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If we measure a number, we get an interval.
What if we measure a function or an
operator?

Joe Lorkowski and Viapik Kremovicn

Assume that we measure a physical quantity  with a measuring device whose accuracy is 6 (i.e., whose
producers guarantee that the difference T — I between the actual value z and the measured value I
does not exceed 8). If the result of this measurement is &, then possible values of  form an interval
£-6,2+46).

Suppose now that we know that a physical quantity y is a funcion of the physical quantity x
(in other words, we know that y = f(z) for some function f(z)), but we do not know f. How to
determine f? We can measure only finitely many values, with finite precision, so, after finitely many
measurements, we get a set of possible functions f{z). This set can be called a findion intervad {function
intervals were first analyzed by R. Moore himself).

The situation can become even more complicated.. For example, if we analyze how physical fields
evolve, then in addition to functions, we must describe operators, ie, mappings that transform a funcion
{current value f(£) of a physical field) ints a function {predicted future value of this field). Again, since
we can perform only finitely many measurements, at any moment of time, our measurement results are
consistent with the whole bunch of different operators. So, at any moment of time, we have a set of
operators; we can call it an operator intervel.

One can apply different ideas to describe function intervals, operator intervals, etc. But it is desirable
to develop a general formalism that would cover all these cases. In this paper, we propose and justify
such a formalism.

VIsMepuB 4ICAO, OAYIMM MHTepBaA. 1O
TIOAYYMM, M3MEPHB (PYHKIVIO MAM OLepaTop?

Ax. Aorxoecxit, B. Keevmosnu

TipeanoauanM, 9T HIMEPAETCH (PUIMYECKAS BEAHUHHA T C MOMOLILKY HIMEPHTEABHOTO YCTPOIHCTHA,
AAOMIET0 NOrpemiHOCTh § (T, € M3rOTOBHTENH 3Toro YCTPORCTBA TAPRHTHPYIOT, ¥TO PA3HOCTL T — &
MEX/ly peaibHBIM 3HAMEHMEM T H MIMEPEHHHIM 3HaYenueM I ue npesmumer 6). Ecm pesyawntar
H3MEPEHUA paseH T, BOSMOXHLIC 3HAUEHUR T AeXaT B uHteppane [T ~ 6, F + 8].

TIpennonoxuM, uTo H3BECTHA (DHINYECKAS BEMHUMHA ¥, ABMAONMACK (yHKIMER oT DUIMecKod
BE/MUMHE T (IDYrMMM CAOBAMY, ME 3HaeM, uto ¥ = f(z)} mna mexotopoit dynxmm f(z)), Ho cama
ynkuua f newssectHa. Kak onpenenuts f? MB MOKEM H3MEPHTB TOMLKO KOHEMHOE HHCIO 3HAYMEHHR
€ OFPaHMYEHHOM TOMHOCTBK), TAK MTO MIOCAE KOHEUHOTO YMCAA HIMEPEHHR MBI NOJYYHM MHOXECTHO
BO3MOXHBX (yHKuHA f(2). 310 MHOXECTBO HA3BIBAIOT QyMKutommsisse tmepenion (TAKHE HHTEPBAJIL
6LUTH Briepeule uccaennsannl P, Mypom). :

Curyauns moxer crate eme Goace croxxoir, Hanpumep, ecm Mu uccaenyem uaveenue du-
3HYECKOTO NOS, TO, KPOME (PYHKIUG, MBIl AO/DKHB! OTHCATB ORepamopst, T. € OTOGDAXKEHHS, KOTOphie
nepesoaaT oany dyHkunio (texyutee suavenue nons f{Z)) 8 apyryo (npenckasannoe Gynyuiee sHauense
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F0r0 nosiA). W onATh, H3-332 TOFO, MTO MBI MOXEM BBIIOJIHHTL TOJBKO KOHEYHOE MMCHD H3MEDEHHN, B
KAKABH MOMEHT BPEMCHH PE3YJLTATEL HAMIMX MIMEPEHHA COTACYIOTCH € UENOH TPYMIoN PasAHuHbIX
onepatopos. Takum 06pasoM, B KAKABHE MOMEHT BPEMEHH Mbl HMEEM MHOXKECTBO OHEPATOPOB, KOTOPUE
MOXHO Ha3BATL ONEIMOPHMM UNMEPBLIM.

