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Optimal interval enclosures for 
fractionally-linear functions, and their 
application to intelligent control 
Rom~x N. LEA, VLADIK KREINOVlCH, and RAUL TREIO 

One of  the nmin png,~lems ,ff interval computations is, given a functhm f ( x l  . . . . .  xn) and n intervals 
x i , . . . , x n ,  to compute the range y = f ( x l ~ , . . . , x n ) .  This problem is feasible for linear fttnction s f ,  
but for genetic Ixdynomials, it is known to be cmHputationally intractable. Becau~ of that, traditional 
interval techniques usually compute the e~wJa~,re ,ff y ,  i.e.. an interval that comains y .  The  chaser this 
enck)sure to y ,  the better. It is desirable to describe eases in which we can compute the op~h~ud, ~w.h~ure, 
i.e., the range itself. 

In this paper, we describe a feasible algorithm for computing the opdmal enchxsure for frcu:tiomdly 
thaw functi~ms f .  Applkadons of  this result to h~,th'gem r~#rol are described. 

OIIT~IaAbttbIe I4HTepBaAbHbIe BKAIO~teHI4~ 
Apo6Ho-Amle m,lx  yHKIm  n 

np o eHHe K  weAAeK 'aat,HOUy 
yIIpaBaeHmo 
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Oaua ua ocmmH~x 3aaaq ~mTepeam,Hhtx m~*~)muemt/, O/x)puy~Hpyerc~ caeay~mmM ~xfipa3oM: aaHa 
dpyHgUH~a f (XI , . . . ,X , , )  ~t n mrrepeaaoB x t  . . . . .  Xn; "q3e6yercu ma*meatrn, Mtto~ecrtu) 3Ha,~euu~ 
Y = f ( x I  . . . . .  Xn). 3"ra 3aaaqa )~Me~r CM~Ca aau  ammftHmx 0yHKUU~ f ,  oa)laxo u~BecrHo, ttTO LUI~I 
(~',OfilLleHHldX MHOrOqJleHOB ()Ha BbltlHCJIHTPMIbHO He]pa3peHlttMa. I'[O3TOMy TpaAinlHOHHMe ,HTepaa~bnue 
Meroau, r, ax npaBmao, BIa/ttHCT/.f/R}T ~¢dl~r~4flt//e;'. y ,  T.e. )mTepmaa, c~mepx<amuf~ B cefe y.  LIeM 6.~F,~ge 3TO 
BK..rlR}tleHHC K y,  TeM Jly~IIne. ~KeJlaTellbHt) It~I~ITI,! c.,tyttaH, B Ko'rophtx I~)3MoXKHO BI~ItltWMIHTb ffnltt l I .MIL414lOIt 

ffg.IIOt~h~gg., T.e. caMo MHO]AeL"FBO 3HatleHHfl. 

B pa6oTe orlHCaH aJIFOpHTM, aonyc.gas)m~t~ npaKTHqec2gylo pea~H3attHlo, /idiot BMtlHG/leHHR OllTH- 

M~z)IbHOFO BKJIIg~tleHH.q ~O('~BO-d,~"&,D|~$f qbyHKttH~ f .  OIIHCaHIg npHJl{}~KeHtIH 3TOI~) pe.3y~tb'raTa e {k~JI~CTH 

unme.a.*emnymt~uru~ yntxut~a. 

1. Introduction 
One of the main objectives of interval computations is: given a function y = f ( x l , . . .  , xr~ ) of 
n variables and n intervals xi = [x~-,x+], t < i < n, to estimate the interval y = f ( x l , . . . , x , , )  
of the possible values of y. A typical application is when f describes how a physical quantity 
y depends on the physical quantities xi, intervals xl describe possible values of xi, and the 
desired interval y consists of possible values of y. In general, the problem of computing y is 
computationally intractable (NP-hard) [8]. Crudely speaking, this means that if we can solve 
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this problem in feasible time (i.e., in time that does not exceed a polynomial of the length of 
the input), then we would be able to solve practically all discrete problems in polynomial time, 
which is usually believed to be impossible. 

In view of this negative result, traditional algorithms of interval computations (e.g., naive 
/ntervxd c0raputa/ons or more sophisticated methods like a centered forts [I, 1t, 24-28]), provide an 
enclosure of the desired interval, i.e., an interval Y with the property y C_ Y. For several simple 
classes of functions, exact ('optimal') enclosure Y = y can be computed. E.g., for a linear 
function f ( x l  . . . . .  x,,) = ao+alxl+..-+ar,  z , ,  the desired interval is y = a0+avxx+- . .+an .x , , ,  
where a .  [z-, x +] = [min(a • x - ,  a .  x+), max(a • x - , a .  x+)]. 

In many practical applications, the function f is fractionally linear, i.e., it is equal to the 
ratio of two linear functions: 

V = f ( x l , . . . , x , , )  = ao  + alxl  + ' "  + a , , x , ,  
bo + b~zl + . "  + bnxa 

Isee, e.g., [9, 10, 13, 14, 21, 22, 31]). For such functions, naive interval computations and central 
form do .not lead to the exact enclosure. In this paper, an optimal enclosure for such f will 
be described. 

We also describe a "continuous ~ version of this enclosure, and its application to intelligent 
control. 

2Q Definitions and the main result 
Definition 1. 

* By a fractionally linear function, we mean a tuple (n, 6, b), where: 

- n is a positive integer; 

- -  ~ = (ao, a t , . . . ,an)  is a tuple of  real numbers; 

- g = (bo, b l , . . . ,  b,,) is a tuple of  real numbers. 

. The ~2ue of this function for ~ = (Xl . . . .  , x , )  is de//ned as 

ao  + a l x i  + "" " + anxn 

y = f ( x l , . . . ,  xn) = bo + blxl + ' "  + b,,x,," 

• By a basic interval computation problem for a fractionally linear function f (or simply 
a lyroblem, for short), we mean a tuple (f,  x t , . . . , x n ) ,  where f is a fractionally linear 
function, and xi = [x~-, x +] are intervals. We say that an algorithm computes the opt@ud 
endosure for the problem (f ,  x i , . . . , x ~ )  i f  it computes the range y = . f (x l , . . . ,ym) .  

• We say that a problem (f ,  xl  . . . .  ,gn) with f = (n ,g ,b) i s  non-degenerate i f  

o ebo +b~ .x~ ÷ . - .  +b~ .x~. 

Comment. If a problem is not non-degenerate, then the interval of possible values of the 
denominator contains 0, and therefore, the set of all possible values of the fractions contains 
oo. So, the range is an interval only if the problem is non-degenerate. 
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Theorem 1. There exists an algorithm that computes the optimal enc/osure for  an arbitrary 
non-degenerate fractionally l inear problem in quadratic t ime (i.e., in computation time < Cn2). 

Comment. So, the basic problem of interval computations is feasible for fractionally linear functions. 
Let us describe the algorithm (the p roof  that it always computes the optimal enclosure is 

given in Section 5). 

