rational endpoints. 

How is a domain of functions defined? Suppose that we have already defined semantic 
domains that correspond to domains X and Y. In other words, we have defined approximations 
X(I)  and Y(J) for both domains. What  if we now consider as a domain Z the set y x  of  all 
possible functions from X to Y: what approximations to use? 
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For D. Scott, the main objects of interest were programs. In this case, a function 
s t : X ~ Y is a program that calls z E X,  and as a result, generates a program ! /E Y (this is 
possible in many programming languages, including standard PASCAL). Hence, we can get an 
approximation to this program f by observing what it does for different x. 

For any x £ X,  during a finite time interval, this algorithm f can generate only a finite 
information about f(x).  In other words, after a finite interval of time, this algorithm will 
actually produce an approximation Yx to a program ](x). As an input data, this algorithm 
can use only a finite information about x. In other words, it uses only some approximation Xx 
that contains x. Since this algorithm uses only this information X1, for all other values :r E X1, 
it will produce the same approximation YI. In other words, if x E X1, then f (x)  E Y1. We 
can also rewrite this condition as ](X1) C_ Y1 (where ](Xx) denotes an image of Xt under f).  

So, after the first observation, the only information about f that we have is that f(X1) C_ 
Y1 for some Xx and Y1. We can repeat this experiment several times, with different z. For 
each experiment, we get a pair of  approximations (Xi, Yi). After n experiments, we know that 
f (Xi)  C_ Yi for aU i = 1, 2 , . . . ,  n. So, we arrive at the following definition: 

We can define approximations on Z as follows: an /nformat/on I is a finite sequence of 
pairs of approximations (X~, Y~), 1 <_ i _< r~, and Z(I) is a set of all functions f : X --0 Y such 
that f (Xi)  C_ Y~ for i = 1, 2 , . . . ,  n. 

Functionals, operators, etc. If we apply this construction once again, we can define the 
notion of an approximation for the set of all functions from yX  to X (i.e., for the set o f  all 
functionals), or for the set of all functions from y X  to yX  (i.e., for the set of all operators). 

In the next section, we will apply this idea to the case when the initial domains X and 
Y are interval domains, and show that the resulting definition is physically meaningful. 

3. What do we know about a function after finitely 
many measurements? 

In m a n y  cases ,  it is necessary t o  d e t e r m i n e  a function experimentally. If we know that a 

physical quantity y is a function of another physical quantity x (y = f(x)), but we do not know 
f ,  then we have to determine f (x)  experimentally. The only way to do that is to measure 
both x and y in different situations. 

Example. Suppose that we know that for some conductor, the voltage V is a function of 
a current I: V = f ( I )  for an unknown f .  In the majority of the cases, Ohm's law f ( I )  = RI  
is a good approximation, but there are also many non-Ohmic materials for which f is non-linear 
and unknown. To determine f ,  we measure voltages and currents in several situations, and 
try to reconstruct f from the resulting data. 

Meam~rement  results. As a result of each measurement, we get two values: :ri and ~i- 
Taking into consideration the accuracies ~: and ~ of these measurements, we conclude that 
the actual value of x belongs to an interval Xi = [~:i - 6~, :~ + 6~], and the actual value of y 
belongs to an interval Y /=  [yi - 6~, 0i + 6~]. After n measurements, we get n pairs of intervals 

(X,, V,). 
Two different situations. For this problem, two different situations are possible: 

1) We know from some theoretical considerations that 1/ is functionally dependent on z. From these 
same theoretical considerations, we may also have some additional knowledge of f: e.g., we may know 
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that f is monotonic, that f is smooth (or even analytical), that it may satiffy some integral 
inequalities, etc. 

In this situation, if as a result of a measurement we got Xi and Yi, this means that the 

actual value z was such that x E Xi and f(x) E ~. In other words, a function f is such that: 

• for every i, there exists an x such that x E Xi and f(z) E Y~ (i.e., the graph of f has a 
point in common with the set Xi × Y~)~ and 

• this function f must satisfy some theoretically motivated additional conditions. 

Since these theoretical conditions can be very complicated, the resulting description of a 
~function interval ~ (set of all possible functions f )  can be very complicated, and in the present 
paper, we will not analyze it. 

In this paper, we will consider a situation that is simpler to analyze: namely, a situation 
when there is no preliminary theoretical knowledge of the relationship between x and y. 

