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A quadratic-time algorithm for smoothing 
interval functions 
VLADIK KREINOVICH and KAREN VILLAVERDE 

In many real-life applications, physical considerations lead to the necessity m omsider the smtx~thest ~ff all 
signals that is confistent with the measurement results. Usually, the corresponding optimization problem 
is solved in statistical context. In this paper, we prolmse a quadratic-time algorithm fiw sm~a~thing an 
h~rotd function. This algorithm, given n +  1 intervals xo, . . . ,xn with 0 E x0 and 0 6 xa, returns the 
vector a:0,..., :r,~ for which z0 = z .  = 0, :ri 6 xi, and ~"~.(xi+~. - xl) ~ - ,  rain. 

AAr0p TM c KBaApaT  IHbIM BpeMeHeM 
BbIIIOAHeHI4 I AA, I cFAa)KIIBaHI4  
la}ITepBaAbHblX  yHK  Ifl 
B. KPmHOB~q, K.  Bi, IAAABEPAE 

]~) MHOrHX rlpaKTHqeCKHX IIpIUIo;KeHiI.qX H3 (J:)H311tlCCKHX C(x}~pa~KeHlll:! T~:~yErc.q HaI~ITH C~IMyI() FJI;121KyK) 
H3 Bcex CHTHadl]bHbIX C[~yHKIIHI~, COBMeCTHMyto C .RaHHMMH H3MepeHHlYL KaK llpaBH.,'lO, CiXITBe'rCTByX)ILIa~q 
3aaa,~a OIITHMH3aUHH pemaerca craT~ICr]tqecX}iM bleTo/laMH. B pa6c~xe npeaa'araerc~ a.rlrt)pHTM c Klm- 
.~lpaTH~tlmM BpeMeHeM Br~noatleHtt~, ¢~T.'la.~.HBaK~mHfi motte~tbu3no dpyHKUHXL l-hmy~Hg Ha Bxoae ft + 1 

ZmTepBaaOB X0,...,Xn, rae 0 E x0 x 0 E Xn, a.rlropttTM t~3epamaeT BeKTop X0,..., :r,~. aas KovOl~ro 
z0 = x,~ = 0,  x i  E x~ . ~ ( x ~ + t  - z i )  2 -', min. 

1. Motivations 
1.1. Smoothing is important 
In engineering, astronomy, geophysics, etc., transmitted signals and/or images are "corrupted ~ 
by noise; this "noise" includes the unpredictable additions from other sources as well as the 
changes in the signal that are due to the imperfection of  the measuring instrument. As a result 
of  this "corruption," we cannot uniquely reconstruct the signal from the measurement results: 
to reconstruct the signal, we have to subtract the (unknown) noise from the measured values; 
therefore, several possible signals could be responsible for the same measured values. Which of  
these possible signals should we present to the user? 

It turned out that in many real-life situations (voice recognition, astronomical and geo- 
physical imaging, etc.; see, e.g., [2-5 ,  8, 9]), physical arguments favor the choice of  the smoothest 
possible signal. In  the simplest case of  a 1 - D  signal (i.e., a signal x( t )  that depends on only 
one parameter  t), the non-smoothness S~(x) of  a continuous signal x( t )  is usually described by 
a formula So(z) = f(d~It)) ~ dt, where :~ denotes the derivative of  the function :r (see, e.g., [7] 
for one of  the possible justifications of  this formula). 

In real-life computations, we usually only reconstruct the values zi  = x( t i )  of  the signal 
on a grid, i.e., for the values to, tl = to + h , . . . ,  tk = to + k h , . . . ,  tn = to + nh. Therefore,  we 
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need to reformulate the non-smoothness criterion in terms of these finitely many values. The 
natural approximation to a derivative is a ratio A x / A t  = ( z i + l -  :ri)//z; therefore, it is natural 
to take 

s(~) = ~(x,+~ - x,)  ~ O) 
/=0 

as a measure of non-smoothness of the reconstructed signal (stricdy speaking, we should 
use S /h  2, but since we are only interesting in choosing the smoothest signal, and not in 
the estimating its non-smoothness, we can afford to simplify the smoothness expression by 
multiplying it with a constant/z2). 

