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Two adaptive Gauss-Legendre type 
algorithms for the verified computation 
definite integrals 

of 

WALTER KI~MF_.R a n d  STEFAN WEDNER 

We propose a two algorithms for computation of (sharp) enclosures of definite interevals: a lor.rd adaptive 
dgorid~a (LAA) and a g/oba/ a&,pth~ cdgor92~n (GAA). Both algorithms are based (m Gauss-Legendre 
~ladrature. Error terms are bounded using automatic differentiation in combination with interval 
evah:adons. 

Several nmnerical examples are presented; these examples include comparis~m with an adaptive 
interval Ro,nherg scheme. 
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i. Notations and basic facts 
By I R  we denote the set of  all closed reaI intervals. The  symbol ¢ means the interval rounding 

and ~ ,  ~ ,  ~ ~ :  J R  × J R  ) J R  mean  interval operations. By [a] we indicate an interval 
enclosure of  the real quantity a. 

Let z E [a, hi, n E W and zk, , ,  k = 1 , . . . , n  be given. Then  we denote by w , ( x )  the 
polynomial 

~-(~) := H (~-  ~ , - )  ( I )  
k= l  

associated with the abscissas xk,n, k = 1 , . . . ,  n. The  Lagrange basis {1~,,~}~=I with respect to the 
nodes xk,n is given by 

~ , ( x )  k = I , . . . ,  ~ .  (2)  ~k,.(x) = (x ' ' 
- x~, . )o~ . (x~ , . )  

{~) W. Kr;,imer, K Wedner, 1996 
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We denote the linear space of all polynomials whose degree does not exceed n E ]N by 

I"I. := {PIP polynomial, degree(p) < n} 

and the space of all polynomials 
oO 

II:=  U l'ik. 
k=O 

Theorem 1. Let V D ~ be a function space over [a, b] C_ R and [ : V ~ R an isotone 1 l inear 

functional Then for any fixed n E iN, the following holds (see [16]): 
a) There exists exactly one operator Q~") : V ~ ]R of  the form 

n 

Q('~)(f) = ~ Wk,.f(xk,.) (3) 
k=1 

with xa,n E [a, hi, w~:,r, E R and 

Q(")(f) = I ( f )  for all polynomials f E 1"I2.-1. 

b) It is not possible to find numbers xk,. and Wk,., k = 1 , . . . ,  n such that (3) holds for 
all polynomials p E ~2,~. 

C) The ~ nodes a;k,n, ]g = 1~... ,  n are all d/t'Terent, and they are the roots of  the polynomial 
~ . (x )  as defined by (I). This polynomial is orthogonal to all polynomials p E II,~_1 with respect 
to the ~aUr produa (f, g) := z(/. g). 

d) The (positive) weights ~uk,., k = 1 . . . .  , n are uniquely defined by 

Wk,,, :=  I(lk,,,), /c = 1 , . . . ,  n 

here lk,.(x) denotes the Lagrange basis defined by (2). 

Applying Theorem 1 to the functional 

b 
I(/) := ~/(x),o(x) ~ (< oo) 

with weight function w(x) > 0, w measurable on [a,b],O < f ~ w ( x ) d x  < oo, g x k w ( a ) d . z  < oo 
for k = 1, 2 . . . .  leads to the well known Gaussian quadrature formula 

/(~)~,(~) ~ = ~ ~,k,.f(~:~,.) + R~")(:) =: Q~")(f) + R~")(f) 
k=l 

which is exact for polynomials E H2.-1. Their abscissas as well as the weights are chosen to 
maximize the order of the integration method. 

There,., 2 (see [13]). For f ~ ~"[a,b], the ~m~ander term R(")(:) can be w~/tten in the 
form 

b 

R"(f) = f./(~),~(z)~-Q<"~(f)= :c~(~) 

(2n)!  