2) We have no pretimhuzry knowledge of the relationsh~O between z and y. In this case, the 
only information that we have consists of. the measurement results. So, the only possibility 
to condude that ~/ is functionally dependent on :r is to make this conclusion based on the 
measurement results. 

How can this be done? How, e.g., can we arrive at a conclusion that V is functionally 
dependent on t?  We repeat measurements several times; in several different experiments we 
have the same value of  current, say, I A. f f  we notice that in al| these cases, the value of the 
voltage is also the same (e.g., 2 V), then we conclude that whenever the actual value of the 
current is consistent with the measurement result t A, the actual value of the voltage will be 
~ 2 V .  

We can now formulate a general hypothesis that voltage V is a function of current I .  
To  check this hypothesis, we can anaIyze other cases in which I was the same. f f  in all such 
situations, equal values of I lead to equal values of V, then our hypothesis is confirmed, and 
we can conclude that y (in this case, voltage) is indeed functionally dependent on ~: (in this 
case, on the current). 

This means that whenever we have a pair of intervals (Xi, Y/) as a result of a measurement, 
we usually have not only one, but several measurements. For each of these measurements, the 
actual value a: was inside Xi,  and the actual va~ue of y = f ( z )  was inside Yi. After observing 
all these measurement results, we make a general conclusion: whenever z is in Xi, we have 
./(z) E Yi. In other words, we conclude that f ( X i )  C_ Yi. 

Comments. 

1. This is not a mathematically valid deduction-type conclusion, but this is a typical example 
of what physicists call /nduct/on: extracting general laws from examples. This is a typical 
way how laws of physics are obtained from the experimental data. 

2. The same definition can be applied to the case when X and Y are not necessarily the 
sets of real numbers, but other sets, for which the notion of an interval is already defined. 

As a result, we arrive at the folIowing definition of a function interval. 
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Definition of a function interval, its relation to 
semantic domains, and algorithms that handle these 
function intervals 

Definition L Suppose that we have two sets X and Y.  In each o£ these sets, a family o f  
subsets is chosen; subsets from these families will be called intervals. By a measurement information 
t (that corresponds to a function from X to Y), we mean a finite list o£ pairs of  intervals 
(Xi, ri),  1 ~ i ~ n. For every I,  we can de~ne the set Z(À) o f  all the functions f : X -.* Y ,  
for which f ( X i )  C_ Yi for i = 1 , 2 , . . . , n .  For Z = y x ,  by an interval, we will understand a set 
Z ( I )  C_ Z for some measurement information I, 

Comment. One can easily see that this definition is exactly the one given by D. Scott in his 
theory of semantic domains! So, our previous section actually provides a physical justification 
of that definition. 

Important ease: funct ion intervals. If we take X = Y = R, and actual intervals [a, b] 
with binary-rational endpoints as ~interval" subsets of X and Y, then we arrive at the definition 
of a function interval as a set 

Z(Z)  = { f :  R - ,  R t f ( X ' )  C_ ~ for all i = 1, 2 , . . . ,  n} 

for some sequences of intervals Xi and Y/. 

How to handle  these function intervals? To define a function interval is half of the task. 
We are actually interested in processing them. So, let us show how, given such an interval (i.e., 
the sequence of pairs (Xi, Yi)), we can algorithmicatly find answers to natural questions about 
an unknown function. 

Namely, we are interested in the following questions: can this function f be constant? {i.e., is 
there a constant function in Z(I)?)  can it be monotonic? I f  it is not monotonic, then how many local 
extroma can it have and zohere are they located? tn this paper, we will present fast algorithms to 
solve these questions. 

Comment. For the case when measurements of z are absolutely precise (i.e., the error in zi is 
negligible), these questions have been studied in our previous papers [3, 4, I0]. Algorithms that 
we present here are thus generalizations of the ones presented in those papers. The existence 
of these generalizations does not mean, however, that  the original algorithms are now useless: 
these algorithms have been designed for a special case, and for that special case they are faster 
than our more general ones. 

First stage: pre.proeessing a function interval. The fact that we do not know f means 
that for every z E X,  we know only an interval of possible values f ( z ) .  If z belongs to 
only one interval Ii, then the interval of possible values of f ( z )  is Yi. If z belongs to several 
intervals ( i , / j , . . . ,  then for such z, we have f ( z )  E Yi, f ( z )  E Yj, etc: So, the set of possible 
values of f ( x )  is an intersection Yi gl Y / N . . . .  Before we start processing intervals, let us f irst  
compute these intersections for all x C X.  

