Reliable Computing 2 (3} (1996), pp. 255—264
A quadratic-time algorithm for smoothing
interval functions

Vwapik KremwovicH and Karen ViLLaverpe

In many realdife applications, physical considerations lead to the necessity to consider the smoothest of all
signals that is consistent with the measurement resuits. Usually, the corresponding optimization problem
is solved in statstical context. In this paper, we propose a quadratictime algorithm for smoothing an
mtervdd function. This algorithm, given n+ 1 intervals Xg,...,Xn with 0 € X and 0 € X, returns the
vector Lo, . .., Zn for which 2o = 2, =0, z; € Xy, and ¥ (i3 — 7i)? — min.

AATOPUTM C KBaApaTHYHBIM BpeMeHeM
BBIIIOAHEHIST AASL CTAQXVBAHILT
VHTEPBaABHBIX (PYHKII

B. Keemnorira, K. Biaaaseras

Bo MHOTHX APAKTHYECKHX HPHAOKEHHAX M3 (PHIHYECKHX CONBPAKEHHA TPeOYeTCA HAMTH CAMYI0 TNanKyx)
M3 BCEX CHTHRJILHBIX QYHKLMA, COBMECTHMYK) C NAHHLIMM H3MepeHHA. Kak Mpasiio, CooTBETCTBYKUAS
3ajaya ONTHMM3AUHH PEMIACTCA CTATHCTHYECKHM METORamH. B paboTe npeanaraetes aropuT™ ¢ Kpa-
RPaTMMHEIM BPEMEHEM BHUIONHEHHA, CTAMKMBRAOINA wnmepsainyw ysruno. TTonayuus Ha sxoge n+ 1
HHTEPBANOB X0, . .., Xn, e 0 € Xg # 0 € Xp, anropiT™ BO3BpAILAET BEKTOP To, . .., Tn, MIS KOTOPORO
To=2Zn=0,%; € X; u 3 (Tiz1 — ;)% — min.

1. Motivations

11 Smoothing is important

In engineering, astronomy, geophysics, etc., transmitted signals and/or images are “corrupted”
by noise; this “noise” includes the unpredictable additions from other sources as well as the
changes in the signal that are due to the imperfection of the measuring instrument. As a result
of this “corruption,” we cannot uniquely reconstruct the signal from the measurement results:
to reconstruct the signal, we have to subtract the (unknown) noise from the measured values;
therefore, several possible signals could be responsible for the same measured values. Which of
these possible signals should we present to the user?

It turned out that in many real-life situations (voice recognition, astronomical and geo-
physical imaging, etc; see, e.g., [2—5, 8, 9]), physical arguments favor the choice of the smoothest
possible signal. In the simplest case of a 1-D signal (i, a signal z(t) that depends on only
one parameter i), the non-smoothness Sc(zr) of a continuous signal z(t) is usually described by
a formula S.(z) = f(&(t))?dt, where & denotes the derivative of the function z (see, e.g., [7]
for one of the possible justifications of this formula).

In reallife computations, we usually only reconstruct the values z; = z(t;) of the signal
on a grid, ie, for the values tg, t; = tg + h,...,tx =to + kh, ..., tn = tp + nh. Therefore, we

© V. Kreinovich, K. Villaverde, 1996

256 V. KREINOVICH, K. VILLAVERDE

need to reformulate the non-smoothness criterion in terms of these finitely many values. The
natural approximation to a derivative is a ratio Az/At = (Ziy1 — ;)/h; therefore, it is natural

to take
n-1

5(z) = 3 (@1 — =)’ (1)
=0
as a measure of non-smoothness of the reconstructed signal (strictly speaking, we should
use S/h% but since we are only interesting in choosing the smoothest signal, and not in
the estimating its non-smoothness, we can afford to simplify the smoothness expression by
multiplying it with a constant A2).