1.2. Several statistical smoothing algorithms are known 
There exist many algorithms for selecting the smoothest signal, and there are many successful 
applications of these.algorithms (see, e.g., [2-5, 8, 9]). However, practically all these algorithms 
are statistical: they are based on the assumption that we know the pr0ba/n/~/es of different values 
of error. 

1.3. Since we often do not know probabilities, interval smoothing is 
n e c e s s a r y  

In real life, we often do not know these probabilities, we only know the /r~erva/s of possible 
values of the errors. As a result, for each i, we only know the interval x~ = [x~-, x +] of possible 
values of the measured quantity zi. The problem is: to find the smoothest sequence x0 , . . . ,  z,, 
that is consistent with these measurement results (i.e., for which xi E xi for all {). In this paper, 
we will present a new quadratic-time algorithm for solving this problem. 

Comment. In order to formulate the problem in precise terms, we must make one more remark. 
Usually, when we start reconstructing the signal, we have the complete record of this signal. 
In other words, we know that in one or several first moments of time, there was no signal, 
and that in the (one or several) fast moments o f  time, there will also be no signal at all. In 
mathematical terms, we assume that x0 = z,, = 0. This assumption is consistent only if 0 E x0 
and 0 E x,, (if these inclusions do not occur, this means that eit'her we stopped measuring too 
early, when the signal has not yet passed, or that we started measuring too late, when the 
signal was already being sent). 

Now, we are ready to formulate the problem and the algorithm. 

1.4. The structure of the paper 
The problem itself and the algorithms for solving it will be presented in Section 2. In Section 8, 
we illustrate our algorithms on a numerical example. The proof that this algorithm actually 
finds the smoothest signal is given in Section 4. In the last (short) Section 5, we describe the 
related open problems. 
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2. Definitions and results 

2.t .  Description of the problem in predse mathematical terms 
D e f i n i t i o n  1 .  

• By an interxnl measureraent result, we mean a sequence o f  intervals Xo, X l , . . . , X n - l , X ~  such 
that 0 6 Xo and 0 6 Xn. 

• A sequence z o , . . . ,  xn is called a possible signal i f  Xo = x ,  = 0 and xi  E x i  for all i. 

• By a non-smoothness S(.~) o f  a sequence :~ = (Zo, Z l , . . . , z , ~ ) ,  we mean a value S ( x  ~) = 

(xt - xo) ~ + . . .  + (~+,  - ~)~ +.. .  + (~  - z,-~) 2 

• B 7 a smoothing o f  a given interval measurement  result, we mean a possible signal E with 
the smallest possible non-smoothness S(E) .  

• B 7 an interval smoothing problem, we mean the following problem: given an interval mea- 
surement  result, to f ind its smoothing. 

Comment. In other words, the interval smoothing problem means the following: 

Given: h sequence of  intervals xi  = [x~-, x~'], 0 < i < n, for  which 0 E x0 and 0 E xn. 

To compute: T h e  values xo . . . .  , xn for which :2:o = zn = 0, zi E xi,  and ~ ( x i + l  - zi)  2 ~ min. 

22. The main restflt: quadratic-time smoothing algorithm 
Theorem L There  exists an algorithm that solves the interval smoothing problem in t /me 
O(n~). 

Let us describe this algorithm. 

Algori thm, This is the recursive algorithm: the smoothing for a given n will be reduced to 
smoothings for smaller n. 

Recursion base. I f  n = 1, then we can directly compute  the smoothing as z0 = :rl = 0. 

P~cursion step. I f  n > 1, then we do the following: 

1) First, we analyze the values : r t , . . . , z ~ ' _  1 one by one, find the largest o f  them, and als5 
find the index M for which this largest value is attained. This can be done by keeping 
two variables: 

- a real value r e c o r d  that wilt contain the largest positive value of :r~'; initially, it is 
equal to x~'; for every other  i, it is changed to r e c o r d  := m a x ( r e c o r d ,  z~'); and 

- an integer variable M that  is assigned the new value i whenever x~- > r e c o r d .  