IfEV, f(x)_>0 forxE[a,b] andf~0=~I(f)>0. 
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for some ~ 6 (a, b). 
This representation can be derived using well known facts about related Hermitian inter- 

polation problems (see [13]) or from Peano kernel considerations (see [2]). 
Let us consider some special weights. The weight function w(x) := : 7 ~  leads to the 

Gauss-Chebyshev integration formula over the interval [ -1 ,  1]: 

~ ~O(")(f)=- : eo~ ~ . 
n k = l  \ 1 

In this case, the abscissas are given by the roots of the n-th Chebyshev polynomial, i.e., 

[2k-1 
= k = 1 , 2 , .  , n  

and the weights can be shown to be wk,,, = 7r/n, k = 1 , . . . ,  n. For functions f 6 C2"[-1,1] ,  
we have 

1 : ( z )  d =  = Q ( " ) ( / ) +  ~Y(~)(~)  f ( -1 ,1 ) .  
J - i  ~ (2n)! 2 2"-1' 

As a second example let us consider ,[1_ 1 f ( x )  dx (weight function w(x) - 1). If we assume 
an arrangement xl,n < xz,n < xa,a < "'" < x . , .  of the nodes from left to right, then: 

xi,. = - x . - i + l , .  } i = 1 , . . . , n ,  (4) 
J 

for n even, 

for n odd. 

Wi, n = W n _ i + l ,  n 

Wl ,n  < W2,n < • . .  < ?,Dn/2,n~ 

WI,n < W2,n < ... < W(n+l)/Z,n, 

For f 6 C2n(-1, 1) the remainder term is given by 

22n+l(n[) 4 f(2n)(~), 
R(")(f) = (2JJ ~)!)~ e ( - 1 , 1 ) .  (5) 

If we choose an arbitrary interval [a, b] as interval of integration, we find for f E C 2n [a, b] that 
-- a 2n+l I 4 

qo,bl(y)+ C2n+l)C(2n)V~ ,.., .~ e (a,b). 
Qm) rr~ Here we denote the approximation by [a,bl~:J because, in general, the abscissas and the 

corresponding weights depend on the hounds of the interval of integration. In the case of the 
Gauss-Legendre quadrature this relationship is quite simple. 

Our goal is to compute verified m~/osures of definite integrals. To achieve this goal, we 
must know enclosures of the nodes as well as of the corresponding weights. We will not discuss 
the generation of such endosures here. Various methods for doing this are described in detail 
in [14, 15]. We will only point out that the combination of the method described by Sack and 
Donovan [12] with that of Givens' is well suited for the computation of such enclosures. This 
method is based on the computation of modified moments to form a co-diagonal matrix, whose 
eigenvalues are the Gaussian abscissas (see also [3]). The calculations have to be done using 
a multi-precision interval arithmetic [6]. As an example of the outcome of such a procedure, 
we list enclosures for the nodes and weights for the Gauss-Legendre quadrature for n = 20 in 
Table 1. 

Relations (4) can be used to find the missing values for k = 1'1,..., 20. 
As a second example the enclosures for the nodes and weights for the approximation 

Q(S)(f) ..~ f~ f (x)  ln(1/x) dx are listed in Table 2, 
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Nodes and weights n = 20 
i Xi ,~ 

1 -9.931285991850949~E-01 
2 -9.6397t927277913~E-0t 
3 -9.I22344282513259~E-0t 
4 -8.39tI69718222188~E-0I 
5 -7.46331906460150~E-0I 
6 -6.360536807265150~E-0i 
7 -5.10867001950827~mE-0I 
8 -3.737060887154195~E-0I 
9 -2.277858511416450~E-0I 

10 -7.652652II3349733~E-02 

lOi,~ 

t.7614007t39152i1~E-02 
4.060142980038694~E-02 
6.267204833410906~E-02 
8.327674157670474~-02 
t.019301198172404~E-01 
1.18t945319615184~E-01 
1.3t6886384491766~E-0t 
1.420961093183820~E-0t 
t.49t729864726037~E-01 

,, 1.527533871307258~E-01 

Table 1. Nodes and weights w = 1 

Nodes and weights n = 20 
nodes xi,8 'weights' wi,s 

I t.33202441608924~E-2 
2 7.97504290138949~E-2 
3 1.97871029326188~E-I 
4 3.54153994351909~E-1 
5 5.29458575234917~E-t 
6 7.01814529939~°~oE-1 
7 8.49379320441106~E-i 
8 9.53326450056359~E-1 

1.64416604728002 5 - 1 
2.37525610023306~E-t 
2.268419844319i9~E-1 
1.75754079006070~E-1 
1.12924030246759~E- 1 
5.78722 I07177820~E- 2 
2.0979073742t329STE-2 
3.686407104027612°E - 3 

Table 2. Nodes and weights w = ln(1/x) 

2. Verified quadratare 
Starting with the formula 

I(:) = Q(/) + n(.:) = r_, wd(zk) + ~h ~"+~ :(.~?)ff). 
~=I (2n)[ 

E [a, b], h = b - a and c E ~ ,  we are now looking for an interval enclosure [l(f)] of l ( f ) .  
Let F, F (2n) : I R  ~ I R  be interval functions with 

ZR ~ F([x,]) ~ {f(x) lx ~ Ix,I}, 
I R  ~ F(2n)([a, b]) D { f (~) (x ) / (2n)[  .[ x e [a, b]}. 