12. Several statistical smoothing algorithms are known

There exist many algorithms for selecting the smoothest signal, and there are many suecessful
applications of these-algorithms (see, e.g., [2—5, 8, 9])). However, practically all these algorithms
are statistical: they are based on the assumption that we know the probabilities of different values
of error.

13. Since we often do not know probabilities, interval smoothing is
necessary

In real life, we often do not know these probabilities, we only know the intervals of possible
values of the errors. As a result, for each 4, we only know the interval x; = [z, ;] of possible
values of the measured quantity x;. The problem is: to find the smoothest sequence g, ..., ZTn
that is consistent with these measurement results {i.e,, for which z; € x; for all i). In this paper,

we will present a new quadratic-time algorithm for solving this problem.

Comment. In order to formulate the problem in precise terms, we must make one more remark.
Usually, when we- start reconstructing the signal, we have the complete record of this signal.
In other words, we know that in one or several first moments of time, there was no signal,
and that in the {one or several) last moments of time, there will also be no signal at all. In
mathematical terms, we assume that Zp = Z, = 0. This assumption is consistent only if 0 € Xp
and 0 € x,, {if these inclusions do not occur, this means that either we stopped measuring too
early, when the signal has not yet passed, or that we started measuring too late, when the
signal was already being sent).
Now, we are ready to formulate the problem and the algorithm.

14. The structure of the paper

The problem itself and the algorithms for solving it will be presented in Section 2. In Section 3,
we illustrate our algorithms on a numerical example. The proof that this aigorithm actually
finds the smoothest signal is given in Section 4. In the last (short) Section 5, we describe the
related open problems.

A QUADRATIC-TIME ALGORITHM FOR SMOOTHING INTERVAL FUNCTIONS 257

2. Definitions and results

21. Description of the problem in precise mathematical terms
Definition 1.

& By an interval measurement result, we mean a sequence of intervals Xg,Xi, ..., Xn~1,Xn such
that 0 € Xg and 0 € x,.

® A sequence Ty, ..., Iy is called a possible signal if To = £, =0 and z; € x; for all i.
e By a non-smoothness S(Z) of a sequence T = (Zo,Z1,...,Tn), we mean a value S() =
(1 = 20)?2 + -+ + (Tigr — Te)? + -+ + (Tp = Tna)?

e By a smoothing of a given interval measurement result, we mean a possible signal £ with
the smallest possible non-smoothness S(Z).

o By an interval smoothing problem, we mean the following problem: given an interval mea-
surement result, to find its smoothing.
Comment. In other words, the interval smoothing problem means the following:
Given: A sequence of intervals x; = [z7, 2], 0 < i < n, for which 0 € xg and 0 € x;,.

To compute: The values zq, .. ., 2, for which zg = z, =0, z; € x;, and 3(z;4; — ;)% — min.

2.2. The main result: quadratic-time smoothing algorithm

Theorem 1. There exists an algorithm that solves the interval smoothing problem in time
O(n?).
Let us describe this algorithm.

Algorithm. This is the recursive algorithm: the smoothing for a given n will be reduced to
smoothings for smaller n.

Recursion base. If n = 1, then we can directly compute the smoothing as 2o = z; = 0.
Recursion step. 1f n > 1, then we do the following:
1) First, we analyze the values z7,...,Z,_; one by one, find the largest of them, and also

find the index M for which this largest value is attained. This can be done by keeping
two variables:

— a real value record that will contain the largest positive value of z; initially, it is
equal to z7'; for every other 1, it is changed to record := max(record, z;"); and

= an integer variable M that is assigned the new value i whenever z; > record.
If 23, > 0, then we take k:= M, 7 1=z, and go to Step 4.

2) If z3; < 0 (ie, if all values of z; are non-positive), then we (similarly to Step 1) analyze
the values z{ one by one; we compute the smallest of such values, and find the index m
for which this smallest value is attained.