MOXHO NIPHMEHATD Pa3AHUHEIE HOAXOAK IR (IHCAHHA (PYHKUHOHAABHBIX HHTEPHAION, OHIepaTop-
HBIX HHTepsanos i T. A, Ho Xenarensuo paspaborats of06MmeHHyo GopMATILRYIO CHCTEMY, TPHAOKHUMYK
KO BCEM 3THM ciyvasM. B paBore npeasaraerca H oBOCHOBHBACTCA Takas (opMasbHas CHCTEMA.

1. Introduction

When we measure a quantity that is characterized by a real number, intervals are appropri-
ate for describing measurement results. Suppose that we measure a physical quantity z (eg.
length ). The actual value z of this quantity is a real number. The result ¥ that is produced
by a real measuring device is always approximate. The producers of measuring devices supply
them with the accuracy estimates. In other words, they give a value 4, and they guarantee
that the absolute value of the difference 2 — £ between the actual value r and the measured
value I does not exceed 6. So, if we apply a measuring device, and get T as a result, then the
possible values of the physical quantity = form an interval [Z — 6, % + 6] (see, eg., [5—T)).

What if we want to determine an unknown function experimentally? Suppose now that
we know that a physical quantity y is a function of a physical quantity z (in other words,
we know that y = f(z) for some function f(z)), but we do not know this function. How
to determine f? Again, since we can measure only finitely many values, with finite precision,
so, after finitely many measurements, we get a set of possible functions f(z). This set can
be called a function interval. Function intervals were first considered by R. Moore (see, eg., [5,
Section 5.1; 6, Section 2.5)).

A more complicated case: how to describe the uncertainty with which we know an
operator? The situation can become even more complicated. For example, if we analyze how
physical fields evolve, then in addition to functions, we must describe operators, i.c., mappings
that transform a function (current value f(Z) of the physical field) into a function (predicted
future value of this field). Again, since we can perform only finitely many measurements, at
any moment of time, our measurement results are consistent with the whole bunch of different
operators. So, at any moment of time, we have a set of operators: an operator interval.

Physical examples in which these problems are important. These problems are especially
important for quantum mechanics, where to describe even a single particle, we need a field
Y(Z) (called a wave function).

Even more complicated mathematical structures appear in quantum field theory and in
quantum theory of space-time.

Formulation of the problem. One can apply different ideas to describe function intervals,
operator intervals, etc. But i is desirable to develop a general formalism that would allow us, given
a natural definition of an interval for the sets X and Y, to design an appropriate definition
of an interval for the set Y of all the functions from X to Y.

What we are planning to do. In this paper, we propose such a general definition, and
show that it is physically natural.

As a basis of our definition, we take a theory of semantic domains developed by Dana Scott
to describe efficiency in mathematics and computer science [8, 9].

Some preliminary results of this paper appeared in [2]
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2. What is a semantic domain?

Main idea. The theory of semantic domains was developed by D. Scott [8, 9] to provide a
semantics for programming languages.

Its main idea is as follows. Let’s assume that we are analyzing a class X of objects. These
objects can be real numbers, or programs given as “black boxes” (so that we can use (ie., call)
them, but we have no access to their source codes), or real-life objects.

In all these cases, at any given moment of time, we have only a finite information about
an object (finite in the sense that it can be represented inside a computer as a finite sequence
of 0's and 1’s). This information can be obtained from the measurements (if we consider
real-life objects), from experts, from computer experiments (if we are talking about programs),
etc. In the majority of the cases, this information I does not determine an unknown object
uniquely. In other werds, the set X(I) of all the objects from X that are consistent with this
information consists of mere than one element of X.

There are denumerably many different finite sequences of 0 and 1. Therefore, there
are only denumerably many different informations. So, we arrive at the following. structure:
(X, {X(I)}), where X is a set that is called a domain, and {X(I)} is a denumerable sequence
of subsets of X. There is a set X, and a denumerable sequence of its subsets X(I) C X. The
sets X(I) are called approximations.