Algorithm. 

• Step 1: making a denominator positive. If  bo + ~ bix~ < 0, change the signs of  all the 
coefficients, i.e., set ai :=  - a i  and bl :=  -h i .  

• Step 2: making the coefficients in the denominator non-negative. For all i = 1 , . . . ,  n, 
if bi < 0, replace xi with the new variable Yi = -x~,  change the signs o f  the coefficients 
ai and bi, and change xi = [x~', x~'] to Yi = [ - x  +, - x ; ' ] .  

• Step z: eliminating degenerate variabl . If a, /b ,  = a j / b j  for some i ~ j ,  and Ibd >_ Ibjl, 
replace variables xi and xj  with a single variable Yi, for  which bi and ai stay the same as 
before, but for which Yi = xl  + (bj/bi)xj. 

• Step 4: ordering the variables. Orde r  the variables xi in the increasing order  of  the 
corresponding ratios al/bl, so that: 

as as an 
b-7<T< "'<T 

• Final step: computing y±. Compute y + =  max(y~' ,y~' , . . . ,yn+),  where 

y.~ = ao + alz'f + . . .  + akx'~ + a~,+~x-~÷l + . ' .  + anx: 
27+ bo + bxx~ + . . "  + bkx'k q- bk+1 k+s + " "  + bn x+ 

Compute y -  = min(yff, Ys , . - . ,  Y~-), where 

y-Z= 
ao q- alx + + . . ,  q- akX'~ --t- ak+lXk'+l + . . .  + anZ n 
bo + blx~ + ' "  + b~x~ + b~+xx~+ t + . . .  + bnx~ " 

Example. Let n = 2, x t  = x2 = [1, 2], 

1 + xl  + x2 
f ( z )  = 1 + xl - 4x2" 

In this case, the interval 1 + [1, 2 ] -  411, 2] = [ - 6 , - 1 ]  does not contain 0, so, the problem is 
non-degenerate. Let us apply the above algorithm: 

* Step L Since bo + ~ bix:( = t + 1 - 4 = - 2  < 0, we change the signs of  all the coefficients. 
As a result, we arrive at the following problem: x l  = x2 = [t, 2], 

- 1  - x l  - x2 
f ( x )  = - 1  - x:  + 4x2" 
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* Step 2. The coefficient bi is negative for i = I, so for this i, we introduce the new 
variable, and correspondingly change the coeffidents al, b~ and the interval xi .  As a 
result, we get the following problem: xx = [ - 2 , - 1 ] ,  x 2 = [I, 2], 

/(~)= -1 + X l - -  X2 

- - I + x l  + i x  2" 

* Step 3. The values ai /b l=  1 and a2/b2 = - 1 / 4  are different, so, we do nothing at this 
step. 

* Step 4. Since al/bl > az/b2, we change the order of the variables. As a result, we get 
the following problem: x1 = [x~', x~'] = [1, 2], x2 = [z i ,  x~'] = [ - 2 , - I ] ,  

- I  - ah + x2 
f (x )  = - 1  + 4xx + x2" 

-1- + + a Final step. We compute y+ as max(y6,  Yt, Y2 ), where: 

- 1  - 2 + ( - t )  - 4  2 

v~ = _~ + 8 + ( - 1 )  = - T  = - ~ '  

-1- 1 + ( - I )  -3 3 

- 1 + 4 + ( - 1 )  2 2' 

- i - I + ( - 2 )  - 4  -4 .  
Y~ = - i + 4 + ( - 2 )  = - / -  = 

Hence, y+ ~ - (2 /3 ) .  We also compute y -  as min(y o , Yl, Y2), where: 

- t  - t + ( -2 )  - 4  
Y~ = - 1 + 4 + ( - 2 )  t -4,  

- 1 -  2 + ( -2 )  - 5  
Yf = - 1 + 8 + ( - 2 )  5 -1, 

-i-2+(-I) - 4  2 
Y~ = - 1  + 8 + ( -1 )  6 3" 

So, y -  = - 4 ,  and y = [ - 4 , - ( 2 / 3 ) 1 .  

3. Continuous version of this algorithm 
Let us describe a version of this algorithm that can be used for a continuous version of the above 
problem, in which, instead of n intervals x~, we have an imerm/-z~ued funa/on. The motivation 
for this case wilI be given in Section 4. 

Definition 2. 

• We say that a function f : R .--* R is]~ritctwise-continuom flit is continuous everywhere except 
maybe finitely many points x, in which both one-sided l imits/(x - O) = Iim f ( x  - h) 

h---0;h>0 

and f ( x  + 0 )  = lira f ( x  + h) exist (but may be different from each other), and f (x)  
h-*0 ;h>0  

coincides with one of these limits. 
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• Let real numbers a < b be flxed. By ~ ,  we will denote a class of all piecewise-condnuous 
functions f :  [a, b] -+ [0, 11 for which f(a) = f(b) = 0 and f(x)  ~ 0 for some x. 

• Let f E ~'. By Bt( f ) ,  we will denote the set of all functions g E if: for which g(x) E 
If (z)  - f ( x )  + 6] for an 

• For a function f G .~, we denote 

f zY(z) dz 
D(f)= f f(x)dx " 

By D(B~(f)), we denote the range of D, i.e., {D(g) 1# e B~(f)}. 

Theorem 2. For given (a, b), y(z)  and & 

• i f  f ( x )  << ~ for all X, then D(Bt( f ) )  = (a ,  b); 

• else, D(Bt( f ))  = [u-, u+], where u- is the solution of the equation F-(u)  = O, u + is the 
solution of the equation F+(u) = O, 

F-(u) = f (u-x)min(Lf(y)+6)dx- f b(x-u)max(O,f(x)-i:)dx 

and 

F+(u) = f~'(u - x )max (0, f ( x ) -  6) dx - f b(x - u)min (1, f ( x ) +  6) dz. 

(All the proofs are given in Section 5.) 

Comment. Both functions F-(u)  and F+(u) are increasing, so the values u-  and u + can be 
computed by, e.g., a binary search algorithm. This means that  to determine u + and u-  with 
precision : ,  we need no more than C1 log2(e)l computational steps. In other words, to get k 
digits of u + and u - ,  we need <_ Ck computational steps; this is a quite feasible algorithm. 

Remark i. Why cannot we just use interval analysis? For every x from (g, b), possible values of 
g(x) form an interval ( f ( x ) - 6 ,  f (x)4-5) .  Therefore, we can apply the general methodology 
of interval analysis (initiated in [28]; see, e.g., [1, 24, 28]) to get the interval estimates for 
f xg(x) dx and f g (x )dx ,  and then apply the interval division rule to get an interval that 

r ~ _}.  

contains [u , u ]. 

The main reason why we did not apply this approach is that the resulting interval is 
larger than [u-, u+], and we will see in Section 4, in the intended applications, overestimating 
(%vershoot') can diminish the reliability and quality of the resulting control. 