258 V. KREINOVICH, K. VILLAVERDE

3) If =z} > @ (ie, if all values z{ are non-pesitive and all values of z] are non-negative),
then we produce z; = 0 for all i as the smoothing and stop. If z}, < 0, then we take
k:=m and z; := zf.

4) On this step, we do the following:

— Solve the smoothing problem (by using the same algorithm] for k instead of n, and
for the intervals y; = x; — xx - {i/k), 0 < i < k. As a result, we will get the values
Y1, -, Yk—1- We compute z; = y; + zx - {(i/k).

— Similarly, we apply the same algerithm to the sequence y; = X; — Z¢ - {n — i) /(n ~ k),
k <1< n. As a result, we will get the values Yr.1, . . ., Yn-1, from which we compute
Ty =Y; + Tk (n -i)/(n—-k).

Comments.

1. The following medification of this algorithm will also work: if x3; > 0, z}, < 0, and
m # M, then we can assign Ty = Zy; and I =z, and the apply the same smoothing
algorithm to three sub-intervals obtained by taking out m and M. This modification may
save some time.

2. If we have several processors working in parallel, then we can further speed up the
computations.

2.3. A parallel smoothing algorithm

If we have n processors pi, ..., p, working in parallel, then we can speed up the computations
in three ways:

e First, when we look for the smallest or the largest of the values z7°, then, instead of
analyzing the values one by one, we can use a known parallel algorithm that finds
maxima and minima of N numbers in time Of{log{N)) (see, e.g., [6]):

— On the first step, we divide N values into N/2 pairs, and compute the maximum of -
each pair; thus, we get N/2 results.

— On the next step, we divide these N/2 results into N/4 pairs, and for each pair, find
the largest of the corresponding maxima; this will give us N/4 results, each of them
is the maximum of four consequent values.

—~ The same “bisection” is to be repeated again and again, o that we are left with
N/8,N/16,...,NJ2°,... values. After s = log(N) steps, we get a single value that is
equal to the desired maximum.

¢ Second, when we reduce the smoothing problem for z;, I < ¢ < n — 1, to solving two
different smoothing problems:
- for z; fori=1,...,k—1, and
- forx; fori=k+1,...,n,
we can solve these two subproblems in parallel, by allecating the processors py, ..., Pe-1 to
solve the first subproblem, and the processors pr+1,...,Pn to solve the second subproblem.

If one or both of the resulting subproblems are subdivided into two sub-subpreblems, we
can parallelize these sub-subproblems, etc.

A QUADRATIC-TIME ALGORITHM FOR SMOOTHING INTERVAL FUNCTIONS 259

s Finally, we can assign the task of computing each value y; = X;—zx+(...) and z; = yi+(..)
to the corresponding processor p;; this, all these computations will be done in constant
time.

As a result of this speed-up, we get the following:

Theorem 2. There exists a parallel algorithm that solves the interval smoothing problem in
time O(nlog(n)) on n processors.

3. Example
3L Input

Let us illustrate our algorithm on the following “wavelike” interval function: xo = [-1,1],
X1 = =3, -1, 2 = [1,3], %0 = 0,2}, x4 = [1,3], x5 = [~3,~1], and x; = [~1,1].

32. Main algorithm

First, we assign 2p = Zs = 0. Since n =6 > 1, we do the following:

First, we compute M for which z;; = maxz;. For these measurement results, M = 2,
and z; =1 > 0. Therefore, according to our algorithm, we assign k = 2, 3 = 1, and go to
Step 4. On Step 4, we assign T3 = 1, and consider the following two sub-problems:

(1) In the first one, we take k = 2, and take y; = x; — (1/2) -z, = x; — 0.5 = [-3.5, —1.5].
For this new problem, y;; = maxy;” = —3.5 < 0, so, we compute ¥}, = miny;'. We get
yr = —1.5 and m = 1. This value y7, is <0, so. we take y; = y{ = —1.5.

Hence, we take 1 = y; + (1/2) - 25 = (—1.5) + 0.5 = ~1.

