
Reliable Computing 2 (3) (1996), pp. 255 -264

A quadratic-time algorithm for smoothing
interval functions
VLADIK KREINOVICH and KAREN VILLAVERDE

In many real-life applications, physical considerations lead to the necessity m omsider the smtx~thest ~ff all
signals that is confistent with the measurement results. Usually, the corresponding optimization problem
is solved in statistical context. In this paper, we prolmse a quadratic-time algorithm fiw sm~a~thing an
h~rotd function. This algorithm, given n + 1 intervals xo, . . . ,xn with 0 E x0 and 0 6 xa, returns the
vector a:0,..., :r,~ for which z0 = z . = 0, :ri 6 xi, and ~"~.(xi+~. - xl) ~ - , rain.

AAr0p TM c KBaApaT IHbIM BpeMeHeM
BbIIIOAHeHI4 I AA, I cFAa)KIIBaHI4
la}ITepBaAbHblX yHK Ifl
B. KPmHOB~q, K. Bi, IAAABEPAE

]~) MHOrHX rlpaKTHqeCKHX IIpIUIo;KeHiI.qX H3 (J:)H311tlCCKHX C(x}~pa~KeHlll:! T~:~yErc.q HaI~ITH C~IMyI() FJI;121KyK)
H3 Bcex CHTHadl]bHbIX C[~yHKIIHI~, COBMeCTHMyto C .RaHHMMH H3MepeHHlYL KaK llpaBH.,'lO, CiXITBe'rCTByX)ILIa~q
3aaa,~a OIITHMH3aUHH pemaerca craT~ICr]tqecX}iM bleTo/laMH. B pa6c~xe npeaa'araerc~ a.rlrt)pHTM c Klm-
.~lpaTH~tlmM BpeMeHeM Br~noatleHtt~, ¢~T.'la.~.HBaK~mHfi motte~tbu3no dpyHKUHXL l-hmy~Hg Ha Bxoae ft + 1

ZmTepBaaOB X0,...,Xn, rae 0 E x0 x 0 E Xn, a.rlropttTM t~3epamaeT BeKTop X0,..., :r,~. aas KovOl~ro
z0 = x,~ = 0, x i E x~ . ~ (x ~ + t - z i) 2 -', min.

1. Motivations
1.1. Smoothing is important
In engineering, astronomy, geophysics, etc., transmitted signals and/or images are "corrupted ~
by noise; this "noise" includes the unpredictable additions from other sources as well as the
changes in the signal that are due to the imperfection of the measuring instrument. As a result
of this "corruption," we cannot uniquely reconstruct the signal from the measurement results:
to reconstruct the signal, we have to subtract the (unknown) noise from the measured values;
therefore, several possible signals could be responsible for the same measured values. Which of
these possible signals should we present to the user?

It turned out that in many real-life situations (voice recognition, astronomical and geo-
physical imaging, etc.; see, e.g., [2-5 , 8, 9]), physical arguments favor the choice of the smoothest
possible signal. In the simplest case of a 1 - D signal (i.e., a signal x(t) that depends on only
one parameter t), the non-smoothness S~(x) of a continuous signal x(t) is usually described by
a formula So(z) = f(d~It)) ~ dt, where :~ denotes the derivative of the function :r (see, e.g., [7]
for one of the possible justifications of this formula).

In real-life computations, we usually only reconstruct the values zi = x(t i) of the signal
on a grid, i.e., for the values to, tl = to + h , . . . , tk = to + k h , . . . , tn = to + nh. Therefore, we

@ V. Kreinovich, K. Villaverde, t996

256 V. KREINOVICH t K. VILLAVERDE

need to reformulate the non-smoothness criterion in terms of these finitely many values. The
natural approximation to a derivative is a ratio A x / A t = (z i + l - :ri)//z; therefore, it is natural
to take

s(~) = ~(x,+~ - x,) ~ O)
/=0

as a measure of non-smoothness of the reconstructed signal (stricdy speaking, we should
use S /h 2, but since we are only interesting in choosing the smoothest signal, and not in
the estimating its non-smoothness, we can afford to simplify the smoothness expression by
multiplying it with a constant/z2).