With [x/] 9 xi, [wi] B wi, [c] B c we find that 

Q(:) e [Q(f)] := <~ Z [ ~ ]  ~>F([~]). 
k---I 

A corresponding enclosure [R(f)] of the remainder term R ( f )  can be computed by 

R ( f )  6 [R(f)] := [c] ~>~diam [a, b] 2'*+1 ~>F(2'0([a, b]) 
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yielding 

I(f) = Q(I) + R(I) ~ If(f)] := [Q(/)] (~ [R(I)]. 
The enclosure F(2n)([a,b]) of the 2n-th Taylor coefficient can be computed using interval 
arithmetic in combination with automatic differentiation. Program code for the process of 
automatic differentiation is given, for example, in [11]. 

31 Two adaptive algorithms 
It is well known that tim,~...oo Q('~)(f) = I ( f ) .  However, increasing the order n of the Gaussian 
quadrature rule requires the computation of a new set of nodes and weights. Also, very 
high derivates in the error term may lead to numerical difficulties. For the Gauss-Legendre 
quadrature (w(z) = 1) the accuracy of the approximation can often be increased using a 
composite rule. 

Starting with the representation 

f b y(z) w(z) dx = Q(")(f) + n(")(y) (6) 

and applying a linear transformation x = x(t) = r .  t + s with 

~,-a ha-d ,  
b - a '  b - a  

which maps the interv,'d t E [a, b] onto the. interval x E [5, hi, we find 

In general, the transformation leads to a modified weight function. This means that, in general, 
integrals with the same weight function but different ranges of integration cannot be handled 
using the same Gaussian quadrature rule. For example, 

fo l ez f_ e ~ d x - . ~  . .. dz. 
v - (I + 

Here it is obviously not possible to apply the Gauss-Chebyshev~uadrature to the integral on 
the right. 

From now on we will restrict our discussion to the case w(x) = 1, i.e., to the Gauss- 
Legendre formula. If the quadrature rule (6) is applied to the transformed integral (7), a new 
quadrature rule is created: 

with 

(n) = 
Q[aj,] ( f)  ~ ~,nf(&~,,~) (8) 

l l = l  

~ - a  
wv,  n b - a wv'n" 

ba  - a~ 

b - a  
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For the subdivision Z : a = Y0 < Yl < "'" < y,n = b, the composite Gauss-Legendre formula is 
found, if quadrature rule (8) is applied to all subintervals [Yi, Yi+l], i = 0 , . . . ,  m -  1: 

, - a n  y i+ l~  y~ f ( y i + 1 2  yixk, n + - -  Oi")(S) = E E , ~ , .  
z=O k = l  

Yi+l + Y i )  
2 

The corresponding remainder term is given by 

" -*  (u,+, - y,)2.+, (n.9' /(2.)(~,) 
n(z")(/) = ~ 2 n +  1 ((z,)!)~ (2~1! ' ~' s (u,,U,÷l). 

i=0  

The local error is of the order 2n + 1, whereas the global error is of the order 2n (see [10]). 

Let us now discuss how enclosures of Q(z n) and R(z n) can be computed automatically. The 
breakpoints yl, i = 0 . . . . .  m 

[Q~")(/)] 

with r~ (i) ] [ k,n] 

and [-(i) 1 t~k ,n l  

are assumed to be floating-point numbers. Then we find 

m - 1  n Z -") -(') 
F([Y:k,n] ) Q(z'O(f), 

i=0  kw-1 

The remainder term can be enclosed by 

rn--I  

R~")(f/~ [R~")(S)] = fan] ~ 0  E: (y,+~y,)~.+l ~ F(~.~({U,, yi+~]) 
i=O 

where [an] is an enclosure of  
(~!)' 

an = (e~ + 1)((2~)!)~" 

First, the enclosures rS~ (1) ] and r~(i) l t k,r,j t k,nj are computed. Using these quantities, the enclosure [Q(z n)] 
is the result of an interval scalar product. To reduce overestimations, this scalar product should 
be computed in an optimal way, as it is possible in the so called XSC languages [5, 8]. 