(2) In the second sub-problem, we have z/(n—k) = 1/4 = 0.25; therefore, y; = [-0.75, 1.25],
¥s = [0.5,2.5], and y5 = [~3.25,~1.25]. Here, y3; = 0.5 > 0 for M = 4, so, we can
take y4 = 0.5. Hence, in the original problem, we take x3 = yy + 0.5 = 1. This second
sub-problem is now subdivided into two sub-subproblems:

(2.1) In the first of them, we have z3 = y3 — (1/2) - 0.5 = [-1,1]; here, zj; < 0 < z;;
therefore, according to Step 3 of our algorithm, as a smoothing, we take z3 = 0.
Hence, y3 = 0+ 0.26 = 0.25, and z3 = 0.25 + 0.75 = 1,

(2.2) For the second sub-subproblem, we have 25 = y5—0.25 = [~2.5, —1.5]. Here, z;; <0,
but z < 0; therefore, we take z5 = 2, = —~1.5.

Hence, y5 = 25 + 0.25 = —1.25, and z5 = y5 + 0.25 = —1.

3.3. The answer

The result of applying the smoothing algorithm to the given signal is zp = 0, z; = -1,
.’B2=I3=I4=1, $5=—1, and $ﬁ=0.

260 V. KREINOVICH, K. VILLAVERDE

34. Parallel algorithm

First, we assign xp = x5 = 0. Since n > 1, we do the following:
First, we compute M for which zj; = maxz;. This is done as follows:

o We compare z7 with 27 on the processor p;, and simultaneously, we compare the values
z3 with z; on the processor p3. The maxima of these pairs are correspondingly zz and
5.

o Next, we compare these maxima z; and zg. These values are equal, so, we can take each
of them as the largest. Let us take the first of them, ie, z;.

e Finally, we compare z; with the only remaining value x7. The largest is z7, so M = 2.

For these measurement results, M = 2, and zj; = 23 = 1 > 0. Therefore, according to
our algorithm, we assign k = 2, 23 = 1, and go to Step 4.

On Step 4, we subdivide the original problem into the following two sub-problems that
will be performed in parallel:

(1) In the first sub-problem, we take k£ = 2, and take y; = x; — (1/2) - 23 = x, — 0.5 =
[-3.5,~1.5]. For this new problem, yy, = maxy; = ~3.5 < 0, so, we compute y =
miny;. We get g, = —1.5 and m = 1. This value g, is < 0, so, we take y; = yf = —1.5.
Hence, we take z; = y; + (1/2) - 22 = (-1.5) + 0.5 = - L.

(2) In the second subproblem, we have z/(n—k) = 1/4 = 0.25; therefore, y3 = [-0.75,1.25],
¥4 = [0.5,2.5], and ys = [~3.25,~1.25]. The computations of these intervals are done
in parallel by processors ps, ps, and ps respectively. Here, y3; = 0.5 > 0 for M = 4, so,
we can take y; = 0.5. Hence, in the original problem, we take z4 = y; + 0.5 = 1. This
second subproblem is now subdivided into two sub-subproblems:

(2.1) In the first of them, we have z3 = y3 — (1/2)- 0.5 = [-1,1]; here, 23y < 0 < z7%;
therefore, for the smoothing, 23 = 0.
Hence, 3 =0+ 0.25 =025, and 2; =025+ 0.75 = 1.

(2.2) For the second sub-subproblem, we have z; = y5—0.25 = [~2.5, —1.5]. Here, 23y <0,
but z}; < 0; therefore, we take z5 = 27 = —1.5.
Hence, y5 = 25 + 0.25 = —1.25, and z5 = y5 + 0.25 = ~1.

As a result, we get the same smoothing.

4, Proofs

41. Proof that a smoothing always exists

1°. Let us first show that a smoothing always exists.