1.2. Several statistical smoothing algorithms are known
There exist many algorithms for selecting the smoothest signal, and there are many successful
applications of these.algorithms (see, e.g., [2-5, 8, 9]). However, practically all these algorithms
are statistical: they are based on the assumption that we know the pr0ba/n/~/es of different values
of error.

1.3. Since we often do not know probabilities, interval smoothing is
n e c e s s a r y

In real life, we often do not know these probabilities, we only know the /r~erva/s of possible
values of the errors. As a result, for each i, we only know the interval x~ = [x~-, x +] of possible
values of the measured quantity zi. The problem is: to find the smoothest sequence x0 , . . . , z,,
that is consistent with these measurement results (i.e., for which xi E xi for all {). In this paper,
we will present a new quadratic-time algorithm for solving this problem.

Comment. In order to formulate the problem in precise terms, we must make one more remark.
Usually, when we start reconstructing the signal, we have the complete record of this signal.
In other words, we know that in one or several first moments of time, there was no signal,
and that in the (one or several) fast moments o f time, there will also be no signal at all. In
mathematical terms, we assume that x0 = z,, = 0. This assumption is consistent only if 0 E x0
and 0 E x,, (if these inclusions do not occur, this means that eit'her we stopped measuring too
early, when the signal has not yet passed, or that we started measuring too late, when the
signal was already being sent).

Now, we are ready to formulate the problem and the algorithm.

1.4. The structure of the paper
The problem itself and the algorithms for solving it will be presented in Section 2. In Section 8,
we illustrate our algorithms on a numerical example. The proof that this algorithm actually
finds the smoothest signal is given in Section 4. In the last (short) Section 5, we describe the
related open problems.

A QUADRATIC-TIME ALGORITHM FOR SMOOTHING INTERVAL FUNCTIONS 9.57

2. Definitions and results

2.t . Description of the problem in predse mathematical terms
D e f i n i t i o n 1 .

• By an interxnl measureraent result, we mean a sequence o f intervals Xo, X l , . . . , X n - l , X ~ such
that 0 6 Xo and 0 6 Xn.

• A sequence z o , . . . , xn is called a possible signal i f Xo = x , = 0 and xi E x i for all i.

• By a non-smoothness S(.~) o f a sequence :~ = (Zo, Z l , . . . , z , ~) , we mean a value S (x ~) =

(xt - xo) ~ + . . . + (~+, - ~)~ +.. . + (~ - z,-~) 2

• B 7 a smoothing o f a given interval measurement result, we mean a possible signal E with
the smallest possible non-smoothness S(E) .

• B 7 an interval smoothing problem, we mean the following problem: given an interval mea-
surement result, to f ind its smoothing.

Comment. In other words, the interval smoothing problem means the following:

Given: h sequence of intervals xi = [x~-, x~'], 0 < i < n, for which 0 E x0 and 0 E xn.

To compute: T h e values xo , xn for which :2:o = zn = 0, zi E xi, and ~ (x i + l - zi) 2 ~ min.

22. The main restflt: quadratic-time smoothing algorithm
Theorem L There exists an algorithm that solves the interval smoothing problem in t /me
O(n~).

Let us describe this algorithm.

Algori thm, This is the recursive algorithm: the smoothing for a given n will be reduced to
smoothings for smaller n.

Recursion base. I f n = 1, then we can directly compute the smoothing as z0 = :rl = 0.

P~cursion step. I f n > 1, then we do the following:

1) First, we analyze the values : r t , . . . , z ~ ' _ 1 one by one, find the largest o f them, and als5
find the index M for which this largest value is attained. This can be done by keeping
two variables:

- a real value r e c o r d that wilt contain the largest positive value of :r~'; initially, it is
equal to x~'; for every other i, it is changed to r e c o r d := m a x (r e c o r d , z~'); and

- an integer variable M that is assigned the new value i whenever x~- > r e c o r d .

I f x ~ > 0, then we take k := M , :rk := z~-, and go to Step 4.

2) I f x~t < 0 (i.e., if all values of x~" are non-positive), then we (similarly to Step 1) analyze
the values x + one by one; we compute the smallest o f such values, and find the index m
for which this smallest value is attained.

