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] 'his work uses the OBJ3 term rewriting system to fi!rmalize the type interval thnmgh .~mle of its 
algebraic and tOlx)logical pr¢~perties. The  intended contribution is not the discovery of new theorems 
related to numeric',al or interval arithn!etic. Rather, our ail]t is to fiwnlally specify the type interval with 
the view of performing trmchanical (automated) reamming al'xmt its properties. 
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1. Introduction 
Application programs that have been formally proved correct can only be reliable if they run 
on hardware that has been formally proved correct, under correct basic software, such as 
operating systems, enviromnents and tools. 

If the real numbers are represented with fixed precision (single or double), the most 
common form of representing them is using floating-point numbers. The system of floating- 
point numbers neither enables to preserve algebraic properties nor permits controlling and 
evaluating numerical errors that may arise in a sequence of arithmetic operations. 

Moore [7] has defined the set of real intervals. Each element of this set is a compact subset 
of the real line. The interval arithmetic operations with high accuracy [5, 7] use the optimal 
dot product and interval arithmetic as essential tools in addition to floating-point arithmetic. 
Interval arithmetic allows the computation of guaranteed bounds for the solutions of a problem. 
Validation by interval arithmetic is necessary to get results of high and guaranteed accuracy. 

The programming languages Pascal-XSC [4], ACRITH-XSC [9], and C-XSC [6] are 
extensions of the programming languages Pascal, FORTRAN, and C++, respectively. These 
extensions, beyond the usual primitive data types, have the type  £n te rva t  and the arithmetic 
operations are defined by the horizontal method [5]. The availability of the type  ±m;erval 
raises the computational cost, but also increases the reliability of numerical results. 

This paper introduces the type interval into a programming langnage, but with a different 
objective. The main goal here is proving theoretical properties about intervals. This work uses 
OBJ3 [3] to formalize the type interval through some of its algebraic and topological properties. 
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OBj3 is a functional language which includes mechanisms for theorem proving. From the point 
of view of the interval mathematics the proofs here can be found in the references about the 
subject [1, 7]. Therefore, the intended contribution is not the discovery of new theorems related 
to numerical or interval arithmetic. Rather, our aim is to formally specify the type interval 
with the view of performing mechanical (automated) reasoning about its properties. It is also 
worth emphasizing that the directed roundings (~7, A) [5] are not considered, because we are 
concerned with the properties of the interval arithmetic, and not with numerical algorithms. 

This paper is organized in the following way. Section 2 shows the properties about intervals 
that have been proved. Section 3 gives an overview of the OBJ3 language. Section 4 describes 
the formalization of the type interval using OBJ8. Section 5 summarizes our achievements and 
suggests topics for further research. 

2. The properties 
Let X, Y and Z be intervals. The following properties [1, 7] have been proved. 

o X + Y = Y + X .  

. X + ( Y + Z ) = ( X + Y ) + Z .  

,X+O=X. 

,OEX-X. 

,X*Y=Y*X. 

, X , (Y , Z) = (X * Y)  * Z. 

, X * I = X .  

• l ~ X / X ,  OCX. 
• X , ( Y + Z )  C X * Y + X * Z .  

• X A Y = Y n X .  

• Xn  (YnZ) = (XnY) nZ. 
, X u Y = Y u X .  

• x u ( Y u z )  = (xuY)  uz. 
• X C Y ~ w(X) <_ w(Y). 

,, w ( X  + Y) = w(X)  + w(Y).  

• w(X  - Y) = w ( X ) +  w(Y). 

• d(X, Y) = 0 #~, X = Y. 

• d(X, Y) = d(Y, X). 

• d(X, Z) < d(X, Y) + d(Y, Z). 

• I x l  > o. 

• txl = o ~ . x  = [o, o1. 
• IX + zf  -< IXl + IZl. 
• I x ,  YI = lXl • IYI. 
• x _c Y ~ IXl < I Y I  
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3. OBJ3 
OBJ3 [3] is a general-purpose declarative language, especially useful for specification and 
prototyping. A specification in OBJ3 is a collection of modules of two kinds: theories and 
objects. A theory has loose semantics, in the sense that it defines a variety of models. An 
object has tight or standard semantics; it defines, up to isomorphism, a specific modelni ts  
initial algebra. For example, the usual specification of the natural numbers as an object would 
describe predsety what is understood by the natural numbers. As a theory, it would describe 
any model that satisfies the required properties; for instance, integers would be a model. One 
of the consequences of the distinction between a theory and an object is that it is valid to use 
induction for an object, but not for a theory. 