Indeed, in solving a smoothing problem, we find the minimum of a continuous function
S(Z) on a compact {0} X X1 X +++ X Xn-1 X {0}; therefore, this minimum is always attained,
i.e, the smoothing always exists.

A QUADRATIC-TIME ALGORITHM FOR SMOOTHING INTERVAL FUNCTIONS 261
42. Proof of the algorithm's correctness

2°. Let us show that if all the values z; are non-positive, and all the values z; are non-negative,
then z; = 0 is the smoothing.

Indeed, the non-smoothness is always non-negative, and the only way for it to be equal to
0 is when z;.y —2; =0 for all ¢, ie, when g =23 =--- =2, = 0. In this case, z; =0 is a
possible vector, so it has the smallest possible value of S and is, therefore, a smoothing.

3°. Let us show that if the value z; = maxz; is positive, then for the smoothing z;, we have
Iy =Tp.

We will prove this statement by reduction to a contradiction. Indeed, suppose that for
a smoothing z;, we have zx # zi. Since z; is a smoothing and therefore, a possible signal,
we have i € [z, z{]; since zx # z, we can conclude that z; > z;. Let us now consider
a new signal y; = min(z;, 25). We will show that this is also a possible signal, and that this
new possible signal is smoother than £: S(§) < S(Z). This conclusion will contradict to the
assumption that Z is a smoothing, i.e., the smoothest possibie signal.

3.1°. Let us prove that § is a possible signal.

We assumed that z; is a possible vector, ie., that £y = z, = {, and x; € ;. Let us show
that the same properties are true for y;.

For i = 0, we have z; = 0, and hence, yp = min(0,z;) = 0. Similarly, y, = 0.

If z; < zi;, then y; = min(z;, z;) = z;, hence, ¥; = z; € X;.

If z; >z, then we have y; = z;. Since zj = max; z;, we conclude that y; =z 2 z; .
On the other hand, y; < z; < z}. Hence, y; € [z7,2]] = x;.

3.2°. Let us show that S(7) < S(&).

For each three real numbers a, b, and ¢, we have (min{a, ¢) — min(b, ¢))* < (b —c)? (this
inequality can be easily proven if we consider all possible orderings of three numbers a, b, and
c). As a result, for a = z;, b = z;4;, and ¢ = zf, we conclude that (y; — ¥i1)? < (Ti — Tig1)?
for all i. Adding these inequalities for all 7, we conclude that S(7) < S(Z).

3.3°. To complete our reduction to a contradiction, we must show that S(§) < S(Z).

Indeed, for i = 0, we have zy < zi; for i = k, we have zx > z;. Therefore, there
must exist the first value ¢ for which z; < zf and z;.; > 7. For this ¢, we have ; < ;3.
According to our definition of i, we have y; = x; and ¥;4;1 = 7 2 ;. Therefore, subtracting
z; from both sides of the inequality z; < Ti+1, we conclude that 0 < zp — x; < Z;43 — i, or,
that 0 < yi41 — ¥ < Tip1 — Ti. Hence, (Yi1 — %)% < (zix1 — 2:)%. Since for every other j, we
have (y;41 — y;)? < (241 — z5)%, we conclude that S(§) < S(Z).

This conclusion, as we have already mentioned contradicts to our assumption that Z is a
smoothing. This contradiction proves that for a smoothing, z; = .

4°. We have found the k-th component of the smoothing. To find all other components,
we must minimize the expression that we get by substituting zy into S(Z). This expression
can be represented as the sum of the two parts: S(Z) = S_(Z) + S4(&), where S.(%) =
(1~ z0)2 + - + (zk — 2k-1)? and S(F) = (Tera — Te)? + +++ + (Tn — Tn-1)?. These two
components of the objective function S depend on disjoint sets of variables: S_ depends on
T3;-..,Tk-1, and ST depends on Zyyy,...,ZTn-3. Therefore, to minimize non-smoothness S,
we must separately minimize S_ and S..