Intervals: an example of a semantic domain. Let’s consider the case when we are
measuring a physical quantity that is characterized by a real number. We usually have several
different measuring devices for measuring a quantity. Very often, the only information that
we have about each of these devices is the guaranteed total accuracy.

In this case, the only possible information about an actual value z comes from the
measuring devices. Suppose that we have performed measurements with n devices. The
accuracy of i-th device is §;, the result of i-th measurement is Z;. From the fact that the result
of i-th measurement is Z;, we conclude that = belongs to an interval [Z; — §;,Z; + §;]. After n
measurements, we can conclude that z belongs to n such intervals. Therefore, the set X(I) of
possible values of z is the intersection of these intervals, i.e., an interval

X(I) = [max(Z; — 6;), min(Z; + §;)].

So, here, approximations are intervals. Let’s show that not all intervals are approximations. Indeed,
modern measuring devices are hooked up to computers: they generate a measuring result as
a binary fixed-point number. In other words, a binary representation of a number Z; is a
finite sequence of 0’s and 1’s (e.g., 0.1010011). All these numbers have the form p/2? for some
integers p and ¢. Such numbers are called binary-rational.

The accuracy §; of a measuring device is also estimated by a computer (as a result of
automated testing), so it is also a binary-rational number. Therefore, both endpoints of the
above-described interval X(I) are binary rational.

In this case, we have a semantic domain in which the domain X is the set of all real
numbers R, and appreximations are arbitrary intervals with binary-rational endpoints.

How is a domain of functions defined? Suppose that we have already defined semantic
domains that correspond to domains X and Y. In other words, we have defined approximations
X(I) and Y{J) for both domains. What if we now consider as a domain Z the set YX of all
possible functions from X to Y: what approximations to use?
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For D. Scott, the main objects of interest were programs. In this case, a function
f:X =Y is a program that calls z € X, and as a result, generates a program y € Y (this is
possible in many programming languages, including standard PASCAL). Hence, we can get an
approximation to this program f by observing what it does for different z.

For any z € X, during a finite time interval, this algorithm f can generate only a finite
information about f(z). In other words, after a finite interval of time, this algorithm will
actually produce an approximation Y; to a program f(z). As an input data, this algorithm
can use only a finite information about z. In other words, it uses only some approximation X;
that contains z. Since this algorithm uses only this information X, for all other values z € X,
it will produce the same approximation Y;. In other words, if z € X, then f (z) € ;. We
can also rewrite this condition as f(X;) C Y; (where f(X;) denotes an image of X; under f).

So, after the first observation, the only information about f that we have is that f(X;) C
Y; for some X; and Y;. We can repeat this experiment several times, with different z. For
each experiment, we get a pair of approximations (X;, ;). After n experiments, we know that
fIX;) QY for all i =1,2,...,n. So, we arrive at the following definition:

We can define approximations on Z as follows: an information I is a finite sequence of
pairs of approximations (X;,Y;),1 < < n, and Z(I) is a set of all functions f: X — Y such
that f(X;)C Y, fori=1,2,...,n.

Functionals, operators, etc. If we apply this construction once again, we can define the
notion of an approximation for the set of all functions from YX to X (ie, for the set of all
functionals), or for the set of all functions from YX to Y* (i, for the set of all operators).

In the next section, we will apply this idea to the case when the initial domains X and
Y are interval domains, and show that the resulting definition is physically meaningful.

3. What do we know about a function after finitely
many measurements?

In many cases, it is necessary to determine a function experimentally. If we know that a
physical quantity ¥ is a function of another physical quantity z (y = f(z)), but we do not know
f, then we have to determine f(z) experimentally. The only way to do that is to measure
both z and y in different situations.

Example. Suppose that we know that for some conductor, the voltage V' is a function of
a current I: V = f(I) for an unknown f. In the majority of the cases, Ohm’s law f(I) = RI
is a good approximation, but there are also many non-Okmic materials for which f is non-linear
and unknown. To determine f, we measure voltages and currents in several situations, and
try to reconstruct f from the resulting data.