The necessity for this "pre-processing ~ appears when the intervals Xi have a non-empty 
intersection. So, after pre-processing, we will have a new sequence of intervals Xj that can 
have at most one point in common. 

Definition 9.. We say that a function interval Z ( I ) ,  where t = {(Xj, Yj)}, t < i < rL where 
Xj  = [x;,x?] and Yj = [y;,y;],  is m-processed i f  x~ < xj+x. 
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Definition 3. We say that function intervals Z ( I )  and Z ( I )  are equiudent, i f  they contain the 
same sets of  functions (i.e., i f  Z(Z)  = Z ( i ) ) .  

Theorem 1. There exists a quadratic.time algorithm that transforms an arbitrary function 
interval into an equivalent pre.processed one. 

Comment. An algorithm is called quadratic-time (see, e.g., [1]), if there exists a constant (7 such 
that for every n, the number of elementary computational steps [1] that this algorithm requires 
for input I = {(Xi, Y/)}, 1 _< i <: n, does not exceed Cn 2. 

Algorithm. First, order 2n endpoints of n intervals Xi into an increasing sequence xl  < x2 < 
--. < x,~, m < 2n. This ordering can be done in O(n log 2 n) computational steps (see, e.g., [1]). 

For each j ,  all the values x from (x j ,x j+l)  belong to the same intervals Ii. If there are 
no intervals Ii for these x, then the set of possible values of f ( x )  is the entire real line. If there 
are such Ii, then the interval of possible values of f ( x )  is equal to the intersection of Y~ for 
all i such that x E Xi. To compute these intersections, for each of rn < 2n intervals (xj, xj+1), 
we must check whether this interval belongs to each of n intervals Ii (for each interval Xi, it 
takes 2 steps to compare, so totally, we need 2n steps for each j),  and then compute the min 
and max of endpoints of xi to get the endpoints of an intersection (< 2n steps). Totally, we 
need _< rn(2n + 2n) _ 8n 2 computational steps. 

After this pre-processing, we have a new sequence of intervals [xj, xj+l] and the corre- 
sponding y-intervals [yj, Yj+l] (these values yj can be :ko~) such that f ([xj ,  xj+l]) C [yj, Yj+I]- 
If we delete the intervals for which yj = ±oo,  we end up with the sequence of intervals 

= and = ,yj  ], such that C and < xj+l. In other words, we 
have a pre-processed function interval. 

Comment. In the following text, we will assume that the function interval is already given in 
this pre-processed form. 

Theorem 2. There exists a linear-time algorithm that, given a pre-processed Function interval 
Z ( I ) ,  returns "yes" i f  and only i f  this interval contains a constant function. 

Algorithm. Compute M = min y+ and m = max y~'. If m _< M, then answer "yes." 

Comment. For reader's convenience, proofs are given in the next section. 

Theorem 8. There exists a linear-time algorithm that given a pre-processed function interval 
Z ( I ) ,  returns "yes" i f  and only i f  this interval contains a monotone non-decreasing function. 

Algorithm. Set M := Yi-. Then, for j = 2 , . , . ,  n, do the following: check whether y+ _> M, 
and compute the new value M := max(y~, M).  

If for all j ,  the checked inequality is true, return ~yes," else return "no." 

Theorem 4. There exists a linear-time algorithm that given a pre-processed function interval 
Z([ ) ,  returns "yes" i f  and only i f  this interval contains a monotone non-increasing function. 

Algorithm. Set m := y~'. Then, for j = 2 . . . .  , n, do the following: check whether y~- _< m, 
and compute the new value ra := min(y~', m). 

If for all j ,  the checked inequality is true, return "yes," else return "no." 

Comment. If a function is not monotonic, this means that it has local maxima or mimima. In 
many areas (radioastronomy, spectroscopy, particle physics, etc.), it is important to know the 
locations of these maxima [10]. 
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Defini t ion 4. We say that a function f ( x )  has a local maximum on an interval ( x - ,  x +) i f  
f ( x - )  < sup f ( x )  > f (x+) ,  where sup  is take over all x E Ix - ,  x+]. likewise, we say that a 
function f ( x )  has a local minimum on an interval ( x - , x  +) i l l ( x - )  > i n f f ( x )  < f (x+).  