I f  x ~  > 0, then we take k := M ,  :rk := z~-, and go to Step 4. 

2) I f  x~t < 0 (i.e., if  all values of  x~" are  non-positive), then we (similarly to Step 1) analyze 
the values x + one by one; we compute  the smallest o f  such values, and find the index m 
for which this smallest value is attained. 
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3) If  Z + _> 0 (i.e., if all values x~- are non-positive and all values of z?" are non-negative), 
then we produce xi = 0 for all i as the smoothing and stop. If z + < 0, then we take 
k := rn and xk := x~'. 

4) On this step, we do the following: 

- Solve the smoothing problem (by using the same algorithm) for k instead of n, and 
for the intervals Yi = xi - x k "  ( i / k ) ,  0 < { < k. As a result, we will get the values 
~h , . . . ,  Yk-1. We compute x~ = Yt + Zk" ( i / k ) .  

-- Similarly, we apply the same algorithm to the sequence Yi = x i  - x k .  (n - i ) / ( n  - k), 
k < i < n. As a result, we will get the values Va+l,...,Yn-1, from which we compute 

= + z k  . ( n  - i ) l ( n  - k ) .  

Comraents. 

t. The  following modification of  this algorithm will also work: if x~r > 0, x + < 0, and 
ra # M, then we can assign x m  = x~t and xm = x +, and the apply the same smoothing 
algorithm to three sub-intervah obtained by taking out ra and M. This modification may 
save some time. 

2. If we have several processors working in parallel, then we can further speed up the 
computations. 

2.3. A parallel smoothing algorithm 
If we have n processors P t , . . .  ,P,~ working in parallel, then we can speed up the computations 
in three ways: 

• First, when we look for the smalIest or the largest of the values x~, then, instead of 
analyzing the values one by one, we can use a known parallel algorithm that finds 
maxima and minima of  N numbers in time O(Iog(N)) (see, e.g., [6]): 

- -  On the first step, we divide N values into N / 2  pairs, and compute the maximum o f  
each pair; thus, we get N / 2  results. 

- On the next step, we divide these N / 2  results into N / 4  pairs, and for each pair, find 
the largest of the corresponding maxima; this will give us N / 4  results, each of them 
is the maximum of four consequent values. 

- The same "bisection ~ is to be repeated again and again, no that we are left with 
N / 8 ,  N / t 6 , . . . ,  N / 2 s , . . .  values. After s ,.m log(N) steps, we get a single value that is 
equal to the desired maximum. 

i Second, when we reduce the smoothing problem for xi, t < i < n -  1, to solving two 

different smoothing problems: 

- for xi for i = t , . . . , k -  1, and 

- for xi for / = k + I , . . . , n ,  

we can solve these two subproblems in parallel, by allocating the processors P x , . . . , P k - 1  to 
solve the first subproblem, and the processors Pk+b . . .  ,Pn to solve the second subproblem. 

If one or both of the resulting subproblems are subdivided into two sub-subproblems, we 
can parallelize these sub-subproblems, etc. 
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* Finally, we can assign the task of  comput ing  each value Yi = x i - z k . ( . . . )  and xi = Yi+( . . . )  
to the corresponding processor Pi; this, all these computat ions will be done  in constant 

time. 

As a result of  this speed-up, we get  the following: 

Theorem 2. There  exists a parallel algorithm that soh, es the interval smoothing problem in 
time O(n log(n))  on n processors. 

3. Example 
3.1. Input 
Let us illustrate our  a lgor i thm on the following "wavelike" interval function: x0 = [ - 1 ,  1], 

x l  = [ - 3 ,  -11,  x2 = [1, 3], x s  = [0, 21, x4 = [1, 31, x5 = [ - 3 ,  -11 ,  and  x6 = [ - 1 ,  11. 