258 V. KRFINOVICH, K. VtLLAVERDE

3) If Z + _> 0 (i.e., if all values x~- are non-positive and all values of z?" are non-negative),
then we produce xi = 0 for all i as the smoothing and stop. If z + < 0, then we take
k := rn and xk := x~'.

4) On this step, we do the following:

- Solve the smoothing problem (by using the same algorithm) for k instead of n, and
for the intervals Yi = xi - x k " (i / k) , 0 < { < k. As a result, we will get the values
~h , . . . , Yk-1. We compute x~ = Yt + Zk" (i / k) .

-- Similarly, we apply the same algorithm to the sequence Yi = x i - x k . (n - i) / (n - k),
k < i < n. As a result, we will get the values Va+l,...,Yn-1, from which we compute

= + z k . (n - i) l (n - k) .

Comraents.

t. The following modification of this algorithm will also work: if x~r > 0, x + < 0, and
ra # M, then we can assign x m = x~t and xm = x +, and the apply the same smoothing
algorithm to three sub-intervah obtained by taking out ra and M. This modification may
save some time.

2. If we have several processors working in parallel, then we can further speed up the
computations.

2.3. A parallel smoothing algorithm
If we have n processors P t , . . . ,P,~ working in parallel, then we can speed up the computations
in three ways:

• First, when we look for the smalIest or the largest of the values x~, then, instead of
analyzing the values one by one, we can use a known parallel algorithm that finds
maxima and minima of N numbers in time O(Iog(N)) (see, e.g., [6]):

- - On the first step, we divide N values into N / 2 pairs, and compute the maximum o f
each pair; thus, we get N / 2 results.

- On the next step, we divide these N / 2 results into N / 4 pairs, and for each pair, find
the largest of the corresponding maxima; this will give us N / 4 results, each of them
is the maximum of four consequent values.

- The same "bisection ~ is to be repeated again and again, no that we are left with
N / 8 , N / t 6 , . . . , N / 2 s , . . . values. After s ,.m log(N) steps, we get a single value that is
equal to the desired maximum.

i Second, when we reduce the smoothing problem for xi, t < i < n - 1, to solving two

different smoothing problems:

- for xi for i = t , . . . , k - 1, and

- for xi for / = k + I , . . . , n ,

we can solve these two subproblems in parallel, by allocating the processors P x , . . . , P k - 1 to
solve the first subproblem, and the processors Pk+b . . . ,Pn to solve the second subproblem.

If one or both of the resulting subproblems are subdivided into two sub-subproblems, we
can parallelize these sub-subproblems, etc.

A QUADRATIC-TIME ALGORITHM FOR SMOOTHING INTERVAL FUNCTIONS 259

* Finally, we can assign the task of comput ing each value Yi = x i - z k . (. . .) and xi = Yi+(. . .)
to the corresponding processor Pi; this, all these computat ions will be done in constant

time.

As a result of this speed-up, we get the following:

Theorem 2. There exists a parallel algorithm that soh, es the interval smoothing problem in
time O(n log(n)) on n processors.

3. Example
3.1. Input
Let us illustrate our a lgor i thm on the following "wavelike" interval function: x0 = [- 1 , 1],

x l = [- 3 , -11, x2 = [1, 3], x s = [0, 21, x4 = [1, 31, x5 = [- 3 , -11 , and x6 = [- 1 , 11.

3.2. Main algorithm
First. we assign Xo = xa = 0. Since n = 6 > 1, we do the following:

First, we compute M for which x~t = maxx~ ' . For these measurement results, M = 2,

and x~- = 1 > 0. Therefore , according to our a lgori thm, we assign k = 2, z2 = 1, and go to

Step 4. On Step 4, we assign x2 = 1, and consider the following two sub-problems:

(1) In the first one, we take k = 2, and take Yl = Xl - (1 /2) "x2 = Xl - 0.5 = [-3 .5 , -1 .5] .

For this new problem, YM = m a x y ~ = --3.5 < 0, so, we compute y+ = r a i n y +. We get

y,~ = - 1 . 5 and m = 1. This value y ~ is < 0, so, we take Yl = Y~" = - 1 . 5 .