Measurement results. As a result of each measurement, we get two values: I; and ;.
Taking into consideration the accuracies §7 and &7 of these measurements, we conclude that
the actual value of z belongs to an interval X; = [£; — 67,Z: + 6], and the actual value of y
belongs to an interval Y; = [§; — 67, §i + 6f]. After n measurements, we get 1 pairs of intervals
(X, Ya).

Two different situations. For this problem, two different situations are possible:

1) We know from some theoretical considerations that y is functionally dependent on . From these
same theoretical comsiderations, we may also have some additional knowledge of f: eg., we may know
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that f is monotonic, that f is smooth {or even analytical), that it may satisfy some integral
inequalities, etc.

In this situation, if as a result of a measurement we got X; and Yj, this means that the
actual value z was such that 2 € X; and f(z) € ¥;. In other words, a function f is such that:

o for every i, there exists an z such that z € X; and f(z) € Y; (ie, the graph of f has a
point in common with the set X; X ¥;), and

e this function f must satisfy some theoretically motivated additional conditions.

Since these theoretical conditions can be very complicated, the resulting description of a
“function interval” (set of all possible functions f) can be very complicated, and in the present
paper, we will not analyze it

In this paper, we will consider a situation that is simpler to analyze: namely, a situation
when there is no preliminary theoretical knowledge of the relationship between z and y.

2) We have no prebiminary knowledge of the relationship between z and y. In this case, the
only information that we have consists of the measurement results. So, the only pessibility
to conclude that y is functionally dependent on z is to make this eonclusion based on the
measurement results.

How can this be dene? How, eg., can we arrive at a conelusion that V' is functionally
dependent on J? We repeat measurements several times; in several different experiments we
have the same value of current, say, I A. If we netice that in all these cases, the value of the
voltage is also the same (e.g., 2 V), then we conclude that whenever the actual value of the
current is consistent with the measurement result 1 A, the actual value of the voltage will be
~2V.

We can now formulate a general hypothesis that voltage V' is a funetion of current I.
To check this hypothesis, we can analyze other cases in which I was the same. If in all such
situations, equal values of I lead to equal values of V, then our hypothesis is confirmed, and
we can conclude that y (in this case, voltage) is indeed functionally dependent on z (in this
case, on the current).

This means that whenever we have a pair of intervals (X;, Y;) as a result of a measurement,
we usually have not only one, but several measurements. For each of these measurements, the
actual value = was inside X, and the actual value of y = f{r) was inside ¥;. After observing
all these measurement results, we make a general conelusion: whenever z is in X;, we have
f(z) € ¥;. In other words, we conclude that f(X;) C Y.

Comments.

1. This is net a mathematically valid deduction-type conclusion, but this is a typical example
of what physicists call induction: extracting general laws from examples. This is a typical
way how laws of physies are obtained from the experimental data.

2. The same definition can be applied to the case when X and Y are not necessarily the
sets of real numbers, but other sets, for which the notion of an interval is already defined.

As a result, we arrive at the following definition of a function interval.
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4. Definition of a function interval, its relation to
semantic domains, and algorithms that handle these
function intervals

Definition 1. Suppose that we have two sets X and Y. In each of these sets, a family of
subsets is chosen; subsets from these families will be called intervals. By a measurement information
I (that corresponds to a function from X to Y), we mean a finite list of pairs of intervals
{Xi,Y:), 1 <i < n. For every I, we can define the set Z(I) of all the functions f : X — Y,
for which f(X;)CY; fori=1,2,...,n. For Z =YX, by an interval, we will understand a set
Z(I) C Z for some measurement information I.

Comment. One can easily see that this definition is exactly the one given by D. Scott in his
theory of semantic domains! Se, our previous section actually provides a physical justification
of that definition.

Important case: function intervals. If we take X =Y = R, and actual intervals [a, ]
with binary-rational endpoints as “interval” subsets of X and Y, then we arrive at the definition
of a function interval as a set

Z)={f:R-R| f(X)CYiforalli=12,...,n}

for some sequences of intervals X; and Y.

How to handle these function intervals? To define a function interval is half of the task.
We are actually interested in processing them. So, let us show how, given such an interval {ie,
the sequence of pairs (X;, Y;)), we can algorithmically find answers to natural questions about
an unknown function.