The quality of the enclosure [I(f)] depends on: 

I) the order of the basic Gauss-Legendre formula; 

2) the choice of the subdivision Z, especially of its "fineness" ]Z] = max lYi+I - Yi]; 

3) the smoothness of f ,  or more precisely on the behaviour of the 2n-th derivadve of f on 
[a,b]. 

An opdmal choice of the subdivision Z will usually reduce the effort required for the compu- 
tation of Q~'*)(f) substantially. It is usually more economical to use subintervals whose length 
is determined by the local behaviour of the integrand. Using automatic differentiation gives 
the required information about the derivative appearing in the error term. The error depends 
on both the size of ](2,~) on [Yl, Yi+l] and the size of lYi+l - Y~[ of the actual subinterval. The 
contribution to the overall error from each subinterval should be approximately equal. 

Let us now discuss two different adaptive strategies. 
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Local Adaptive Algorithm LAA: First we describe the local adaptive algorithm (LAA). 
The main idea o f  this method is as follows: To find a subdivision Z of [a, b] with an overall 

r a+b b] error Rz(f) < ~, we look for two subdivisions Z1 of ,/I := [a , -~]  and Z2 of J2 : = t  2 , J 
with error requirement Rz,(f) < ~ on ,]1 and Rz~(f) < ~ on ,/2. If for ,/I and/or J2 the 
error requirement is not satisfied, J1 and/or J2 have to be subdivided again but now with 
a prescribed accuracy of ~ for the integration on each subinterval. The process is repeated 
until the required accuracy is reached (success) or the diameter of the actual subinterval is 
smaller than a prescribed quantity drain (to avoid infinite loops). On all subintervals we use 
Gauss-Legendre quadrature of the same order n. (Of course it would be possible to choose 
different formulae for different subintervals.) Therefore we suppress the superscript n in the 
description. In Pascal-XSC the process can be realized most easily using recursion. The 
foregoing is summarized below as Algorithm LAA: 

INTEC_,RAL(u, o, e) 

t. [El := REMAINDER(u, o); 
{REMAINDER computes an endosure of R[u,ol(f)} 

2. tF diam([El) > e AND (o - u) > dmi, THEN 
~ : = ¢ * 0 . 5  
INTEGRAL(u, mid(u, o), ¢) 
INTEGRAL(mid(u, o), o, e) 

ELSE 
[Q] := [Q] + GAUSS( , o) 
{GAUSS computes an enclosure of Q[u,ol(f)} 
[n] := [R] ÷ [E] 

Initialize global interval variables [Q] = JR] = 0 
, Then the call INTEGRAL(a, b, e) results in: 
! b 

f f(z) e [I] := [Q] + [R] 
a 

Figure 1. Local Adaptive Algorithm LAA 

The quantities u, o denote the boundaries of the actual subinterval and e the actual error 
requirement. 

Global Adaptive Algorithm GAA: The global adaptive strategy determines a suitable 
subdivision Z of the interval of integration [a, b] using only information coming from interval 
evaluations of error terms over subintervals. The enclosure [Q(zn)(f)] of the approximation 

Q(z r') is computed in a final step when the subdivision Z (which is equivalent to an appropriate 
list of subintervals with different sizes I is known. To avoid infinite loops during the generation 
of Z (for example due to overestimations of interval calculations) we restrict the maximal 
number of subintervals to k ~ .  Notice that our algorithm also computes an enclosure of I(f)  
in the case that the number of subintervals is kmax. But in this case the error requirement 
may be unsatisfied for the corresponding subdivision. This only means that the prescribed 
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error bound (supplied by the user) cannot be guaranteed. Nevertheless, it holds that I ( f )  E 
÷ 

Again we use Gauss-Legendre quadrature of the same order n on all subintervals and 
suppress the superscript n in the following description of Algorithm GAA: 