Definit ion 5. Suppose that a function interval Z ( I )  is given. We say that an interval I locates 
a local maximum i f  any function f E Z ( I )  has a local maximum on I.  We say that an interval 
I locates a local minimum i f  any function f E Z ( I )  has a local minimum on I.  We say that 
an interval I locates a local maximum precisely, i f  I locates a local maximum, and no proper 
subinterval I ~ C I locates it. 

T h e o r e m  5. There  exists a linear,time algorithm that for a given pre-processed function inter- 
val, locates all local maxima and all local minima precisely. 

Algori thm. This algori thm consists o f  3 different phases, between which we'll switch, and there 
will be a special variable s that indicates on what phase we are now. Possible values of  s are 
-1 ,  0, or  1. These values have the following meaning:  

• s = 0 means that  the data that  we have already processed is still consistent with the 
hypothesis that  f is constant; 

• s = t means that  we are now in an interval on which f can be monotone non-decreasing; 

• s = - 1  means that  we are now in an interval on which f can be monotone non-increasing. 

T h e  algori thm itself is as follows: 

First, set s :=  0, read the first interval Yx and set m := y~ and M :=  Yi'- Then,  read 
all o ther  intervals Y j , j  = 2, 3 . . . . .  n one by one and depending on the value of  s do the 
following: 

I f  s = 0, then check whether  M < ff~- and whether  y ~ - <  m,  and compute  M := 
m a x ( M ,  yj-) and m :-- ra in(m,  y+).  I f  both checked inequalities are true, then leave s 
unchanged.  Else, if the first inequality is false (i.e., M > y+), set s :=  - 1 .  I f  the second 

inequality is false (i.e., y~" > m), set s :=  ! .  

I f  s = 1, then check the inequality M < y~'. If  it is true, compute  M := m a x ( M ,  YS) and 
leave s unchanged.  I f  it is false, then do the following: 

i) for  k = j - 1, j - 2 . . . .  compare  y+ with M until we find the value k, for which y~" < M;  

ii) for  this k, output  the interval (x~', z~') as an interval that  locates a local max imum;  

iii) set s :=  - 1 ,  m := y~'. 

I f  s = - 1 ,  then check the inequality m > y~-. I f  it is true, compute  m :=  m i n ( m , y  +) 
and leave s unchanged.  I f  this inequality is false, then do the following: 

i) for  k = j - 1, j - 2 . . . .  compare  y~" with m until we find the value k for which y~" > m;  

ii) for this k, output  the interval (x~', x~') as an interval that locates a local minimum;  

iii) set s :=  1, M :=  y~'. 
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Theorem I is proved in the main text. 

Proof of Theorem 2. If a constant function f (x)  = c belongs to Z(I), then yj- _< c < V~" for 
all j .  Therefore, m _< e <_ M ,  and m _< M .  

Vice versa, if m < M, then one can easily check that a function f (x)  = e = (m + M)/2 
belongs to Z(I). 
Proof of Theorem 8. Let us prove that this algorithm produces the correct result. In 
this algorithm, the value Mi of M after we have processed j intervals Y1,. . . ,  Yjs, is Mj = 

max(yi ' ,  V2",-.-, Yj-). 

If Z(I) contains a non-decreasing function f ,  then for k < j,  f(xk) <_ f(xj).  Therefore, 
y'~ <_ f(xk) < f(xj)  <_ y~'. So, y~" > y~" for all k <  g, and hence y~" > max(y~' , . . . ,  Y~'-l) = 
Mi_I. So, in this case. our algorithm will answer "yes." 

Vice versa, if an algorithm answers eyes," let us take define f as follows: for every x < x +, 
we find the biggest j for which x~ <_ x, and take f (x)  = M i. For x = Xn, we take f(xn) = y+. 
It is easy to check that this f is monotonic non-decreasing, and that it belongs to Z(I) (i.e., 
that if x E Xj, then f (x)  E Yj). 
Theorem 4 is proved similarly. 

Proof of Theorem 5 (this proof is similar to the one in [10]). 

t) Let us first prove that if this algorithm returns an interval (x~', xj') as containing a 
local maximum, then every function f from g( t )  has a local maximum on this interval. 