Namely, we are interested in the following questions: can this function f be constant? fie., is
there a constant function in Z(I)?) can it be monotonic? If it is not monotonic, then how many local
extrema can it have and where are they located? In this paper, we will present fast algorithms to
solve these questions.

Comment. For the case when measurements of z are absolutely precise {i.e., the error in z; is
negligible), these questions have been studied in our previous papers [3, 4, 10]. Algorithms that
we present here are thus generalizations of the ones presented in those papers. The existence
of these generalizations does not mean, however, that the original algorithms are now useless:
these algorithms have been designed for a special case, and for that special case they are faster
than our more general ones.

First stage: pre-processing a function interval. The fact that we do not know f means
that for every z € X, we know only an interval of possible values f(z). If = belongs to
only one interval I;, then the interval of possible values of f(z) is Yi. If z belongs to several -
intervals [;, I, ..., then for such z, we have f(z) €Y, f {z) € Y], ete. So, the set of possible
values of f(z) is an intersection ¥; NY; N ... Before we start processing intervals, let us first-
compute these intersections for all z € X.

The necessity for this “pre-processing” appears when the intervals X; have a_non-empty
intersection. So, after pre-processing, we will have a new sequence of intervals X; that can
have at most one point in commen.

Definition 2. We say that a function interval Z(I), where I = {(X;,Y;)},1 < i < n, where
X;=lz7.z}] and Y; = [y;, y7), is preprocessed if 7 < x7,,.
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Definition 8. We say that function intervals Z(I) and Z (I) are equivalent, if they contain the
same sets of functions (i.e, if Z(I) = Z(I)).

Theorem 1. There exists a quadratic-time algorithm that transforms an arbitrary function
interval into an equivalent pre-processed one.

Comment. An algorithm is called quadratic-time (see, e.g., [1]), if there exists a constant C' such
that for every n, the number of elementary computational steps [1] that this algorithm requires
for input I = {(X;,Y:)}, 1 i < n, does not exceed Cn?.

Algorithm. First, order 2n endpoints of 7 intervals X; into an increasing sequence z; < z; <
-+ < I, m < 2n. This ordering can be done in O(nlog, n) computational steps (see, eg., [1]).

For each j, all the values z from (zj,T;41) belong to the same intervals I;. If there are
no intervals I; for these z, then the set of possible values of f(z) is the entire real line. If there
are such I, then the interval of possible values of f(z) is equal to the intersection of Y; for
all i such that z € X;. To compute these intersections, for each of m < 2n intervals (z;, z;11),
we must check whether this interval belongs to each of n intervals I; (for each interval Xj, it
takes 2 steps to compare, so totally, we need 2n steps for each j), and then compute the min
and max of endpoints of z; to get the endpoints of an intersection (< 2n steps). Totally, we
need < m(2n + 2n) < 8n? computational steps.

After this pre-processing, we have a new sequence of intervals {z;,z;.1] and the corre-
sponding y—intervals [y;, y;j+1] (these values y; can be £o0) such that f([z;, z;41]) C [us, ¥i+1]-
If we delete the intervals for which y; = $o0o, we end up with the sequence of intervals
X; = [z7,z]] and Y= [y7 4], such that f(X:) € Y, and z} < z7,;. In other words, we
have a pre-processed function interval.

Comment. In the following text, we will assume that the function interval is already given in
this pre-processed form.

Theorem 2. There exists a linear-time algorithm that, given a pre-processed function interval
Z(I), returns “yes” if and only if this interval contains a constant function.

Algorithm. Compute M = miny;" and m = maxy;. If m < M, then answer “yes.”

Comment. For reader’s convenience, proofs are given in the next section.

Theorem 3. There exists a linear-time algorithm that given a pre-processed function interval
Z(I), returns “yes” if and only if this interval contains a monotone non-decreasing function.

Algorithm. Set M := y;. Then, for j = 2,...,n, do the following: check whether y; > M,
and compute the new value M := max(y;, M).

If for all j, the checked inequality is true, return “yes,” else return “no.”

Theorem 4. There exists a linear-time algorithm that given a pre-processed function interval
Z(I), returns “yes” if and only if this interval contains a monotone non-increasing function.