3.2. Main algorithm 
First. we assign Xo = xa = 0. Since n = 6 > 1, we do  the following: 

First, we compute  M for which x~t = maxx~ ' .  For these measurement  results, M = 2, 

and  x~- = 1 > 0. Therefore ,  according to our  a lgori thm, we assign k = 2, z2 = 1, and  go to 

Step 4. On Step 4, we assign x2 = 1, and  consider the following two sub-problems: 

(1) In the first one, we take k = 2, and  take Yl = Xl - (1 /2)  "x2 = Xl - 0.5 = [ -3 .5 ,  -1 .5 ] .  

For  this new problem, YM = m a x y ~  = --3.5 < 0, so, we compute y+ = r a i n y  +. We get 

y,~ = - 1 . 5  and m = 1. This  value y ~  is < 0, so, we take Yl = Y~" = - 1 . 5 .  

Hence, we take x l  = Yl + ( 1 / 2 ) -  x2 = ( - 1 . 5 )  + 0.5 = - 1 .  

(2) In the second sub-problem, we have xk / (n- -k )  = 1/4  = 0.25; therefore,  Y3 = [ -0 .75 ,  1.25], 

Y4 = [0.5,2.5], and  Y5 = [ - 3 . 2 5 , - 1 . 2 5 1  . Here,  YM = 0.5 > 0 for M = 4, so, we can 
take Y4 = 0.5. Hence, in the original  problem, we take x4 = Y4 + 0.5 = 1. This  second 
sub-problem is now subdivided into two sub-subproblems: 

(2.1) In the first of  them, we have zs = Y3 - ( 1 / 2 ) - 0 . 5  = [ -1 ,  1]; here,  z ; t  < 0 < z+; 
therefore, according to Step 3 of  our  a lgori thm, as a smoothing,  we take z3 = 0. 

Hence, Y3 -- 0 + 0.25 = 0.25, and x3 = 0.25 + 0.75 = 1. 

(2.2) For the second suh-subproblem, we have z5 = y a - 0 . 2 5  = [ - 2 . 5 , - 1 . 5 ] .  Here,  z M < 0, 

" + - 1 . 5 .  but  z m < 0; therefore, we take z5 -- zrn = 

Hence,/ /5 = zs + 0.25 = - 1 . 2 5 ,  and  xs  = Ys + 0.25 = - 1 .  

3.3. The answer 
T h e  result of  applying the smoothing a lgor i thm to the given signal is x0 = 0, x l  = - 1 ,  

x 2 = x s = x 4 = l ,  x s = - l ,  a n d x 6 = 0 .  
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3.4. Parallel algorithm 
First, we assign :Co = x6 = 0. Since n > 1, we do the following: 

First, we compute M for which x~4 = maxx~-. This is done as follows: 

• We compare x i" with x~ on the processor Pl, and simultaneously, we compare the values 
x~" with x~ on the processor /~ .  The  maxima of  these pairs are correspondingly x~ and 

• Next, we compare these maxima x~" and x 4. These values are equal, so, we can take each 
of  them as the largest. Let us take the first of  them, i.e., x~'. 

• Finally, we compare x~" with the only remaining value x~'. The  largest is x~,  so M = 2. 

For these measurement remits, M = 2, and x~¢ = x~- = 1 > 0. Therefore, according to 
our  algorithm, we assign k = 2, x2 = 1, and go to Step 4. 

On  Step 4, we subdivide the original problem into the following two sub-problems that 
will be performed in parallel: 

(1) In the first sub-problem, we take k = 2, and take Yl = 'xt - (1/2) • x2 = x l  - 0.5 = 
[ - 3 . 5 , - 1 . 5 ] .  For this new problem, y~,/ = maxy;"  = - 3 . 5  < 0, so, we compute y~  = 
r a iny  +. We get y+ = - 1 . 5  and rn = t. This value y+  is < 0, so, we take Yl = Y~+ = -1 .5 .  

Hence, we take xt  = Yl + ( t / 2 ) .  xu = ( - 1 . 5 )  + 0 . 5  = - 1 .  