Let us give a simple example where simple interval computations really "overshoots": take 
f (x)  = x  for 0 < x < 1, f (x)  = 2 - x  for 1 < x < 2, and f (x)  = 0  else. Such functions 
are among the most commonly used in fuzzy control (they are called triangular because their 
graphs form a triangle). For this function, the above-described interval estimate leads to an 
interval [1 - 46 + 0(6), 1 + 46 + 0(6)] (computations are given in Section 3), while the actual 
bounds (computed by using the above Theorem) are [ 1 -  6 + o(6), 1 + 5 + 0(6)]. So, for a 
reasonable membership function, and for small /5, we have a 4 times "overshoot." 

Remark 2. The above simple interval estimates can be reasonably improved if we use a 
continuous version of what is called a centered from in interval mathematics (see, e.g., [1, 11, 
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24-281), namely, if we first represent D(g) in the form D(f)+ A(g- :) /B(g-  f), and then 
apply the interval computations technique. As a result (for details see Section 5), we get an 
interval 

[D(/)- <~(D(/)(a + b)- Xl l (d '  + ,,'-))l( S +o<~), 

+ + ,,>- ,,(<,, + , , ,>) / ( f  s(=> <,=) + 

This estimate gives the right asymptotics for small ~5, but still gives an overshoot. And 
since we explained why overestimate is dangerous, it is much better to use a precise estimate 

f r o m  Theorem 1. 

1 Applications to intelligent control 

4.1. What is intelligent control. Successes of intelligent control 
methodology 

Traditional control theory is not always applicable. In case we do not have the precise 
knowledge of a controlled system, we are unable to apply traditional control theory. Such 
situations occur, e.g., when we are devising a control for a future Martian rover, or a control for 
any other space mission into the unknown. In such cases, we often have a skillful operator who 
is good at making control decisions in uncertain environments. This operator can communicate 
his skills only in terms of natural-language rules that use words like %mall," ~medium," etc. 
So, it is desirable to transform these rules into a precise control. Such a methodology was 
first outlined by L. Zadeh [5, 34, 35] and experimentally tested by E. Mamdani [20] in the 
framework of fuzzy set theory [88], therefore the whole area of research is now called fuzzy 
control (it is also called intelligent, or rule-based control). For the current state of fuzzy control, 
the reader is referred to the surveys [2, 19, 30]. 

Let us explain its main ideas on the following simple example. The goal of a thermostat 
is to keep a temperature T equal to some fixed value To, or, in other words, to keep the 
difference x = T - To equal to 0. To  achieve this goal; one can switch the heater (or the 
cooler) on and off and control the degree of cooling or heating. We actually, control the rate 
with which the temperature changes, i.e., in mathematical terms, a derivative T of temperature 
with respect to time. So, if we apply the control u, the behavior of the thermostat will be 
determined by the equation 2 ~ = u. In order to automate this control, we must come up with 
a function u(x) that describes what control to apply if the temperature difference x is known. 

Why can't we extract u(x) from an expert? We are talking about a situation where 
traditional control theory does not help, so we must use the experience of an expert to 
determine the control function u(x). Why can't we just ask the expert questions like "suppose 
that x is 5 degrees; what do you do? ~, write down the answers, and thus plot u(x)? It sounds 
reasonable at first glance, until you try applying the same idea to a skill in which practically all 
American adults consider themselves experts: driving a car. If you ask a driver a question like: 
"you are driving at 55 mph. when the car in 30 ft. in front of you slows down to 47 mph., 
for how many seconds do you hit the brakes?", nobody will give a precise number. You might 
install measuring devices into a car or a simulator, and simulate this situation, but what will 
happen is that the amount of time to brake will be different for different simulations. The 
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problem is not that the expert  has some precise number in mind (like 1.453 sec) that he cannot 
express in words; the problem is that one time it will be 1.3, another  time it may be 1.5, etc. 

A n  expert  usually expresses his knowledge in words. An expert  cannot express his 
knowledge in precise numeric terms (such as "hit the brakes for 1.43 seC), but what he can 
say is "hit the brakes for a while." So the rules that can be extracted from him are ~if the 
velocity is a little bit smaller than maximum, hit the breaks for a while." Let's illustrate the 
rules on the thermostat example. If the temperature  T is close to To, i.e., if the difference 
x = T - To is negligible, then no control is needed, i.e., u is also negligible. If the room is 
slightly overheated, i.e., if x is positive and small, we must cool it a little bit (i.e., u = ~: must 
be negative and small). If  the temperature  is a little lower, then we need to heat the room a 
little bit. In other terms, if x is small negative, then u must be small positive, etc. So we have 
the following rules: 

1) if x is negligible, then u must be negligible; 

2) if x is small positive, then u must be small negative; 

3) if x is small negative, then u must be small positive; 

etc. 

Brief  description of fuzzy control methodology.  First, we combine all the rules into one 
statement relating x and the control u. I f  we know x, what control u should we apply? u is 
a reasonable control if either: 

• the first rule is applicable (i.e., x is negligible) and u is negligible; or 

• the second rule is applicable (i.e., x is small positive), and u is small negative; or 

• the third rule is applicable (i.e., x is small negative), and u is small positive; or 

• one of  the other  rules is applicable. 

Summarizing, we can say that u is an appropriate choice for a control if and only if either 
x is negligible and u is negligible, or x is small positive and u is small negative, etc. If  we 
use the denotations C(u) for  "u is an appropriate control," N(x) for "z is negligible," SP for 
"small positive," SN for "small negative" and use the standard mathematical notations & for 
"and," V for "or" and - for "if and only if," we come to the following informal "formula": 

(1) 

How do we formalize this combined statement: four stages of fuzzy control method- 
ology. In order to formalize statements like the one we just wrote down, we first need to 
somehow interpret what notions like "negligible, ~ "small positive," "small negative," etc., mean. 
The  main difference between these notions and mathematically precise ('crisp") ones like "pos- 
itivC is that any value is either positive or not, while for some values it is difficult to decide 
whether they are negligible or not. Some values are so small that practically everyone would 
agree that they are negligible, but the bigger is the value, the fewer experts that will say that 
it is negligible, and the less confident they will be in that statement. For example, if someone 
is performing a complicated experiment  that needs fixed temperature,  then for him 0.1 degree 
is negligible, but 1 degree is not. For another  expert  +5  degrees is negligible. 
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First stage: describing the degree of confidence..This degree of confidence (also called 
degree of belief, degree of certainty, truth ~.lue, certainty value) can take all possible values from "false" 
to "true." Inside the computer, "false" is usually described by 0, "true" by 1. Therefore it is 
reasonable to use intermediate values from the interval (0, 1) to describe arbitrary degrees of 
certainty. This idea appeared in fuzzy logic [33], and that's why the resulting control is called 
fuzzy contr0/. So the first stage of a fuzzy control methodology is to somehow assign values 
from the interval [0, 1] to different statements like ~0.3 is negligible" or "0.6 is small positive." 
There are several ways to do that [7]. For example [3; 4; 7, IV.l.d; 12] we can take several 
(N) experts, and ask each of them whether he believes that a statement is true (for example, 
that 0.3 is negligible). If M of them answer "yes," we take IvI/N as a desired certainty value. 
Another possibility is to ask one expert and express his degree of confidence in terms of the 
so-called subjective probabilities [29]. 