Algorithm. Set m := yi". Then, for j = 2,...,7n, do the following: check whether y; < m,
and compute the new value m := min(y;, m).

If for all j, the checked inequality is true, return “yes,” else return “no.”
Comment. If a function is not monotonic, this means that it has local maxima or mimima. In

many areas (radicastronomy, spectroscopy, particle physics, etc), it is important to know the
locations of these maxima [10].
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Definition 4. We say that a function f(z) has a local maximum on an interval (z~,z*) if
f(z™) < sup f(z) > f(z+), where sup is take over all € [z~,z*]. Likewise, we say that a
function f(z) has a local mintmum on an interval (z~.z*) if f(z7) > inf f(z) < f(z™).

Definition 5. Suppose that a function interval Z(I) is given. We say that an interval I locates
a local maximum if any function f € Z(I) has a local maximum on I. We say that an interval
I locates a local minimum if any function f € Z(I) has a local minimum on I. We say that.
an interval I locates a local maximum precisely, if I locates a local maximum, and no proper
subinterval I' C I locates it.

Theorem 5. There exists a linear-time algorithm that for a given pre-processed function inter-
-val, locates all local maxima and all local minima precisely.

Algorithm. This algorithm consists of 3 different phases, between which we'll switch, and there
will be a special variable s that indicates on what phase we are now. Possible values of s are
—1, 0, or 1. These values have the following meaning:

e s = 0 means that the data that we have already processed is still consistent with the
hypothesis that f is constant;

e s = 1 means that we are now in an interval on which f can be monotone non-decreasing;

e 5 = —1 means that we are now in an interval on which f can be monotone non-increasing.

The algorithm itself is as follows:

First, set s := 0, read the first interval Y; and set m := y{ and M := y;. Then, read
all other intervals Y;,j = 2,3,...,n one by one and depending on the value of s do the
following:

If 5 = 0, then check whether M < y; and whether y; < m, and compute M =
max(M,y;) and m := min(m,y]). If both checked inequalities are true, then leave s
unchanged. Else, if the first inequality is false (ie, M > y), set s :== —1. If the second
inequality is false (ie., y;7 >m), set s:=1.

If s = 1, then check the inequality M < y;'. If it is true, compute M := max(M,y;) and
leave s unchanged. If it is false, then do the following:

i) for k=3j—1,j—2,... compare y; with M until we find the value k, for which y; < M;
ii) for this &, output the interval (zf,z;) as an interval that locates a local maximum;
iii) set s 1= ~1, m:=y;.

If s = —1, then check the inequality m > yj.. If it is true, compute m := min(m, ;)
and leave s unchanged. If this inequality is false, then do the following:
i) for k=3 —1,§—2,... compare yz with m until we find the value k for which y; >m;

i) for this k, output the interval (zy,z;) as an interval that locates a local minimum;

i) set 5:=1, M :=y;.



IF WE MEASURE A NUMBER, WE GET AN INTERVAL... 295

5. Proofs

Theorem I is proved in the main text.

Proof of Theorem 2. If a constant function f(x) = c belongs to Z(I), then y; <c < y; for
all §. Therefore, m < c< M, and m < M.

Vice versa, if m < M, then one can easily check that a function f(z) =c= (m+ M)/2
belongs to Z(I).

Proof of Theorem 3. Let us prove that this algorithm produces the correct result. In
this algorithm, the value M; of M after we have processed j intervals Y3,...,Yjs, is M; =
max(yi, 42, 95 )-

If Z(I) eontains a non-decreasing function f, then for k < j, f(zx) < f(z;). Therefore,
Ye < flzk) < flz) <97 So, y7 >y for all k' < j, and hence yJ” > max(yy,...,y;_y) =
M;_;. So, in this case, our algorithm will answer “yes.”

Vice versa, if an algorithm answers “yes,” let us take define f as follows: for every z < z}f,
we find the biggest j for which 27 < x, and take f(z) = M;. For x = z,,, we take f(z,) = y].
It is easy to check that this f is monotonic non-decreasing, and that it belongs to Z(I) (ie,
that if x € Xj, then f(z) € Yj).
Theorem 4 is proved similarly.