(2) In the second subproblem, we have x~/(n-k) = 1/4  = 0.25; therefore, Y3 = [ -0 .75 ,  1.25], 
Y4 = [0.5,2.5], and Ys = [ - 3 . 2 5 , - 1 . 2 5 ] .  The  computations of  these intervals are done 
in parallel by processors P3, P4, and Ps respectively. Here, y ~  = 0.5 > 0 for M = 4, so, 
we can take Y4 = 0.5. Hence, in the original problem, we take x4 = Y4 + 0.5 = 1. This 
second subprobtem is now subdivided into two sub-mbproblems: 

(2.1) In the first of  them, we have z3 = Y3 - ( 1 /2 ) -  0.5 = [ -1 ,  t]; here, z ~  < 0 < z~n; 
therefore, for the smoothing, zs = 0. 

Hence, y~ = 0 + 0.25 = 0.25, and  x3 = 0.25 + 0.75 = 1. 

(2.2) For  the second sub-subproblem, we have zs = Y s - 0 . 2 5  = [ - 2 . 5 , - 1 . 5 ] .  Here, z ~  < 0, 

but z + < 0; therefore, we take z5 = z + = -1 .5 .  

Hence, Ys = z5 + 0.25 = - 1 . 2 5 ,  and x5 = Y5 + 0.25 = - 1 .  

As a result, we get the same smoothing. 

4. Proofs 

4.1. Proof that a smoothing alwafs exists 
1 °. Let us first show that a smoothing always exists. 

Indeed, in solving a smoothing problem, we find the minimum o f  a continuous function 
S(ff) on a compact {0} x x l  x . . -  x xn-~ x {0}; therefore, this minimum is always attained, 

i.e., the smoothing always exists. 
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4.2. Proof of the algorithm's correctness 
2 °. Let us show that if all the values x~" are non-positive, and all the values x + are non-negative, 
then xi = 0 is the smoothing. 

Indeed, the non-smoothness .is always non-negative, and the only way for  it to be equal to 
0 is when xi+l - zi = 0 for all i, i.e., when x0 = xl  . . . . .  xn = 0. tn this case, x l  = 0 is a 
possible vector, so it has the smallest possible value of S and is, therefore, a smoothing. 

3 °. Let us show that if  the value z~  = maxz~-  is positive, then for the smoothing z i ,  we have 

Xk = X k .  

We will prove this statement by reduction to a contradiction. Indeed, suppose that for 
a smoothing xi ,  we have xk # x k. Since xi is a smoothing and therefore, a possible signal, 
we have xk e [x; ,  x~-]; since xk # x~', we can conclude that xk > x~'. Let us now consider 
a new signal Yi = min(xi ,  x~) .  We will show that this is also a possible signal, and that this 
new possible signal is smoother  than ~: S(y~  < S(:~). This  conclusion will contradict to the 
assumption that ~ is a smoothing, i.e., the smoothest possible signal. 

3.1 °. Let us prove that ~ is a possible signal. 

We assumed that x l  is a possible vector, i.e., that x0 = xn --" 0, and xi E x.i. Let us show 
that the same properties are t rue for  Yl- 

For i - 0, we have xi  = O, and hence, Y0 = min(0, x~)  - 0. Similarly, Yn -- O. 

t f  xi  <_ x'~, then yi = min(xi ,  x~') = xl, hence, Yi = x i  E x i .  

I f  xi > x~,  then we have yi = x~'. Since xg  = m a x j  x~', we conclude that Yi = x'~ ~ x.'(. 

On the other hand, Yi < x i  <_ x +. Hence, Yi e [z~,  x +] = x~. 

3.2 °. Let us show that S(y') < S(x-'). 

For each three real numbers  a, b, and e, we have (min(a,  c) - rain(b, c)) 2 < (b - c) 2 (this 
inequality can be easily proven if we consider all possible orderings of  three numbers  a,  b, and 
c). As a result, for a = zi,  b = z~+l, and c = x~', we conclude that (Yi - Yi+l) 2 _< (zl - z i+l)  2 
for  all i. Adding these inequalities for all i, we conclude that S(y") _< S(x-'). 