Second stage: forming membership functions. The procedure described above allows us 
to get the truth values of, for example, N(z) for different values of z .  But even if we spend 
a lot of time questioning experts, we can only ask a finite amount of questions. Therefore, 
we will only get the values N(x) for finitely many different values of x: XhZ2, . . . .  Xn, so 
we must somehow extrapolate the known truth values of N(xi) to come out with a funcdon 
that, for every possible x, gives a value from the interval [0, 1] that expresses our degree of 
confidence that this property is true for z. Such a function is called a members/~ funct/on and 
is usually denoted by #(z). A membership function of the property N is denoted by #N(Z), a 
membership function of the property SP(z) by #sp(a:), etc. 

Third stage: & and V operations. After the second stage we are able to assign truth 
values to the statements N(z) ,  SP(x), etc. Our goal is to describe the possible values of control. 
In formula (I), control is represented by the statement C(u), meaning "u is an appropriate 
value of control." To get the truth value of this statement for different values of C, we must 
somehow interpret the operations "and" and "or" that relate them to the values that we already 
know. 

Suppose that we have already chosen some rules to process & and V. Namely, we have 
chosen a procedure that allows us, given the truth values a and b of some statements A and 
B. to compute the truth values of A&B and A V B. Let's denote the resulting truth value of 
A&B by ]~(a, b). and the truth value of A V B by Iv(a, b): Now we can compute the truth 
value of C(x) for every x, i.e., a membership function of the property G'. 

In particular, for our thermostat example the resulting membership function is 

Typical choices for fv(a, b) are ma~(a, b) or a + b, for f&(a, b): rain(a, b) or ab, etc. 
Fourth stage: defuzzification. After the first three stages we have the "fuzzy" information 

about the possible controls: something like "with degree of certainty 0.9 the value u = 0.3 is 
reasonable, with degree of certainty 0.8 the value u = 0.35 is reasonable, etc." We want to 
build an automatic system, so we must choose one value ~. So we must somehow transform a 
membership function #(u) into a single value. Such a procedure is called defuzz/fication. The 
most commonly used defuzzification is a centroid D(#) = (f  z#(z) dz) / ( f  U(z) dr). 

Successes of intelligent control. Fuzzy control is applied to control trains, appliances 
(dishwashers, laundry machines, camcorders, etc.), manufacturing processes, etc. (see, e.g., [2, 
19, 30]). Computer simulations show that intelligent control is a very efficient way to control 
space missions [16, 17]. 
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42. The problems of intelligent control, and what is necessary for 
their solution 

The number is generated; with what precision shall we implement it? Suppose that this 
methodology generates a control value -0.310745. Does this mean that we really need to 
generate such a precise control? Of course not, because the whole methodology is based on the 
experts' estimates of membership functions, and they are never that precise. But what precision 
should we keep? Is -0 .3  sufficient, or we need to achieve -0.317 

This is a problem of efficiency. This is not a purely academic question, because if it 
is sufficient to use -0 .3 ,  then we can install a simple controlling devices that can generate 
controls with a precision 0.1, but if we really need a 1% precision, then we need a much more 
complicated and more expensive device. For example, it is relatively easy to get a 10 ° precision 
in the orientation of a space station, but to get 1 ° or less, one needs to use complicated and 
expensive super-precise engines, and in addition, be very careful about all possible experiments 
that would interfere with these engines. 

So, if we implement the control in too crude a manner, we will get only a crude 
approximation to the desired control, and thus loose some of this control's quality. If we try 
to implement it with too much of a precision, we will waste efforts and money on unnecessary 
precision. Therefore, we must know with what precision the control should be implemented. 

Another efficiency.related issue: Do we need control at all? Another precision-related 
efficiency problem appears in the situations, when the intelligent control methodology leads to 
the values that are very close to 0 (here, 0 value of control means that no control is necessary). 
In many cases, it would be more effident not to control at all than to apply a very small 
control. For example, if we are controlling the spaceship, then some fuel and energy is spent 
just for keeping the control engines working. In these cases, it is better to switch the control 
off whenever possible. So, we would like to apply 0 control if the methodology prescribes to 
use a small control (that may be different from 0 just because of the uncertainty in the initial 
data). 

Here again we have a dilemma: if we set this threshold too low, we do many unnecessary 
control actions, and waste efforts and energy (in case of a spaceship, fuel). If we set this 
threshold too high, we do not control in the situations where we really need to, and thus we 
loose stability and/or other desired properties of control. So, ideally we should set this threshold 
"just right." 

Reliability. Intelligent control is not based on our precise knowledge of the controlled 
system, it is just a translation of the expert operator's control into mathematical terms. Since 
even the best human operator can err, this control that simulates his behavior may also err. 
This raises the problem of reliability. 

This problem is extremely important for intelligent control, because, e.g., in space applica- 
tions the doubts in reliability are the main reason why, in spite of the very promising results 
of computer simulations ([16, 17], etc.), fuzzy control techniques are not yet widely applied to 
space missions. 

How to solve this problem? One way to do it is to take into the consideration the fact 
that fuzzy control is just a simulation of an expert's control. If we are not sure that an expert 
is giving us the right advice, what do we do? Ask another expert or experts; if their opinions 
coincide, we believe in them much more than we believed in a single expert's opinion. If they 
differ, but there is a strong majority in favor of one of them, we go with a majority. 
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The similar approach can be applied to fuzzy control: namely, instead of implementing the 
rules of a single expert controller, let us implement several fuzzy control systems that represent 
opinions of several experts. These systems can have different sets of rules, use different fuzzy 
notions. For every situation, each of these systems will generate some control value. If these 
values coincide, then this is the right value, and this value is much more reliable than in the 
case when we have only one fuzzy control system. If they differ, but the majority of these 
systems prompt the same control, we control according to the majority. 

This sounds like a reasonable idea, but how to interpret the word "coincides"? Fuzzy 
control systems produce real values, and it is hardly unprobable that systems with different 
rules, that use different notions, will produce precisely the same real numbers. So, if the 
first systems generates the value 0.310987, and the second one the value 0.345901, do these 
control recommendations coincide or not? It depends on what is the precision of fuzzy control 
recommendations. If it is 0.1, then these controls are in good accordance, and we must apply 
it. If the precision is 0.01, then there is a disagreement between them, and we better consult 
the human operator before actually controlling the spaceship. 