262 V.KREINOVICH, K.VILLAVERDE

5°. The problem S_(zo,zy,. .., Tk~1, Tx) — min is similar to the smoothing problem, with the
only difference that for the smoothing problem, the last value z, is known to be 0, while for
this problem, the last value z, is also known, but its known value is positive.

To reduce this problem to the smoothing one, we will use the new variables described in
the algorithm: y; = z; — i - (i/k). For these new variables, we have 3; € y; and 3 = 3 = 0.
Let us describe S_ in terms of y;.

In terms of these variables, z; = y;+zk- (i/k), and therefore, Ziy1 — ;i = (Yit1— %) +Zx/k.
Hence,

(@is1 = 7:)2 = (w1 — 3)* + (@a/ k) + 2(zk/) (Yir1 — 1)

and so, we can represent S_ as the sum of the three components:

S.= Z(xﬂ-l - -’l"i)2 = Z(yi+1 - yi)2 + E(-’Eﬁc/k)2 + 22($k/k)(yi+1 - ¥)-

The last component of S_ is equal to 2(zx/k) L(vis1 — %) = 2(z%/k)(ye — %) = 0. The
second component of S_ is a constant (k - (zx/k)?* = (zx)?/k) that does not depend on y; at
all. Therefore, S- — min iff 3(yi41 — 3)? — min.

This equivalence, together with the similarly proved equivalences for S, and for the case
when we choose k based on z;, justifies the recursion described in the algorithm.

So, the above-described algorithm indeed computes the smoothing of a given signal. [J

43. Proof that the algorithm is quadratic-time

6°. To complete the proof of Theorem 1, we must show that our algorithm requires quadratic
time,

To estimate the total number of computational steps in this algorithm, let us combine all
the operations described in the algorithm before and after the recursive calls into a first level.
The procedure of the first level calls the same algorithm twice. All the computational steps in
these calls will be counted as the second level. These algorithms may also call the same algorithm
recursively; thus, we get the third level, etc.

In the first level, for each i from 1 to n —~ 1, we apply at most eight computational steps:

e one, when we compare the value record with z; when finding the largest of z;7;
e one (maybe) when we compare record with z7 to find the smallest of z";
e at most six to compute the bounds of the interval y;:
~ four, when we compute two bounds of an interval
Yi =i — 2y - (i/k)

first, we compute i - (i/k) (one division and one muitiplication), and then subtract
the result from both bounds (two subtractions};

— six, when we compute two bounds of an interval
Yi =%~z - (n—i)/(n— k)

first, we compute 7y - (n — i)/(n — k) (two subtractions, one division and one multi-
plication), and then subtract the result from both bounds (two subtractions);

A QUADRATIC-TIME ALGORITHM FOR SMOOTHING INTERVAL FUNCTIONS 263

s one, when we {after the recursive call) reconstruct z; from y;: we just add to y; the
previously computed value zi - (i/k) or zg - (n —i)/(n — k).

Totally, we need < 8(n — 1) computational steps for this level. The second level consists of
similar computations, but applied to two different problems; so, on this second level, we need
< 8(k—1) computational steps to solve the first problem (with ¢ from 1 to k), and < 8(n—k—1)
computational steps to solve the second problem {with ¢ from k to n). As a result, we totally
need < 8(n — 2) computational steps.

This reduction in the number of computational steps is caused by the fact that we have
found one value (z), and we thus have one less value to consider. On each following level, we
have at least one fewer value to consider. Initially, we had n—1 unknown values, and on each
level, the number of unknown values decreases by 1. Therefore, we can have at most n — 1
levels. On the first level, we use < 8(n — 1) steps; on the second level, we use < 8(n — 2),
etc. Totally, we use < 8[(n~ 1)+ (n—2)+--- + 1] = 8(n — 1)n/2 < 4n? computational steps.
Theorem 1 is proven. a

44. Proof that the parallel algorithm takes O(nlog(n)) time

7°. Let us prove that the parallel algorithm described above takes O(nlog(n)) time.