Proof of Theorem 5 (this proof is similar to the one in [10]).

1) Let us first prove that if this algorithm returns an interval {z},z]) as containing a
local maximum, then every function f from Z(F) has 2 local maximum on this interval.

Indeed, our algorithm returns such an interval if y; < M;_; (here, we use the denotation
M; from the proof of Theorem 3), and yj < Mj-1.

By definition, M;..; is the biggest of several consequent values y;. Let us prove that
M;_1.= y;” for some [ between k and j.

Indeed, suppose that it is not se. Then, y; < M;_; foralli=k+1,...,7-1 Forl=k
and | = j, we have y; < M;_;, hence y; < M;-;. According to the algorithm, the only way
to increase M; is to encounter the value y; that is greater than M;_;; in this case, the new
value M, is equal to y. So, if M; was ever increased on one of the steps from k to j, we
would have M;_; = y; for that step I. Since this is not true, it means that for all these [, the
value M; did not increase. Hence, M;_y = M;_5 = .-+ = My = M;_,. So, Mj_; = Mj_,, and
from y; < Mj_;, we conclude that y} < Mj_;.

But this inequality, according to our algorithm, would mean that we switched to phase
s = —1 on the value y; and would not have waited until y; (as we did). This contradiction
shows that our assumption that M;_; > y; for all =k, k+1,...,7 is false. Therefore, there
exists an [ such that £ <l < j, and y; = M;_,.

Now, let f € Z{I). This means, in particular, that f(z}) < ¥, so from y < M;_, we
conclude that f(zy) < M;_;. Likewise, f(z;) < Mj_,. From y;” = M;_; and f(z]) >y, we
likewise conclude that f{z;} > M;_;. Therefore, sup f{z) > M;_;. So, f(z¥) < sup f{z), and
f(z7) < sup f(z). Therefore, f has a local maximum on (z},z;).

A similar prove shows that intervals about which the algorithm claims that they locate a
local minimum actually locate it.

2) Let us now prove that this algorithm locates all local maxima, and that it locates them
precisely. The idea of this proof is as follows: let us write down the sequence of intervals that
this algorithm generates. According to an algorithm, in this sequence, after each interval that
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locates a local maximum, the next one locates a local minimum, and vice versa. Let us choose a
point tx on each of the intervals that locate a local maximum, and a point s, on each interval
that locates a local minimum. We want to design a function whose only local maxima are ¢;.

If we succeed in this construction, we will thus prove that our algorithm locates all local
maxima, and locates them precisely. Indeed, since this function f has no local maxima outside
the intervals generated by our algorithm, it proves that we enumerated all intervals that
necessarily contains local maxima. The fact that an arbitrary point { from each interval is
(thus) a local maximum for some f € Z(I), proves that our intervals cannot be diminished,
i, that we have located them precisely.

The construction of this f consists of two steps. First, for those values ¢; and s; that do
not coincide with 2}, z, we add them to our list of endpoints. If this new value belongs to an
interval that locates a local maximum, then as the corresponding value y;, we take the value
of M at the moment when we have formed this interval. Likewise, if this new z; belongs to
an interval that locates a local minimum, then we take y; = m.

After this, the entire interval [zy,z,] is divided into subintervals, that either go from s
to the nearest t;, or from t; to the nearest s;. One can see that on each subinterval [Z,,, Zn],
where Z,, is one of the points sg, and T, is one of the points £, the algorithm from Theorem
3 will generate “yes” We can, therefore, use the construction from the proof of Theorem 3
to design a non-decreasing function f that satisfies the conditions f(X;) CY; for all j. The
values of f in the endpoints are f(znm) =y, and f(z,) = yF, and f atiains its biggest value
¥} only in one point: ;.

A similar construction applies to a subinterval that starts with the left endpoint z; and
ends in a point #;.

For intervals that start with f; and end with s (or with an endpoint), we can similarly
construct a non-increasing function, for which the maximum is attained in only one point.

These functions agree on endpoints. Therefore, we can combine them into a single
continuous function whose only local maxima are the points .

3) A similar construction proves that our algorithm enumerates all local minima, and
enumerates them precisely. O
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