In this case, it is also important not to underestimate and not to overestimate this precision. 
If we underestimate it (e.g., estimate it at 0.01, while in reality it is 0.1), then in many cases, 
when the control decisions are really in good precision, and we can rely on the automated 
control system, we would call the human operator. If we overestimate (e.g., estimate it at 0.1, 
while in reality precision is 0.01), and use this "overshooting ~ estimate to determine consistency, 
then we will occasionally erroneously apply the automated control even when the results of 
several fuzzy systems disagree with each other (e.g., if they are 0.3 and 0.35). In the first case, 
we do not use the entire potential and ability of the automated control system; in the second 
case, we loose in reliability. Therefore, it is extremely important to get the precise estimates. 

4.3. Interval estimates help to solve the problems of intelligent 
control 

Informal summary of the problem. The above examples show that it is very important that 
a fuzzy control system would not only generate a number u of the recommended control, but 
would also generate an interval [u-, u +] of possible reasonable controls. 

Motivation of the following mathematical formalization. How to estimate these intervals? 
As we have already mentioned, the main reason why the resulting estimates for a control are 
not precise is that the entire methodology of intelligent control is based on the experts' 
estimates of membership functions, and these estimates are not precise. In other words, if we 
apply the same procedure to the same expert (or the same group of experts) twice, for the 
same statement we can get different degrees of belief p ~ p~. This uncertainty can be easily 
determined: namely, we apply the same procedure two, three, o r  more times to the same 
expert or group of experts, and compute the differences p -p~ between the values that were 
obtained on different repetitions of this procedure. The biggest value I P -  Pq is the desired 
estimate of the experts' uncertainty. Let us denote this estimate by 5. 

This number means that when we produce a membership function ](x) ,  for the same 
experts it could as well be any function g(x) such that I f ( x ) -  g(x)t < 6. In the above- 
described fuzzy control methodology, we first process membership functions, and then use a 
centroid defuzzification procedure D(f) = (f  x f ( x )dx ) / ( f  f(x)dx) to produce a single value of 
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control. So, the problem is: knowing that g(x) can be any function such that I f ( z ) - g ( z ) t  < 6, 
what are the possible remits D(#) of defuzzifying g(z)? 

Additional remark: Membership functions must have compact support. We have already 
formulated the mathematical problem, but we want to add one more remark before we turn 
to a mathematical formulation. The parameters that we can control are usually bounded by 
technical reasons: we cannot get arbitrary acceleration, since our abilities are limited by the 
existing boost engines; we cannot get unlimited rotation speed, etc. In all cases, there exists an 
interval (a, b) of control values that are technically and/or physically feasible. Values of control 
outside this interval are simply impossible, therefore, for z ¢~ (a, b) we must have f ( z )  = 0, 
and #(z) = 0 for all possibte membership functions g. 

In mathematical terms, this restriction means that we limit ourselves to functions #(z) 
with compact support supp(f)  C [a, hi. 

The membership functions are usually assumed to be piecewise continuous and not neces- 
sarily everywhere continuous is that we want to include the case, when the knowledge is not 
fuzzy, and the membership function f ( z )  is equal to I or 0 for all z. 

As a result, we can apply Theorem 2 to compute the set of possible values of the control. 

4.4. Other defuzzif ication rifles 

Centroid of largest area. Centroid is just one of  the possible defuzzification rules. Sometimes, 
it does not work fine, therefore, we need to apply more complicated rules (see, e.g., [15, 32]). 
In [15] we proved that the reasonable demands select either this centroid rule, or an alternative 
rule called centroid of largest area, where we first restrict a membership function #c (z )  for control 
to some interval I,  and only then apply a defuzzification. So, the resulting control is equal 
to ~ = D((/zc)tx). In this case, the only step where we go from membership functions to an 
actual control is also a centroid, therefore, we can apply Theorem 2 to compute the interval 
of possible controls for this case as well. 

Center-of-Maximum. Another frequently used defuzzification rule is as follows: 

Definition 8. By a center-of-maximum defuzzilication we mean a mapping that transforms a 
function #(x) from .~in to  a number DCOM(tz) = 1/2(m_ +m+) ,  where m_ = inf{z : #(x) = 

and m+ = sup{x: U(x) = 

A natural property of the defuzzification procedure d is that if we know the membership 
function with better and better accuracy (i.e., if/5 ~ 0, then the resulting interval of possible 
values d (B t ( f ) )  must converge to the point d( f ) ) .  In other words, the mapping d must be 
continuous w.r.t, the metric p(f,  g) = sup If(x)  - g(x)[. 

Theorem 3. 

• C, entroid defuzzification D is continuous for all f .  

• Center-of mass defuzzitication is not everywhere continuous. 

4.5. Conclusions 

When applying fuzzy control, we suggest not only to compute the recommended value, but 
also to compute the interval [u-, u +] of possible values. To compute this interval, we must 
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determine the uncertainty d5 with which we can estimate the experts' degrees of belief (see 
Section 1.3), and then apply the algorithm from Theorem 2. These interval estimates will 
enable us to do the following: 

• Increase efficiency: Explain what control to use: any value from u -  to u + is fine. This 
solves the problem of how precisely we must follow the recommendation u, and thus 
enables to choose the least cosdy way of following these control recommendations. 

• Solves the problem of whether to apply a control or not: if u -  _< 0 <_ u +, we do not need 
to apply any control; else we must. This will enable us to avoid unnecessary control actions. 

• Increase reliability: If  we have several fuzzy control systems, and for each of them we 
have an interval of  recommended controls, then: 

- if the intersection of all these intervals is non-empty (i.e., all these intervals have a 
common point), then we take any control from this intersection as a reliable control 
value; 

- if there is no point common to all these intervals, but the majority of them have a 
non-empty intersection, then we choose a control from this intersection. 

5. Proofs 
P r o o f  of Theorem 1. Let us denote the numerator of the function f by A, and its denominator 
by B. Let us first prove that Steps 1-4 do not change the problem: 

* Step 1. I f  we change the signs of all the coefficients a / a n d  hi, then both numerator and 
denominator will change signs, and the ratio will remain unchanged. 

* Step 2. If  we rename the variable xi = -Yi, then the values ai and hi, and the interval 
of  possible values of yi must be changed accordingly. 

* Step 8. If  ai /b i= aj/bj, then aj/ai = bj/bi. Therefore, 

and bixi + bjxj = bi(xi + (bjlbi)xj). Therefore, we can replace the terms aixi + ajxj and 
blxi + bjxj that depend on xi and xj with aiyi and blyi, where the new variable Yi is 
equal to Yi = xi + (bffbi)xj. If  xi E xi and xj E xj,  then the set Yi of possible values of 
the new variable is equal to yi = xi + (bj/bi)xi. 

* Step 4. Renaming the variables does not change the problem. 

In view of Steps 1-4,  we can assume that bi > 0, and that the ratio ai/b~ is increasing as 
i increases. 