Indeed, as we have mentioned above, on each level, the main time-consuming operation
is computing the maximum of N elements; all the other operations take constant time (if
implemented in parallel). Therefore, on each level, the total computation time is O(log(N)),
ie, € Clog(N) for some constant C > 0.

¢ On the first level, we find the maximum of n—1 elements, so, we need time < Clog(n—1).

o On the second level, as we have shown in 6°, we process < 7 — 2 elements in each
subproblem, and therefore, the required time is < C'log(n — 2),

® etc.
Totally, we need time
< Cln-1)+C(n-2)+---+C-1
= Cllog(n — 1)+ log(n — 2} + - - - + log(1)] = Clog|(n — 1)!].

It is known that log(n!) = O(nlog(n)) (see, e.g., [1]), therefore, our parallel algorithm
takes time O{nlog(n)). Theorem 2 is proven. 0

5. Open problems

¢ Is it possible to design a linear-time algorithm for smoothing an interval function? a
logarithmic-time parallel algorithm?

¢ The measure of non-smoothness (1) described above corresponds to the non-smoothness
functional Sy(z) = [(z(t))?dt that uses only the first derivative of the function. In some
problems, it is more natural to use other smoothing functionals, that use second (and/or
higher) order derivatives [2—5, 8, 9], e.g., functionals of the type

S.(z) = a; / (#®)" dt + a2 / (30) at

264 V. KREINOVICH, K.VILLAVERDE

that correspond to

n-1 n-1
SEF) = A1+ Y (Zipa —) + A1 D (Tier = 23 + Tia).
=0 fe=1

It is desirable to construct similar smoothing algorithms for such more general smoothing
functionals, especially the functionals that use the second derivative of the signal.

Acknowledgments

This work was supported by NSF Grants No. CDA-9015006 and EEC~9322370, and by NASA
Grant No. NAG 9-757. The authors are thankful to Slava Nesterov and to the anonymous
referees for valuable suggestions.

References

[1] Cormen, Th. H., Leiserson, C. E, and Rivest, R. L. Introduction to algorithms. MIT Press,
Cambridge, MA, and Mc-Graw Hill Co,, N.Y,, 1990.

[2] Glasko, V. B. Inverse problems of mathematical physics. American Institute of Physics, N.Y., 1984.

[3] Inverse problems. SIAM—AMS Proceedings 14, American Mathematical Society, Providence,
RI, 1983.

[4] Inverse problems. Birkhauser Verlag, Basel, 1986.

[5] Inverse problems. Lecture Notes in Mathematics 1225, Springer-Verlag, Berlin—Heidelberg,
1986.

[6] J4j4, J. An introduction to parailel algorithms. Addison-Wesley, Reading, MA, 1992.

[T Kreinovich, V., Quintana, C, Lea, R,, Fuentes, O., Lokshin, A., Kumar, S., Boricheva, I, and
Reznik, L. What non-linearity to choose? Mathematical foundations of fuzzy control. In: “Proceedings
of the 1992 International Conference on Fuzzy Systems and Inteiligent Control”, Louisville,
KY, 1992, pp. 349-412.

[8] Lavrentiev, M. M., Romanov, V. G,, and Shishatskii. S. P. Ill-posed problems of mathematical
physics and analysis. American Mathematical Society, Providence, R1, 1986.

[9] Tikhonov, A. N. and Arsenin, V. Y. Solutions of ill-posed problems. V. H. Winston & Sons,
Washington, DC, 1977.

Received: August 14, 1995 V. Kremovicn
Revised version: February 6, 1996 Department of Computer Science
University of Texas at El Paso

El Pase, TX 79968, USA

E-Mail: vladik@cs.utep.edu

Karen VILLAvVERDE

Systems Engineering, BNR

P.O. Box 833871 M/S DO~207
Richardson, TX 75083—3871, USA
E-mail: villag@bnr.ca