A module (an object or a theory) is the unit of a specification. It comprises a signature and 
a set of (possibly conditional) equations--the axioms. The equations are regarded as rewrite 
rules and computation is accomplished by term rewriting, in the usual way. 

An elaborate notation for defining signatures is provided. As OBJ3 is based upon order 
sorted algebra, it provides a notion of subsorts which is extremely convenient in practice. For 
example, by declaring I n t e g e r  as a subsort of F loa t  no conversion function is needed to turn 
an integer into a float. 

A general mixfix syntax can be used to define operators; users can define any syntax 
including prefix, postfix and infix. The argument and value sorts of an operator are declared 
when its syntactic form is declared. 

Moreover, operators may have attributes describing useful properties such as associativity, 
commutativity and identity. This makes it possible to document the main properties of a given 
operator at the declaration level. As a consequence, the number of equations that need to 
be input by the user is reduced considerably in some cases. Most ~ importantly, OBJ3 provides 
rewriting modulo these attributes. 

Modtfles may be parametrized by theories which define the structure and properties 
required by an actual parameter for meaningful instantiation. The instantiation of a generic 
module requires a view--a mapping from the entities in the requirement theory to the entities 
in the actual parameter (module). As a simple example, an object to describe sets of arbitrary 
elements, say SET, should be parametrized by a theory which requires the argument module to 
have (at least} one sort. Then this module can be instantiated to obtain sets of elements of the 
desired sort. 

Apart from the mechanisms for defining generic modules and instantiating them, OBJ3 
provides means for modules to import other modules and for combining modules. For example, 
A + B creates a new module which combines the signature and the equations of A and B. 

OBJ3 can also be used a~ a theorem prover. In particular, computation is accomplished 
by term rewriting which is a widely accepted method of deduction. If the rewrite rules of the 
application theory are confluent (or Ghurch-Russer) and terminating, the exhaustive application 
of the rules works as a decision procedure for the theory: the equivalence of two expressions 
can always be determined by reducing both to normal form (an expression that can be reduced 
no longer); the equivalence holds if the two normal forms are (syntactically) the same. 
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4. Formalizing and implementing intervals 
The theory INTERVAL must include the boolean (BOOL) and real (REAL) values with their 
respective operators and usual properties. OBJ3 has a built-in module which implements the 
boolean algebra (B00L). The  module RFAL as used in this work is an incomplete specification of 
the real ,lumbers (but which is enough tbr our purposes), where we introduced a sort Real and 
some operations such as addition, multiplication and subtraction with the relevant properties. 
For conciseness, we will not present BOOL nor REAL here; only the module which desoibes 
intervals is presented for the purpose of illustration. 

Furthermore, given the features of the interval operations, it is necessary to use real sets. 
This may be done by specifying the theory of sets as a generic module (parametrized by the 
type of the elements). Then this genetic module may be instantiated with the ,nodule REAL. 
Apart from the declaration of the type of elements, it is necessary to define a total order 
between elements, because the interval theory uses properties of sets, such as the maximum 
(max) and the minimum (rain) of a set. 

The  theory INTERVAL contains a description of the type (sort) INTERVAL as well as its 
unary and binary operators. The  module B00L is imported using the clause p ro l ;ec t ing ,  which 
means that INTERVAL adds no new elements to this algebra and that no distinct elements in 
B00L (such as true and false) are identified in INTERVAL. As the module SET is generic, it can 
only be imported into INTERVAL after being instantiated; in our particular case, this module is 
instantiated with the module REAL, as we are interested in sets of real numbers. 

The relation subsort declares that intervals may be represented as sets. This facility of 
OBJ3 is particulary useful in the definition of intersection and union of intervals when the 
result of some operation may be the empty set. The constructor of the type interval ([_,_]) 
is a partial operator: the lower bound of the ~ te rva l  must be less than or equal to the upper 
bound. The  symbols [p rec  2],  [p rec  4],  [p rec  5],  and [prec  6] are the precedences of 
the operators reciprocal, negation, multiplication and subtraction. This means, for example, 
that the precedence of the negation is lower than the precedence of the multiplication in terms 
that involve both. The additional properties of the operators are described by equations (eq) 
and conditional equations (cq). It is possible to associate a name (label) with the equations (see 
[2] for more details). 

th INTERVAL is 

pro%ecting BOOL . 

protecting SET[REAL] 

sort Interval . 

subsort In%erval < Set . 

op-as C_,_] 
op_+_ 

op-_ 

op_-_ 

op _*_ 

op_-I 

op_/_ 
op w_ 

: Real Real -> Interval for [xl,x2] if xl <= x2 . 