After Step 1, we can be sure that the value of the denominator /3 is positive at least 
for one combination of xi E x/; since the problem is non-degenerate, the denominator cannot 
attain 0, and hence, it is always positive. 

The function f is a continuous function defined on a compact Xl x . . .  × xn. Therefore, 
its maximum y+ is attained at some point (Xl . . . . .  xn). 

The function f is smooth; therefore, if the maximum is attained for xi inside the interval 
[x~', x +] (i.e., for xi E (x~', x+)),  we will have Of/Oxi = 0. Applying the formula for the 
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derivative of the fraction, we conclude that ai . B - bi • A = 0, hence, al/bi = A / B  = f .  
If we replace xi with x~', then, the new value B I of the denominator B will be equal to 
B + bi(x'[i - xi). The new value A' of A will be A + ai(x':( - xi). Since A = bf  and ai = hi f ,  
we conclude that A' = B f  + bi'f(x'( - xi) = f ( B  + bi(x.'( - xi)) = f A'. Hence, the new value 
of the ratio f '  = A ' / B '  is equal to the old value f = A / B .  Therefore, we can change thi~ xi 
to x~- without changing the optimal value of f .  So, without losing generality, we can assume 
that for every i, xi is either equal to x~', or to x~'. 

If xi = x~', then, since we have achieved the maximum of f for xi, an increase in xi 
can only decrease f .  So, the partial derivative cgf/Oxi must be non-negative at the p, ant 
( x l , . . . , x n ) .  This partial derivative is equal to ( a i B -  b iA) /B  2, so, the fact that it is non- 
negative, means that a i B -  biA <_ O, which is equivalent to aiB <_ biA. Since B > 0 and bl > 0, 
we can divide both sides of this inequality by biB, resulting in ai/bi < A / B .  

Similarly, if xi = x~', a decrease in xi can only decrease f .  So, we wilt get Of/Oxi  >_. 0, 
and a~/bi > A / B .  

So, for every i, either x~ = x~- and a~/b~ <_ A/B, or zl = z~" and ai/b~ > A/B. Hence, if 
ai/bi < A / B ,  we have xi = x;-, and if ai/bi > A / B ,  we have xi = x +. If ai/bi = A / B ,  then, 
as above, we can switch xi to x~- without changing the value of f .  

Since after Step 4, the variables are ordered in the order of the ratio ai/bi, this means 
that for all variables x l , . . . ,  xk up to some k-th one, we have xi = x~-, and for the other 
variables xk+l , . . . ,  xn, we have xi = x~'. In other words, we conclude that y+ = y~" for some 
k. Hence, 

y+ < m ~ ( y L . . . ,  Y:). 

On the other hand, each value y~- is a possible value of the function f and is therefore, not 
exceeding the maximum y÷ of the function f .  SO, y~" < y+  for all k; hence, 

y,+) < y+. 

From these two inequalities, we conclude that y+ = max(y+ , . . . ,  y+). 

In this proof, we used transformations that, strictly speaking, make sense only if bi ~ 0. 
However, the case when bi = 0 for some i, can be handled in the same manner, if we allow 
expressions tike ai/O (meaning +oo or - o o  depending on the sign of o~). 

The proof for y -  is similar. 

To complete the proof, we must now show that the algorithm described in Section 2 
requires quadratic time. Indeed, initial steps 1 and 2 require the number of operations that 
is linear in n. Sorting (Step 4) can be done in time nlog~(n)  << n ~ (see, e.g., [6]), and the 
Final step requires us to compute 2(n + 1) expressions y~ each of which requires 4n + 1 
arithmetic operations: 2n multiplications, 2n additions, and l division. Totally, we need 
< 2(n + 1)(4n + 1) = O(n 2) arithmetic operations. [] 

Proof of Theorem 2. Let us denote the desired set D(Bs( f ) )  by C. 

1. Let us first notice that D ( f )  < b. Indeed, since x < b for x E [a,b], we have 
x f ( x )  < bf(x),  hence fbaxf(x ) dx < . f~bf(x)dx = b f ~ f ( x ) d r .  Dividing both sides of this 
inequality by f~ f (x )  dx, we conclude that D(f) < b. 

Likewise, one can prove that D ( f )  >_ a. 
2. Let us now prove that D( f )  < b. 
Since we have already proved that D(f) < b, it is sufficient to prove that D(f) # b. 

Let us prove it by reduction to a contradiction. Suppose that D( f )  = b. Then, multiplying 
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both sides by fb f(Z) dx, we conclude that fb x f ( x ) d x  = b fb f (x)  dx. Therefore, fa b x f (x )  dx = 
fb bf(z)dx.  Moving all the terms to the right-hand side, we conclude that f b (b - x ) f ( x )dx  = O. 
We assumed that f (x)  is a piecewise-continuous non-negative function; therefore, the function 
( b -  x ) f ( z )  is also non-negative and piecewise-condnuous. This means that we can divide 
the interval (a, b) into finitely many intervals, on each of which ( b -  x)f(x)  is non-negative 
and continuous. The integral of (b - x ) f ( z )  over (a, b) is equal to the sum of the integrals 
of this functions over these integrals. Since we are integrating a non- negative function, all 
these integrals are non-negative. Hence, their sum can be equal to 0 only in one case: if all 
the terms in the sum (i.e., all the integrals) are equal to 0. But an integral of a continuous 
non-negative function is equal to 0 only if this function is identically O. So, (b - x) f (x)  = 0 
for all z, hence, f ( z )  = 0 for all x E (a, b). Since we demanded that f (x)  = 0 outside the 
interval (a, b), we conclude that f (x)  is identically 0, which contradicts to our definition of a 
membership function. 

This contradiction proves that our assumption was wrong, and so, D(f)  < b. 
3. Likewise, we can prove that D(f)  > a. Hence, C C (a, b). 

4. Now, let us consider the case when f (x)  < 6 for all 15. We have just proved that 
C C (a, b), so, in order to prove that C = (a, b), we must prove that any number c from the 
interval (a, b) is a possible control. 

Indeed, suppose that c E (a, b). In this case, c - a > 0 and b - c > 0. Let us denote the 
smallest of these two numbers by A = min(c - a, b - c). Let us take g(x) = 6 if Ix - cl < A, 
and g(z) = 0 else. Then g(x) < 6, hence g(x) - f (x)  < g(x) < 6. Likewise, from f (z )  < 6, 
we conclude that f ( x ) -  g(x) < &. So, ] f ( z ) -  g(z)l < 6, and g(z) is possible. Then, 

Zg(X) dx --- Jc-Arc+A x6dx = 62:2/2 ]~+A_ = 6 /2( (c+  A) 2 - (c - A) 2) -- 26cA. The denominator 

of D(g) is equal to flg(o:) dx = fec_+~ &d~ = 6((c+ A) - (c - A)) = 2&A therefore, D(f)  = c. 
5. Let us now consider the case when f(x0) > 5 for some x0. In this case, if a non- 

negative function g(x) equals 0 outside (a, b), and satisfies the inequality If(x) - y ( z ) [  _< 6 for 
all x, then from If(z0) -g (z0) [  < 6 and f(z0) > (5 we can conclude that g(z0) > 0, so y(z) 
is not identically 0. 