3.3 °. To  complete our  reduction to a contradiction, we must show that S(y-') < S(23). 

Indeed, for i = 0, we have :co < z~-; for  i = k, we have xk > x~'. Therefore ,  there 
must exist the first value i for  which xi <_ z~" and Xi+l > x~-. For this i, we have xi < z i+t .  

According to our definition of  i, we have Vi = zi and Yi+t = z~" > xi. Therefore ,  subtracting 
xi  f rom both sides of  the inequality x~" < Xi+l, we conclude that 0 < z~" - zi < zi+t  - xi, or, 
that 0 _< Y~+I - Yl < x~+t - xi. Hence, (Yi+l - Yi) 2 < (xi+l - x i )  2. Since for  every other  j ,  we 
have (Yj+l - yj)2 <_ (x j+t  - x j )  2, we conclude that S(y-') < S(:~). 

This conclusion, as we have already ment ioned contradicts to our assumption that a~ is a 
smoothing. This contradiction proves that for a smoothing, x/¢ = x ; .  

4 °. We have found the k-th component  of  the smoothing. T o  find all other  components,  
we must minimize the expression that  we get by substituting xa into S(a3). This expression 
can be represented as the sum of  the two parts: S(~)  = S _ ( ~ ) +  S+(a~), where ~q_(~) = 
( x l  - xo )  2 + ' "  + (x,~ - x k _ t )  2 and S+(.f f)  = (xk+~t - xk )  = + " '  + (x, ,  - x , _ l )  2. These  two 
components  of  the objective function S depend on disjoint sets of  variables: S_ depends on 
x ~ . . . , x ~ _ ~ ,  and S + depends on x~+~, . . . ,x , ,_~.  Therefore ,  to minimize non-smoothness S, 
we must separately minimize 5'_ and  5'+. 
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5 °. The problem S - ( x o ,  x l , . . . ,  Xk-1, X~) -*  min is similar to the smoothing problem, with the 
only difference that for the smoothing problem, the last value xn is known to be 0, while for 
this problem, the last value xa is also known, but its known value is positive. 

To  reduce this problem to the smoothing one, we will use the new variables described in 
the algorithm: Yi = xi - xk" ( i / k ) .  For these new variables, we have Yi ff Yi and Y0 = yt¢ = 0. 
Let us describe S_ in terms of  Yi- 

In terms of these variables, xi = Yl + x k .  ( i l k ) ,  and therefore, x i + l - x i  = (Yi+1- Yi)+xk/k.  
Hence, 

(~,+1 - ~)~ = (y,+~ - y~)~ + (~ /k )  ~ + 2(~/k)(y~+~ - y~) 

and so, we can represent S_ as the sum of the three components: 

s_ = 5":(~,+~- ~,)== ~:(y,+,-  y,)~ + 5-:(~dk) ~ + ~ 2(~/~)(y,+~- y,). 

The last component of S_ is equal to 2(xk/k)E(Yi+I - Yi) = 2 ( x k / k ) ( y k  -- Yo) = O. T h e  
second component of S_ is a constant ( k .  ( x k / k )  2 = (x~)2 /k )  that does not depend on Yi at 
all. Therefore, S -  ~ rain iff ~ ( y i + l  - yi) 2 ~ rain. 

This equivalence, together with the similarly proved equivalences for $4- and for the case 
when we choose k based on x~,  justifies the recursion described in the algorithm. 

So, the above-described algorithm indeed computes the smoothing o f  a given signal. 1"] 

4.3. Proof that  the  a lgor i thm is quadratic-t ime 

6 ° . To complete the proof of Theorem 1, we must show that our algorithm requires quadratic 
time. 

To  estimate the total number of computational steps in this algorithm, let us combine all 
the operations described in the algorithm before and after the recursive calls into a firs~ level. 