1. Initialization: 
M := {[a, b]} 
Rinf := inf[R[,,,b] (f)] 
//sup := sup[R{,,,bl (f)] 
[Q] := 0 

2. Choose subinterval J from M with diam[Rj(f)]  
being a maximum 

3. Subdivide J in k subintervals , /1, . . . ,  Jk 

4. Remove J from M 
Rinf := Rinf - inf[Rj(f)]  {Update remainder R} 
R~up := R~np - sup[Rj ( f ) ]  

5. Insert J1 . . . .  , Jk in M 
for i:=l to k do 

Rinf := Rinf + in f[Rj , ( f ) ]  
P~,,p := P~up + sup[Rj~(f)] 

6. if tMI < kraax and (Rsup - Rinf) > e 
then goto Step 2 
else for J e / ? I  do [Q] := [Q] <~[Qj(f)]  

b 
7. Output [I] := [Q] ~ [Rinf, Rsup] 9 f f ( x ) d x  

g 

Figure 2. Global Adaptiv e Algorithm GAA 

4. Numerical examples 
In this section we compare the two adaptive strategies discussed above. In our comparison we 
also include an interval method which is based on the local adaptive strategie using Romberg 
integration (see [4, 9]). 

First, we consider the integral I ( f )  = fo a f ( x )  dz ~ -0.151963942232931 with 

1 1 1 1 
f ( x )  = a2 ÷ (3x - 1) 2 - a 2 + (3x - 4) 2 + a 2 + (3x - 7) 2 - a 2 + (3x - 10) 2 

and a = 0.1 (see Figure 3). Table 3 shows the number of function evaluations # f  (to 
compute the qt/adrature sum) for the global adaptive algorithm 2 (GAA), for the local adaptive 

ZFor our numerical examples we chcx~se k = 2. 
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GAA L4A IROMBERG 
diam([I]) # ]  t diam([I]) # ]  t diam([/]) # f  t 

1E-01 1.94E-02 416 1I t .34E-02 448 12 3119E-02 1828 17 
tE-02  9.34E-03 472 12 9.60"E-05 568 15 3.65E-03 1384 t6 
tE -04  9.60E-05 568 15 6.76E-06 696 I8 9.36E-06 2080 20 
1E-06 9.48E-07 704 i8 4.95E-08 736 19 3.64E-08 4160 30 
1E-08 8.23E-09 800 2~ 1.06E-09 960 24 2.53E-09 5120 37 
1E-I0  9.02E-I1 I032 27 t .64E-I1 I176 3t 3 .5tE-1I  5888 45 
IE-12  t .26E- t2  t304 34 6.00E-13 t,i32 37 2.22E-I3 8640 60 

Table 3. Results for I ( f )  

algorithm (I.AA), and for the interval Romberg scheme ~IROMBERG). The column denoted by 
shows the value of the required (absolute) accuracy. The quantity t denotes the time needed 

and diam([I]) is the diameter of the enclosure [I(f)]. The basic Gauss-Legendre formula uses 
eight abscissas. 

As a second example we consider the integrand g ( x )  = 2xe  ~2 sin(e x2) (see Figure. 4). 

For this integrand the value of the integral I ( g )  = f ~ g ( x ) d x  is given by I ( g )  = 

[ -  cos(eX2)]02 ~ 0.910964039266. Table 4 shows a comparison of GAA, LAA, and IROMBERG. 
In our last example we compute enclosures of the leading Fourier coefficients of the 

function 
t - r cos x 

/ r ( x ) =  l _ 2 r c o s x + r  2, 0 < r < I .  

The Fourier expansion of the even function fr is given by 
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GAA LAA IROMBERG 
e diam([l]) # f  t diam([tD # f  t diam([/]) # f  t 

tE -01  5.00E-02 72 4 4.29E-02 80 5 8:86E-03 352 16 
IE-02  7.56E-03 80 5 4.19E-04 88 6 4.38E-03 416 18 
t E - 0 4  2.82E-06 t12 7 2.82E-06 II2 7 1.95E-05 640 27 
t E - 0 6  6.87E-07 120 7 1.45E-08 152 9 9.94E-08 800 34 
1E-08 7.88E-09 160 I0 1.77E-10 192 13 9.98E-t0 928 40 
IE-10 6.78E-II 200 13 1.18E-II 224 14 2.63E-11 1376 58 
IE-12 2.42E-12 256 16 1.49E-12 312 20 5.12E-13 1728 73 

Table 4. Results for I(g) 

with the Fourier coefficients ~v = 0, v = 1, 2 . . . .  and with 

I j~2~ 
= cos(  ) . = 0, I, 2 , . . .  (9) 