6. Let us denote by P C  the set of all piecewise-continuous non-negative functions on 
(a, b) that are not identically 0. The expression p(g, h) = sup~ 19(x) - h(z)[ defines a metric 
on PC.  The expressions fxg(x)d.x and fg(x)d .z  are both continuous in this metric. Indeed, 
if p(g, h) =supx [g(x) - h(x)l _< 6, then 

and (b- a)6 ~ 0 as 6 --~ O. Likewise, 

as 6 ~ 0. Therefore, the ratio D(y) of these two expressions is also continuous in this metric. 

7. Let us now denote the set of all possible functions by ~ .  By definition, ~ C ~C. It 
is easy to see that "P is a connected set: if y, h E ~ ,  then for every t E [0, 1], their convex 
combination O~(z) = t0(x)+ ( 1 - z ) h ( z )  also belongs to ~ ,  and this family gf forms a continuous 
family connecting g and h. Therefore, since D is continuous on ~ ,  the set D(~ O) of all possible 
values of D(g) is a connected subset of R. Therefore, it is either the entire real line, or a 
half-line, or an interval (open, close or semi-close). 
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If  we denote u -  = in f{D(g)  : g  e P }  and u + = sup{D(g)  : g E P } ,  then we can 
conclude that the desired set C coincides with one of the following sets: 

[~-, ~÷], (~-,  ~+), [~-, ~+), or (~-,  ~+]. 

8. Let us now find u +. For every u E [a, hi, let us define a function f+(x) as follows: 
f~+(x) = max(0,  f (x)  - 5) for x < u, f~+(x) = ra in( l ,  f (x)  + 5) for x > u, and f~+(x) = 0 for 
x • (a, b). This is a piecewise-continuous non-negative function, and it is easy to check that 
l f(z)  - / : ( x ) l  _< 6 for all z. So, in view of 5., y:(x) is a membership function and hence, for  
all u, it is a possible function. 

9. Let us prove that for every possible function g, D(g) < D(f~(W). This inequality 

means that to find a sup remum u ÷ of  D(g) for  all possible g, it is sufficient to con~ider only 
possible functions f~ (x )  (In other  words, u + = s u p { D ( f + )  : u E [a, b]}). 

Since g(z) is a possible function, for every x we have 0 < g(x) < 1 and I f (z ) -g(z ) l  _< 6. 
Therefore ,  g(x) < f (x)  + 5 and g(x) < 1, hence g(x) < ra in( l ,  f (x)  + 5). Likewise, g(x) > 
max(0, y(z) - ~). 

From the definition of  D(g), we conclude that  D(g) = (f~xg(x)dx)/(f~g(x)dx),  hence, 

f bxg(x) dx = D(g) fZg(x  ) dx = fZD(g)g(x)dx 

and so, fba(x-D(g))g(x)dx = 0. I f  x < D(g), then x -  D(g) < 0, and f rom g(x) > 
max(0,  f ( x ) -  5), we conclude that  

(0, 
For x > D(g), we have x - D(g) > O, and f rom g(x) < ra in( l ,  f (x)  + 5), we conclude that 
(x - D(g))g(x) < (x - D(g)) mAn(l, y(x) + 5) = (x - D(g))y~+(x). 

So, for all x, we have (x - D(g))g(x) < (x - D(g))f+(x). Therefore,  

f' 
But we have proved that f~(x - D(g))g(x) dx = O, hence, fb(x -- D(g))f~+(x) >_ O. Therefore ,  

fbxf+(x) dx > D(g)f~f+(x)dx.  Dividing both sides of  this inequality by f:fu+(x)dx, we 

conclude that D(f  +) = (f~ xf+(x) dx)/(f~ f+(x) >_ D(g) dx). [] 
I0. Let us now prove that  the function u -.* D( f  +) is continuous. 

Indeed, the numera tor  fbaxf+(x ) dx of  the fraction that defines D(f  +) can be represented 
as the sum of two integrals: I i ( u ) +  I2(u), where /1(u) = f~xma,x (O, f ( z ) -  6)dx and 
I2(u) = fabxmin(1,  f (x)  - 5) dx. Both integrals /~(u) are integrals of  a piecewise-continuous 
function, and the only dependency on u is that  u is one of  the integration limits. It is well 
known that the value of an integral o f  a piecewise-continuous function continuously depends 
on its limits, so both functions I I ( u )  and I~(u) are continuous in u. Therefore .  their sum (i.e., 
the numerator)  is also continuous. Likewise, we can prove that the denominator  is continuous. 
Therefore ,  this ratio D(f  +) is also a continuous function of  u. 

11. Since D(f  +) is a continuous function of  u, the supremum 

u + = s u p { D ( f + )  : u E [a, b]} 
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is attained for some u: u + = D(f~ +) for some u. According to 9., for g = f~+, we have D(g) < 
D(f/~(9)). Since D(f  +) already equals the supremum u ÷, we conclude that D(f~(g)) = D(g) 
u +, so D(f~++) = u +. Hence, the desired supremum u + satisfies the equation D(f~ +) -- u. 

12. Let us prove that the desired supremum satisfies also the equation F+(u) = 0 from 
the formulation of the Theorem. 

Indeed, if we substitute the definitions of D(9) and f~+ into the equation D(f~ +) = u, we 
conclude that 

Multiplying both sides by the denominator, and moving all terms to the left=hand side, we 
conclude that F(u) = O, where we denoted 

F(u) -- f'zmax(O,f(z)-:)cl~+ j~zrain(l,f(z)+6)dx 

Combining integrals from a to u and from u to b, we conclude that  F(u) = Fl(u) + F2(u), 
where 

= L ' ( z - u ) m a x ( O , f ( x ) - 6 ) d x  

and, likewise, F2(u) = f~(z - u) rain(t ,  f (x)  + 5) d:r. One can easily see that F(u) = F:(u) + 
F2(u) = -F+(u), so the equation F(u) = 0 is equivalent to the equation F+(u) = 0 from the 
formulation of the Theorem, Therefore, u + really satisfies the equation F+(u) = O. 

13. Let us now prove that the equation F÷(u) = 0 has only one solution, and therefore, 
this solution coincides with the desired supremum U +. 

We have F+(u) = -F(u )  = - F l ( u ) -  F2(u). In  the first integral Fx(u), the integrated 
function is always non-negative, hence the whole integral is non-negative; likewise, F2(u) >_ 0. 
So, F+(u) = IFl(u)l-  F2(u). We wilt prove that IFa(u}t is non-decreasing, and that F2(u) is 
decreasing, and from that we will conclude that the equation F+(u) = 0 has only one solution. 