Indeed, our algorithm returns such an interval if y~- < Mj-2 (here, we use the denotation 
Mj from the proof of Theorem 3), and y~ < Mj-~. 

By definition, Mj_~ is the biggest of several consequent values y/-. Let us prove that 
M j _ I =  y/- for some l between k and j .  

Indeed, suppose that it is not so. Then,  y~" < Mi-t for all I = k +  1 . . . .  , j -  1. For l = k 
and I = j ,  we have y/~ < Mj- I ,  hence y/" < m j - l .  According to the algorithm, the only way 
to increase Mj is to encounter the value yl that is greater than M;_~; in this case, the new 
value MI is equal to Yl. So, if MI was ever increased on one of the steps from k to j ,  we 
would have Mj-1 = y/- for that step 1. Since this is not true, it means that for aIl these l, the 
value Mt did not increase. Hence, M~-I = Mj-2 . . . . .  Mk = Mk-1. So, Mj-1 = M/¢-t, and 
from y~" < mj - i ,  we conclude that y~" < IV/k_ t. 

But this inequality, according to our algorithm, would mean that we switched to phase 
s = - 1  on the value yrc and would not have waited until yj (as we did). This comradiction 
shows that our assumption that Mj- I  > Yl for all 1 = k, k + I , . . . ,  j is false. Therefore, there 
exists an I such that k < t < j ,  and y/- = Mj-1. 

Now, let f E g(I) .  This means, in particular, that f(x'~) < y'~, so from y~- < Mj-1, we 
conclude that f(x'~) < Mj-x. Likewise, f (x~) < Mj-1. From y/- = Mj-1 and f(x[') >_ y f  , we 
likewise conclude that f(x'[) > Mj-x. Therefore, s u p f ( x )  >_ Mj-1. So, f (x~)  < s u p f ( x ) ,  and 
f(x-~) < supf (x ) .  Therefore, f has a local maximum on (x'~,x'~). 

A similar prove shows that intervals about which the algorithm claims that they locate a 
local minimum actually locate it. 

2) Let us now prove that this algorithm locates all local maxima, and that it locates them 
precisely. The idea of this proof is as follows: let us write down the sequence of intervals that 
this algorithm generates. According to an algorithm, in this sequence, after each interval that 
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locates a local maximum, the next one locates a local minimum, and vice versa. Let us choose a 
point t ,  on each of the intervals that locate a local maximum, and a point sk on each interval 
that locates a local minimum. We want to design a function whose only local maxima are tk. 

If we succeed in this construction, we will thus prove that our algorithm locates all local 
maxima, and locates them precisely. Indeed, since this function f has no local maxima outside 
the intervals generated by our algorithm, it proves that we enumerated all intervals that 
necessarily contains local maxima. The fact that an arbitrary point t~ from each interval is 
(thus) a local maximum for some f E Z(I ) ,  proves that our intervals cannot be diminished, 
i.e., that we have located them precisely. 

The construction of this f consists of two steps. First, for those values tk and sk that do 
not coincide with z~', a:~', we add them to our list of endpoints. If this new value belongs to an 
interval that locates a local maximum, then as the corresponding value Vj, we take the value 
of M at the moment when we have formed this interval. Likewise, if this new zi belongs to 
an interval that locates a local minimum, then we take Vj = m. 

After this, the entire interval [zx,zn] is divided into subintervals, that either go from sk 
to the nearest tk, or from tk to the nearest s~. One can see that on each subinterval [z~, z,], 
where zm is one of the points s~, and zn is one of the points tk, the algorithm from Theorem 
3 will generate "yes." We can, therefore, use the construction from the proof of Theorem 3 
to design a non-decreasing function f that satisfies the conditions f ( X j )  C_ ~ for all j .  The 
values of f in the endpoints are f(x,n) = Vff, and f(z, ,)  = V +, and f attains its biggest value 
V + only in one point: zn. 

A similar construction applies to a subinterval that starts with the left endpoint a:l and 
ends in a point tl. 

For intervals that start with tk and end with sk (or with an endpoint), we can similarly 
construct a non-increasing function, for which the maximum is attained in only one point. 

These functions agree on endpoints. Therefore, we can combine them into a single 
continuous function whose only local maxima are the points tk. 

3) A similar construction proves that our algorithm enumerates all local minima, and 
enumerates them precisely. [] 
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