We want to use these integral formulae (9) to compute enclosures of o~. Because it is not 
possible to represent the upper bound 27r of the range of integration as a floating-point number 
we have to split the interval of integration: 

fo~'~fi(x)cos(vx)dx = 2 ~ f~(x)cos(vx)dx 

Here [lr, ~] ~ lr denotes the best possible enclosure of the transcendental number ~r by an 
interval whose bounds Ir and ~ are two adjacent floating-point numbers. The first integral 
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Figure 5. fo.s(x) cos(2x) and fo.s(x) cos(20x) 

on the right hand side can be computed easily by the methods described in this paper. An 
enclosure for the second integral can be found using the mean value theorem for integration: 

i .e., 

f f  f,.(.z) eos(,.,z) d= = f,-(O(~ - -~) cos(,.'G ~ ~ [~_, =] 

(The symbol /X denotes upwardly directed rounding.) Table 5 lists, for the different methods, 
the amount of work which has to be done to compute enclosures of c~0, o~ , . . . ,  Ot2o for the 
function fo.s(z) with an absolute error requirement e,, := 2 - v .  10 -1° for a, ,  v = 0 , . . . , 2 0 .  
The choice of t,, takes into account that  the exact values a~ are given by 

Oeu = 0.5 r v for v # 0 in our example r = . 

So the relative error requirement for all integral enclosures is approximately 10 -1° . 

5. Conclusion 
The comparison shows that in all three examples the adaptive Gauss-Legendre algorithms 
need significantly fewer function evaluations than the adaptive algorithm-based on Romberg 
integration. The  global adaptive algorithm is somewhat faster than the local adaptive algorithm 
and up to five times faster than the interval Romberg algorithm. All three algorithms deliver 
enclosures of the exact value of the definite integrals under consideration. The width of such 
an enclosure shows immediately the quality of the computed result. 
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GAA LAA IROMBERG 
v diam([a,,]) # f  t diam([ct~]) # f  t diam([av]) # f  t 
0 2 .48E-1i  .... 56 4 4.69E-12 64 5 5.71E-13 385 t9 
1 9 .59E-I2 72 7 9 .97E-t3  72 8 1.11E-12 385 26 
2 3.38E-12 80 8 8.30E-14 80 8 2.49E-12 385 26 
3 2.83E-12 88 9 2 .76E-t3 80 8 6.06E-I3 385 26 
4 3.08E-15 96 I0 1.80E-14 88 9 3.03E-13 417 28 
5 5.01E-15 96 I0 3.52E-14 88 9 1.22E-I3 513 35 
6 7.99E-I5 96 t0 6.34E-15 96 t0 4.74E-14 577 39 
7 1.60E-14 96 10 I . I 7 E - I 4  96 10 3 . I2E- I4  641 43 
S 3.54E-14 96 10 2.44E-14 96 I0 5.89E-I5 705 46 
9 5.54E-14 104 1I 1.64E-I4 t12 I2 I . I5E-14 705 47 

10 3.04E-14 I20 12 5.96E-I5 144 15 1.20E-14 705 48 
15 6 .8 tE-15 184 19 6 .24E-t5  208 22 8.87E-15 1153 78 
20 7.I8E-15 256 27 7.I8E-15 256 28 1.05E-14 2049 136 

e = 0.5 ~* I E -  10 

Table 5. Fourier coefficients a,, 

The algorithms can be modified to allow a relative error requirement ~'~et by the user. 
In such a case, we first compute a coarse enclosure [z,'Z] of [(f) .  If this enclosure does not 
contain zero, we find an appropriate absolute error requirement Gabs by 

Gabs := min{Lzl, I~1} • ~,~,- 

Now I.AA or GAA is called with the absolute error bound Cabs- If the algorithm finishes with 
a final enclosure [I(f)] with diam[t(F)] < Gabs, then it holds that for all q E [I(f)] 

diam It(f)]] Gabs [ g f ( = ) a = , q t  < < 
I ,f~ f (x )  dz [ - f ~ / ( x )  dz - min{l_zl, t~1} 

= Grel- 

The error terms which have been used to get the coarse enclosure Iz,~] and the actual 
subdivision associated with the computation of [_z, ~] can be used as the starting point for the 
computation of [I(f)]. However, in general, it is not possible to use the function evaluations 
done so far. 

The authors would like to thank the referees for their helpful comments. 
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