Hence, we take x l = Yl + (1 / 2) - x2 = (- 1 . 5) + 0.5 = - 1 .

(2) In the second sub-problem, we have xk / (n- -k) = 1/4 = 0.25; therefore, Y3 = [-0 .75 , 1.25],

Y4 = [0.5,2.5], and Y5 = [- 3 . 2 5 , - 1 . 2 5 1 . Here, YM = 0.5 > 0 for M = 4, so, we can
take Y4 = 0.5. Hence, in the original problem, we take x4 = Y4 + 0.5 = 1. This second
sub-problem is now subdivided into two sub-subproblems:

(2.1) In the first of them, we have zs = Y3 - (1 / 2) - 0 . 5 = [-1 , 1]; here, z ; t < 0 < z+;
therefore, according to Step 3 of our a lgori thm, as a smoothing, we take z3 = 0.

Hence, Y3 -- 0 + 0.25 = 0.25, and x3 = 0.25 + 0.75 = 1.

(2.2) For the second suh-subproblem, we have z5 = y a - 0 . 2 5 = [- 2 . 5 , - 1 . 5] . Here, z M < 0,

" + - 1 . 5 . but z m < 0; therefore, we take z5 -- zrn =

Hence,/ /5 = zs + 0.25 = - 1 . 2 5 , and xs = Ys + 0.25 = - 1 .

3.3. The answer
T h e result of applying the smoothing a lgor i thm to the given signal is x0 = 0, x l = - 1 ,

x 2 = x s = x 4 = l , x s = - l , a n d x 6 = 0 .

260 V. KREINOVICH, K. VILLAVERDE

3.4. Parallel algorithm
First, we assign :Co = x6 = 0. Since n > 1, we do the following:

First, we compute M for which x~4 = maxx~-. This is done as follows:

• We compare x i" with x~ on the processor Pl, and simultaneously, we compare the values
x~" with x~ on the processor /~ . The maxima of these pairs are correspondingly x~ and

• Next, we compare these maxima x~" and x 4. These values are equal, so, we can take each
of them as the largest. Let us take the first of them, i.e., x~'.

• Finally, we compare x~" with the only remaining value x~'. The largest is x~, so M = 2.

For these measurement remits, M = 2, and x~¢ = x~- = 1 > 0. Therefore, according to
our algorithm, we assign k = 2, x2 = 1, and go to Step 4.

On Step 4, we subdivide the original problem into the following two sub-problems that
will be performed in parallel:

(1) In the first sub-problem, we take k = 2, and take Yl = 'xt - (1/2) • x2 = x l - 0.5 =
[- 3 . 5 , - 1 . 5] . For this new problem, y~,/ = maxy;" = - 3 . 5 < 0, so, we compute y~ =
r a iny +. We get y+ = - 1 . 5 and rn = t. This value y+ is < 0, so, we take Yl = Y~+ = -1 .5 .

Hence, we take xt = Yl + (t / 2) . xu = (- 1 . 5) + 0 . 5 = - 1 .

(2) In the second subproblem, we have x~/(n-k) = 1/4 = 0.25; therefore, Y3 = [-0 .75 , 1.25],
Y4 = [0.5,2.5], and Ys = [- 3 . 2 5 , - 1 . 2 5] . The computations of these intervals are done
in parallel by processors P3, P4, and Ps respectively. Here, y ~ = 0.5 > 0 for M = 4, so,
we can take Y4 = 0.5. Hence, in the original problem, we take x4 = Y4 + 0.5 = 1. This
second subprobtem is now subdivided into two sub-mbproblems:

(2.1) In the first of them, we have z3 = Y3 - (1 /2) - 0.5 = [-1 , t]; here, z ~ < 0 < z~n;
therefore, for the smoothing, zs = 0.

Hence, y~ = 0 + 0.25 = 0.25, and x3 = 0.25 + 0.75 = 1.

(2.2) For the second sub-subproblem, we have zs = Y s - 0 . 2 5 = [- 2 . 5 , - 1 . 5] . Here, z ~ < 0,

but z + < 0; therefore, we take z5 = z + = -1 .5 .