The procedure of the first level calls the same algorithm twice. All the computational steps in 
these calls will be counted as the second level. T h e s e  algorithms may also call the same algorithm 
recursively; thus, we get the third level, etc. 

In the first level, for each i from i to n - 1, we apply at most eight computational steps: 

• one, when we compare the value r e c o r d  with z~- when finding the largest of z~-; 

• one (maybe) when we compare r e c o r d  with x + to find the smallest of x~-; 

• at most six to compute the bounds of  the interval Yi: 

- four, when we compute two bounds of an interval 

y,  = x, - xk.  ( i /k)  

first, we compute x k "  ( i / k )  (one division and one multiplication), and then subtract 
the result from both bounds (two subtractions); 

- six, when we compute two bounds of an interval 

Yi = Yq - xk " (n  - i ) / ( n  - k )  

first, we compute x k "  ( n -  i ) / ( n -  k)  (two subtractions, one division and one multi- 
plication), and then subtract the result from both bounds (two subtractions); 
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• one, when we (after the recursive call) reconstruct ah from Yi: we just add to Yi the 
previously computed value zk .  (i/k) or zk"  (n - i ) / (n  - k). 

Totally, we need _< 8 ( n -  1) computational steps for this level. The  second level consists of  
similar computations, but applied to two different problems; so, on this second level, we need 
_< 8 ( k - 1 )  computational steps to solve the first problem (with i from 1 to k), and _< 8 ( n - k - l )  
computational steps to solve the second problem (with i from k to n). As a result, we totally 
need < 8(n - 2) computational steps. 

This reduction in the number of  computational steps is caused by the fact that we have 
found one value (z~), and we thus have one less value to consider. On each following level, we 
have at least one fewer value to consider. Initially, we had n -  1 unknown values, and on each 
level, the number of  unknown values decreases by 1. Therefore ,  we can have at most n - 1 
levels. On the first level, we use < 8(n - 1) steps; on the second level, we use < 8(n - 2), 
etc. Totally, we use < 8[(n - 1) + (n - 2) + - . - +  1] = 8(n  - 1)n/2 < 4n 2 computational steps. 
Theorem I is proven. []  

4.4. Proof that the parallel algorithm takes O(nlog(n)) time 
7 °. Let us prove that the parallel algorithm described above takes O(nlog(n)) time. 

Indeed, as we have mentioned above, on each level, the main time-consuming operation 
is computing the maximum of  N elements; all the other  operations take constant time (if 
implemented in parallel). Therefore,  on each level, the total computation time is O( log(N)) ,  
i.e., _< C log(N) for some constant C > 0. 

• On the first level, we find the maximum of  n - 1  elements, so, we need time _< C l o g ( n - I ) .  

• On the second level, as we have shown in 6 °, we process _< n -  2 elements in each 
subproblem, and therefore, the required time is _< C l o g ( n -  2), 

• etc.  

Totally, we need time 

<_ 

= C[log(n - 1) + log(n - 2) + . - -  + log(l)]  = Clog[ (n  - 1)!]. 

It is known that log(n!) = O(nlog(n)) (see, e.g., [1]), therefore, our parallel algorithm 
takes time O(nlog(r~)). Theorem 2 is proven. []  

5. Open problems 
• Is it possible to design a linear4ime algorithm for smoothing an interval function? a 

logarithmic-time parallel algorithm? 

• T h e  measure of  non-smoothness (1) described above corresponds to the non-smoothness 
functional So(z) = f(Sz(t))2dt that uses only the first derivative of  the function. In some 
problems, it is more natural to use other smoothing functionals, that use second (and/or 
higher) order  derivatives [2-5 ,  8, 9], e.g., functionals of the type 



264 V. KREINOVICH, K. VILLAVERDE 

that correspond to 
n - I  n -1  

8(£) = ax. E ( x , + l -  z,) ~ + At. ~'~(x,_,- 2x,+ x,+l)'. 
i=O i=l  

It is desirable to construct similar smoothing algorithms for such more general smoothing 
functionals, espedally the functionals that use the second derivative of the signal. 
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