: Interval Interval -> In%erval [prec 6] [¢o,,n assoc id: 

: Interval -> Interval [prec 4] 

: Interval Interval -> Interval [prec 6] . 

: Interval Interval -> Interval [prec 5] [comm assoc id: 

: Interval -> Interval [prec 2] 

: Interval Interval -> Interval [prec 5] . 

: Interval -> Real . 

[ o , o ] 3  . 

[l,i]] . 
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op absi_ 

op pm_ 

op d 

op _om_ 

op _ok_ 

op _in¢_ 

op _/\_ 

: interval 

: Interval 

: interval 

:Interval 

: Interval 

: Interval 

: Interval 

-> Real . 

-> Real . 

Interval -> Real . 

Interval -> Bool . 

Interval -> Bool . 
Interval -> Bool . 

Interval -> Interval [comm assoc] 

op _\/_ : Interval Interval -> Interval [comm assoc] 

op _pertains : Real Interval -> Bool . 

vat A B : Interval . 

var xl x2 x3 x4 : Real . 

[add] eq [x!,x2] + [x3,x4] = [xl + x3, x2 + x4] 

[sym] eq - [xl,x2] = [- x2, - xl ] . 

[dif] eq A - B = A + - B . 

[eq] eq [xl,x2] == [xS,x4] = (xl == x3) and (x2 == x4) . 

[mult] eq [xl,x2]*[x3,x4] = [min({xl * x3} U {xl * x4} U {x2 * x3} U {x2 * x4}) , 

max({xl * x3} U {xl * x4} U {x2 * x3} U {x2 * x4})] 

[rec] eq [xl,x2] -i = [I / x2, i / xl] . 

[div] eq A / B = A * B -I . 

[wid] eq w [xl,x2] = x2 - xl . 

[abe] eq absi [xl,x2] = max({abs(xl)} U {abe(x2)}) . 

[diet] eq d([xl,x2] , [x3,x4]) = max({abs(xl - x3)} U {abe(x2 - x4)}) . 

[pm] eq pm [xl,x2] = (xl + x2) / 2 . 

[om] cq [xl,x2] om [x3,x4] = true if x2 < x3 . 

[ok] cq [xl,x2] ok [x3,x4] = true if xl <= x3 and x2 <= x4 . 

[inc] eq [xi,x2] inc [x3,x4] = if x3 <= xl and x2 <= x4 

then true 

[±nt] eq [xl,x2] /\ [x3,x4] = if 

else false 

f± . 

xl > x4 or x2 < x3 

then {} 

else [max ({xl} U {x3}), min({x2} U{x4})] 

fi 

[uni] eq [xl,x2] \/ [x3,x4] = if 

fi 

([xl,x2] / \  [x3,x4]) == {} 

then {} 

else [min ({xl} U {x3}), max({x2} U{x4})] 

[pert] cq xl pertains [x2,x3] = true if x2 <= xl and xl <= x3 . 

endth  

5. Conclusions 
The  main purpose of  this paper  was to show how a teHn rewrite system such as OBJ3 can be 

used both to formalize and to prove propert ies  of  interval mathematics.  

The  dual  nature  of  the type interval (number  or  set) was easily solved with the subsort 
declaration, i.e., s u b s o r t  I n t e r v a l  < S e t  means that the set of  elemertts having the first sort 
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(InZerval)  is a subset, not necessarily proper, of the set of elements having the second sort 
(set). 

The formalization of the interval theory also illustrates the facilities related to the operator 
declarations in OBJ3. When, for example, commutativity is defined as an attribute (at the 
declaration level) there are implications related to termination. 

The module system stimulates an incremental presentation of the theory. It was seen 
that modules may be parametrized by theories and instantiated to meet particular needs. Such 
facility is more powerful than the ones offered by most of the specification/programming 
languages, where only the type of arguments is considered; OBJ3 ,also specifies the properties 
that actual parameters must satisfy. 

The theory presented here introduced only the type interval. A more complete theoretical 
work must formalize all the spaces of the numeric computation. This can be done constructively 
on top of the type interval by defining new type formation operators. 

The functional language ML was originally designed to serve as the programming language 
for the LCF theorem prover [8]. An interesting piece of work would be to do the specification 
of the type interval using the specification language ML, and then compare the advantages 
and drawbacks between both. 
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