Hence, Ys = z5 + 0.25 = - 1 . 2 5 , and x5 = Y5 + 0.25 = - 1 .

As a result, we get the same smoothing.

4. Proofs

4.1. Proof that a smoothing alwafs exists
1 °. Let us first show that a smoothing always exists.

Indeed, in solving a smoothing problem, we find the minimum o f a continuous function
S(ff) on a compact {0} x x l x . . - x xn-~ x {0}; therefore, this minimum is always attained,

i.e., the smoothing always exists.

A QUADRATIC-TIME ALGORITHM FOR SMOOTHING INTERVAL FUNCTIONS 261

4.2. Proof of the algorithm's correctness
2 °. Let us show that if all the values x~" are non-positive, and all the values x + are non-negative,
then xi = 0 is the smoothing.

Indeed, the non-smoothness .is always non-negative, and the only way for it to be equal to
0 is when xi+l - zi = 0 for all i, i.e., when x0 = xl xn = 0. tn this case, x l = 0 is a
possible vector, so it has the smallest possible value of S and is, therefore, a smoothing.

3 °. Let us show that if the value z~ = maxz~- is positive, then for the smoothing z i , we have

Xk = X k .

We will prove this statement by reduction to a contradiction. Indeed, suppose that for
a smoothing xi , we have xk # x k. Since xi is a smoothing and therefore, a possible signal,
we have xk e [x; , x~-]; since xk # x~', we can conclude that xk > x~'. Let us now consider
a new signal Yi = min(xi , x~) . We will show that this is also a possible signal, and that this
new possible signal is smoother than ~: S(y~ < S(:~). This conclusion will contradict to the
assumption that ~ is a smoothing, i.e., the smoothest possible signal.

3.1 °. Let us prove that ~ is a possible signal.

We assumed that x l is a possible vector, i.e., that x0 = xn --" 0, and xi E x.i. Let us show
that the same properties are t rue for Yl-

For i - 0, we have xi = O, and hence, Y0 = min(0, x~) - 0. Similarly, Yn -- O.

t f xi <_ x'~, then yi = min(xi , x~') = xl, hence, Yi = x i E x i .

I f xi > x~, then we have yi = x~'. Since xg = m a x j x~', we conclude that Yi = x'~ ~ x.'(.

On the other hand, Yi < x i <_ x +. Hence, Yi e [z~, x +] = x~.

3.2 °. Let us show that S(y') < S(x-').

For each three real numbers a, b, and e, we have (min(a, c) - rain(b, c)) 2 < (b - c) 2 (this
inequality can be easily proven if we consider all possible orderings of three numbers a, b, and
c). As a result, for a = zi, b = z~+l, and c = x~', we conclude that (Yi - Yi+l) 2 _< (zl - z i+l) 2
for all i. Adding these inequalities for all i, we conclude that S(y") _< S(x-').

3.3 °. To complete our reduction to a contradiction, we must show that S(y-') < S(23).

Indeed, for i = 0, we have :co < z~-; for i = k, we have xk > x~'. Therefore , there
must exist the first value i for which xi <_ z~" and Xi+l > x~-. For this i, we have xi < z i+t .

According to our definition of i, we have Vi = zi and Yi+t = z~" > xi. Therefore , subtracting
xi f rom both sides of the inequality x~" < Xi+l, we conclude that 0 < z~" - zi < zi+t - xi, or,
that 0 _< Y~+I - Yl < x~+t - xi. Hence, (Yi+l - Yi) 2 < (xi+l - x i) 2. Since for every other j , we
have (Yj+l - yj)2 <_ (x j+t - x j) 2, we conclude that S(y-') < S(:~).

This conclusion, as we have already ment ioned contradicts to our assumption that a~ is a
smoothing. This contradiction proves that for a smoothing, x/¢ = x ; .

4 °. We have found the k-th component of the smoothing. T o find all other components,
we must minimize the expression that we get by substituting xa into S(a3). This expression
can be represented as the sum of the two parts: S(~) = S _ (~) + S+(a~), where ~q_(~) =
(x l - xo) 2 + ' " + (x,~ - x k _ t) 2 and S+(.f f) = (xk+~t - xk) = + " ' + (x, , - x , _ l) 2. These two
components of the objective function S depend on disjoint sets of variables: S_ depends on
x ~ . . . , x ~ _ ~ , and S + depends on x~+~, . . . ,x , ,_~. Therefore , to minimize non-smoothness S,
we must separately minimize 5'_ and 5'+.