14. Let us first prove that a function lFl(u)l = f u ( u -  x )max(O, f ( x ) -  6)dx is non- 
decreasing in u. Indeed, suppose that u < v. Then, u -  z < v -  z, hence for all z >_ v, 
(u - z) max(0, f (x)  - 6) < (v - x) max(0, f (x) - "~). Therefore, 

/ ' : o -  _< (0, ?,(o>i. 

But Ir:(u)l = f".(u- z) max(0, f (x )  - 6) < f : (u  - x) max(0, f (x)  - ~), hence Irx(u)l < lFx(v)l. 
So, the function IF,(u)l is non-decreasing. 

15. Let us now prove that a function F2(u) = f ~ ( x -  u)rain(t, f ( x ) +  6)dx is stricdy 
decreasing. Indeed, suppose that u < v. Then, x " u  > x - v, and hence (x - u) rain(l,  f (x)  + 
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6) _> ( x -  v)rain(l ,  f (x )+ 6) fo r  all x _> v. From this, we conclude that f~ (x -  u)rain(l, f (x )+ 
6) > f~(x - v) min(1, f (x)  + 6) = F2(v). Since min(1, f(x) + 6) >_ rain(l, 6) = 6 > 0, we have 
J~(u - x) rain(l, .f(x) + 6) dx > 0, hence 

F d u )  = f f ( x - u ) m i n ( 1 ,  f ( x ) + 6 ) +  f f ( u - x ) m i n ( 1 ,  f ( x ) + 6 ) d x  

> L ' ( x - u ) m ~ n ( 1 ,  f ( x ) + 6 )  > Fa(v), and F2(u) > F2(v). 

I6. For u < v, from IFl(u)l _< IFl(v)l and Fz(u) > F2(v), we conclude that [ F l ( u ) [ -  
Fx(U) < ]Fl(V)l-  F2(v), i.e., that F+(u) < F+(v),  and so, F + is strictly increasing. Therefore, 
there can be only one value u, for which F+(u) = 0, and hence, this value must coindde with 
'/2 + , 

We have proved the formula for u + The fact that F+(u) is strictly increasing, explains 
that we can find u + by using a bisection method. 

17. For u- ,  the proof is similar, but instead of the functions f~  we must consider the 
functions f~- that are equal to 0 outside (a, b), are equal to min(I, f(x) + 6) for a < x <_ u, 
and to max(0, f(x) - 6) for u < x < b. Then we prove: 

• that D(9) >_ d(fD(g)), and therefore, while looking for the infimum u- ,  it is sufficient to 
consider only functions of the type f~-; 

• that u ---+ D(f~) is continuous, and therefore the maximum is attained for some u; 

• that for this u, D(f~) = u, 

From the fast equation, we conclude that F - ( u )  = 0, and prove that F - ( u )  is strictly increasing 
and hence, the equation F-(u) = 0 has a unique solution. This solution thus coincides with 
U - .  ['7 

Applying simple interval methods to estimate the uncertainty. 

Let us apply simple interval computations to the function f that is defined as follows: 
f (x )  = x  for 0_<x_< 1, f ( x )  = 2 - x  for 1 < x < 2 ,  and f(x) =0  else. For thh function, 
D(f) = f~ xf(x)  dz/  f~ f (x)  dx = 1/1 = I .  For the numerator f~ xy(x) dr, the inequality 
If(x) - 9(x)l <_ 6 leads to a conclusion that 

Therefore, the interval of possible values of a numerator is contained in [1 - 26, 1 + 26]- For 
a denominator, we obtain the similar estimate: 

so the interval of possible values of the denominator is also contained in [1-26, 1+26]. Dividing 
these two intervals, we conclude that the interval of possible values of D(9) is contained in 
[ ( I -  26)/(1 + 26), (1 + 2 6 ) / ( 1 -  26)]. For small 6, these interval bounds are asymptotically 
equal to [1 - 46 + off) ,  1 + 46 + 0(6)]. 
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Interval estimates for the centered form. 

In this approach, we represent D(g) as D ( f ) +  A(g)/B(g), where A(g) -- f ( x -  
D(f))g(x)dx and B(9) = fg (x )dx ,  and then apply interval estimates to this form. Then, for 
A(9), we get an estimate 

[A(g)l < / * a l z -  D( f ) l  dx 
. t  a 

hence the interval for A(9) is 

= 4 -  2 b 

= ~(D(/)(~ + b ) -  1 /2(~  +b'))  

[- + + : ) ) ,  + b ) -  :))] 
For B(9 ), we get the interval [B(f )  - ~(b - a), B( f )  + 6(b - a)]. So, the resulting interval for 

D(9) = D(f)  + A(9)/B(9) is 

D(S) + ffD¢I)¢o + b) - 1/2(a~ + b' ) ) / (B( i )  - (b - a:)] 
For small 6, we get 

[D¢:) - 6(O¢:)(a + b) - 1 / 2 ( :  + b~))/B(S) + o(6), 

D(:)  +,~(D(:)(~ + b) - ~/2(~ + b~))/B(:) + o(~)]. 

Proof of Theorem 8. 
1. Let us first prove that D is a continuous mapping. For that, it is sufficient to prove that 

the mappings # .--* f #(:r.)dx and # ---* f x#(x)dx are continuous, then Dc  will be continuous 
as a ratio of two continuous mappings. Indeed, if IU(x) -IJ(X)l  <- 6 for all x E [a, b], then 
- 6  _< # ( x ) -  # '(x) _< 6, hence - 6 ( b - a )  <_ f(#(x)  - #t(x))dx = f # ( x ) d x -  f l£(x)d~ <_ 
( b -  a)6. Therefore, t f # ( X ) d x -  f l~(X)clzl <_ ( b -  a)6, and we can easily prove continuity 
with 6 = e/(b - a). Likewise, [.f x#(x) dx - f x#t(x) dx I <_ 6(f~ Ix[ dx), so this expression is also 
continuous. 

2. Let us now prove that center-of-maximum is not continuous. Indeed, let us take a 

trapezoidal function #(x) that is equal to 0 for Ix[ > 2, to 1 for [xl < 1, to 2 -  [x[ for 
t _< lzl ___ 2. Then m_ = - 1 ,  m+ = 1, hence DCOM(#) = 0. For every 6, we can define a 
new function ~ s ( z )  = ~ ( z ) ( 1  - (6/3)(1 - I z l ) ) ,  For this new function, the maximum (equal to 
1) is attained in only one point x = 1, so DCOM (,us) = 1. 

Since we are considering only the values from - 1  to 2, we have I1 - I z l l  <__ 3, hence 
( 6 / 3 ) ( 1 -  lzl) < (5, and l u ( x ) - u ' ( z ) t  ___ 6. so, for e = 1/2, no matter how small 6 > 0 we take, 
we can always find a new function #6 such that p(p, Pt) < 6, but DCOM(#S) -- DOOM(I-t) = 
1 > 1/2. So DCOM is not continuous. ,wl 
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