262 V. KREINOVICHt K. VILLAVERDE

5 °. The problem S - (x o , x l , . . . , Xk-1, X~) -* min is similar to the smoothing problem, with the
only difference that for the smoothing problem, the last value xn is known to be 0, while for
this problem, the last value xa is also known, but its known value is positive.

To reduce this problem to the smoothing one, we will use the new variables described in
the algorithm: Yi = xi - xk" (i / k) . For these new variables, we have Yi ff Yi and Y0 = yt¢ = 0.
Let us describe S_ in terms of Yi-

In terms of these variables, xi = Yl + x k . (i l k) , and therefore, x i + l - x i = (Yi+1- Yi)+xk/k.
Hence,

(~,+1 - ~)~ = (y,+~ - y~)~ + (~ /k) ~ + 2(~/k)(y~+~ - y~)

and so, we can represent S_ as the sum of the three components:

s_ = 5":(~,+~- ~,)== ~:(y,+,- y,)~ + 5-:(~dk) ~ + ~ 2(~/~)(y,+~- y,).

The last component of S_ is equal to 2(xk/k)E(Yi+I - Yi) = 2 (x k / k) (y k -- Yo) = O. T h e
second component of S_ is a constant (k . (x k / k) 2 = (x~)2 /k) that does not depend on Yi at
all. Therefore, S - ~ rain iff ~ (y i + l - yi) 2 ~ rain.

This equivalence, together with the similarly proved equivalences for $4- and for the case
when we choose k based on x~, justifies the recursion described in the algorithm.

So, the above-described algorithm indeed computes the smoothing o f a given signal. 1"]

4.3. Proof that the a lgor i thm is quadratic-t ime

6 ° . To complete the proof of Theorem 1, we must show that our algorithm requires quadratic
time.

To estimate the total number of computational steps in this algorithm, let us combine all
the operations described in the algorithm before and after the recursive calls into a firs~ level.

The procedure of the first level calls the same algorithm twice. All the computational steps in
these calls will be counted as the second level. T h e s e algorithms may also call the same algorithm
recursively; thus, we get the third level, etc.

In the first level, for each i from i to n - 1, we apply at most eight computational steps:

• one, when we compare the value r e c o r d with z~- when finding the largest of z~-;

• one (maybe) when we compare r e c o r d with x + to find the smallest of x~-;

• at most six to compute the bounds of the interval Yi:

- four, when we compute two bounds of an interval

y, = x, - xk. (i /k)

first, we compute x k " (i / k) (one division and one multiplication), and then subtract
the result from both bounds (two subtractions);

- six, when we compute two bounds of an interval

Yi = Yq - xk " (n - i) / (n - k)

first, we compute x k " (n - i) / (n - k) (two subtractions, one division and one multi-
plication), and then subtract the result from both bounds (two subtractions);

A QUADRATIC-TIME ALGORITHM FOR SMOOTHING INTERVAL FUNCTIONS 2 6 3

• one, when we (after the recursive call) reconstruct ah from Yi: we just add to Yi the
previously computed value zk . (i/k) or zk" (n - i) / (n - k).

Totally, we need _< 8 (n - 1) computational steps for this level. The second level consists of
similar computations, but applied to two different problems; so, on this second level, we need
_< 8 (k - 1) computational steps to solve the first problem (with i from 1 to k), and _< 8 (n - k - l)
computational steps to solve the second problem (with i from k to n). As a result, we totally
need < 8(n - 2) computational steps.

This reduction in the number of computational steps is caused by the fact that we have
found one value (z~), and we thus have one less value to consider. On each following level, we
have at least one fewer value to consider. Initially, we had n - 1 unknown values, and on each
level, the number of unknown values decreases by 1. Therefore , we can have at most n - 1
levels. On the first level, we use < 8(n - 1) steps; on the second level, we use < 8(n - 2),
etc. Totally, we use < 8[(n - 1) + (n - 2) + - . - + 1] = 8(n - 1)n/2 < 4n 2 computational steps.
Theorem I is proven. []

4.4. Proof that the parallel algorithm takes O(nlog(n)) time
7 °. Let us prove that the parallel algorithm described above takes O(nlog(n)) time.

Indeed, as we have mentioned above, on each level, the main time-consuming operation
is computing the maximum of N elements; all the other operations take constant time (if
implemented in parallel). Therefore, on each level, the total computation time is O(log(N)) ,
i.e., _< C log(N) for some constant C > 0.

• On the first level, we find the maximum of n - 1 elements, so, we need time _< C l o g (n - I) .

• On the second level, as we have shown in 6 °, we process _< n - 2 elements in each
subproblem, and therefore, the required time is _< C l o g (n - 2),

• etc.

Totally, we need time

<_

= C[log(n - 1) + log(n - 2) + . - - + log(l)] = Clog[(n - 1)!].

It is known that log(n!) = O(nlog(n)) (see, e.g., [1]), therefore, our parallel algorithm
takes time O(nlog(r~)). Theorem 2 is proven. []

5. Open problems
• Is it possible to design a linear4ime algorithm for smoothing an interval function? a

logarithmic-time parallel algorithm?

• T h e measure of non-smoothness (1) described above corresponds to the non-smoothness
functional So(z) = f(Sz(t))2dt that uses only the first derivative of the function. In some
problems, it is more natural to use other smoothing functionals, that use second (and/or
higher) order derivatives [2-5 , 8, 9], e.g., functionals of the type

264 V. KREINOVICH, K. VILLAVERDE

that correspond to
n - I n -1

8(£) = ax. E (x , + l - z,) ~ + At. ~'~(x,_,- 2x,+ x,+l)'.
i=O i=l

It is desirable to construct similar smoothing algorithms for such more general smoothing
functionals, espedally the functionals that use the second derivative of the signal.

Acknowledgments
This work was supported by NSF Grants No. CDA-90t5006 and EEC-9822870, and by NASA
Grant No. NAG 9-757. The authors are thankful to Stava Nesterov and to the anonymous
referees for valuable suggestions.

References
[1] Cormen, Th. H., Leiserson, C. E., and Rivest, R. L. Introduction to algorithms. MIT Press,

Cambridge, MA, and McGraw Hill Co., N.Y., 1990.

[2] Glasko, V. B. Inverse problems of mathematical phy.~ts. American Institute of Physics, N.Y., 1984.

[3] Inverse problems. SIAM-AMS Proceedings 14, American Mathematical Society, Providence,
RI, 1988.

[4] Inverse proteins. Birkhauser Verlag, Basel, t986.

[5] Inverse problems. Lecture Notes in Mathematics 1225, Springer-Vertag, Berlin-Heidelberg,
1986,

[6] JfijA, J. An introduction to parallel algorithms. Addison-Wesley, Reading, MA, 1992.

[7] Kreinovich, V., Quintana, C., Lea, R., Fuentes, O., Lokshin, A., Kumar, S., Boricheva, I., and
Reznik, L. What non4inearity to choose? Mathematical foundations of fuzzy control. In: "Proceedings
of the t992 International Conference on Fuzzy Systems and Intelligent ControF, Louisville,
KY, t992, pp. 349-4t2.

[8] Lavrentiev, M. M., Romanov, V. G., and ShishatskiL S. P, Ill-posed problems of mathematical
phyr/cs and ana/ys/s. American Mathematical Society, Providence, Rt, t986.

[9] Tikhonov, A. N. and Arsenin, V. Y. Solutions of ill-tmsed problems. V. H. Winston & Sons,
Washington, DC, t977.

Received: August 14. 1995
Revised version: February 6, 1996

V. Kv, m,~ov~c~
Department of Computer Science

University of Texas at E1 Paso
E1 Paso, TX 79968, USA

E-M~JI: vladik@cs, utep. edu

KAREN VILLAVERDE

Systems Engineering, BNR
P.O. Box 888871 M/S D0-207

Richardson, TX 75088-8871, USA
E-mail: vi l la©bri t , ca

