
Mechanising
OBJ3

Reliable Computing 2 (2) (1996), pp. 97-102

the theory of intervals using

MARCILIA A. CAMPOSt AUGUSTO C. A. SAMPAIOr and ALExANDRE H. F. BR ÎNER

] 'his work uses the OBJ3 term rewriting system to fi!rmalize the type interval thnmgh .~mle of its
algebraic and tOlx)logical pr¢~perties. The intended contribution is not the discovery of new theorems
related to numeric',al or interval arithn!etic. Rather, our ail]t is to fiwnlally specify the type interval with
the view of performing trmchanical (automated) reamming al'xmt its properties.

ABTOMaTtf3aIu4 BMBOAOB B TeopIIH
 HTepBaAOB C IAcnoAI 3OBaHIAeM OBJ3
M. KAMrlOC, A. CAMIIA1;IOt A. BPAPIHEP

{] II(LMOIIIhlO CHc'reMbl IIepeHl[Chll~INH~l repMoB OBJ~ llpotl31~llIiTCH ~bopMa.'lH3aIlHH HHTepB~L'|[~H{|I'O 1'H|la
qepe3 HeKo'ropMe 113 el 'o .qJIre6p~llltteCKtlX tl Tlllll}dlOrlltleCKllg (71~tlTlCl'l~.. ABTOpt,I He {.~I"aBHI" (.X~6¢ liC.'lblO

~,crz-tm>m'lemlle HOBI~IX TeOpeM, O'rHOC~IttlllXC.'t K (~JDICT$I MIIc'IeHHOITI 14:1tl Itrtrepl,~,ldll,HOfi ilp|l(0M~TltKtl,

~Cdlb[o paC)OTld HB71~I~CPl t'~3pM;ldll,HOe oltpe,/tefleHlte HHTeplia;II~HOI'O THIIa H o¢'~,eclleqeHlle PA)3Mo~,KHO(TrH
~IBI'O.M~ITII3|IpI)I~c'IHHOI'O II{)dlyqeHllH cF.e/teHHf, I o el'() Cl~)171(7l'Bax.

1. Introduction
Application programs that have been formally proved correct can only be reliable if they run
on hardware that has been formally proved correct, under correct basic software, such as
operating systems, enviromnents and tools.

If the real numbers are represented with fixed precision (single or double), the most
common form of representing them is using floating-point numbers. The system of floating-
point numbers neither enables to preserve algebraic properties nor permits controlling and
evaluating numerical errors that may arise in a sequence of arithmetic operations.

Moore [7] has defined the set of real intervals. Each element of this set is a compact subset
of the real line. The interval arithmetic operations with high accuracy [5, 7] use the optimal
dot product and interval arithmetic as essential tools in addition to floating-point arithmetic.
Interval arithmetic allows the computation of guaranteed bounds for the solutions of a problem.
Validation by interval arithmetic is necessary to get results of high and guaranteed accuracy.

The programming languages Pascal-XSC [4], ACRITH-XSC [9], and C-XSC [6] are
extensions of the programming languages Pascal, FORTRAN, and C++, respectively. These
extensions, beyond the usual primitive data types, have the type £n te rva t and the arithmetic
operations are defined by the horizontal method [5]. The availability of the type ±m;erval
raises the computational cost, but also increases the reliability of numerical results.

This paper introduces the type interval into a programming langnage, but with a different
objective. The main goal here is proving theoretical properties about intervals. This work uses
OBJ3 [3] to formalize the type interval through some of its algebraic and topological properties.

(~) M. A. Cmmpos. A. C. A. Sampaio. A. H. F. Brainer, 1996

98 M. A. CAMPOS, A. C. A. SAMPAIO, A. H. F. BRAINER

OBj3 is a functional language which includes mechanisms for theorem proving. From the point
of view of the interval mathematics the proofs here can be found in the references about the
subject [1, 7]. Therefore, the intended contribution is not the discovery of new theorems related
to numerical or interval arithmetic. Rather, our aim is to formally specify the type interval
with the view of performing mechanical (automated) reasoning about its properties. It is also
worth emphasizing that the directed roundings (~7, A) [5] are not considered, because we are
concerned with the properties of the interval arithmetic, and not with numerical algorithms.

This paper is organized in the following way. Section 2 shows the properties about intervals
that have been proved. Section 3 gives an overview of the OBJ3 language. Section 4 describes
the formalization of the type interval using OBJ8. Section 5 summarizes our achievements and
suggests topics for further research.

2. The properties
Let X, Y and Z be intervals. The following properties [1, 7] have been proved.

o X + Y = Y + X .

. X + (Y + Z) = (X + Y) + Z .

,X+O=X.

,OEX-X.

,X*Y=Y*X.

, X , (Y , Z) = (X * Y) * Z.

, X * I = X .

• l ~ X / X , OCX.
• X , (Y + Z) C X * Y + X * Z .

• X A Y = Y n X .

• Xn (YnZ) = (XnY) nZ.
, X u Y = Y u X .

• x u (Y u z) = (xuY) uz.
• X C Y ~ w(X) <_ w(Y).

,, w (X + Y) = w(X) + w(Y).

• w(X - Y) = w (X) + w(Y).

• d(X, Y) = 0 #~, X = Y.

• d(X, Y) = d(Y, X).

• d(X, Z) < d(X, Y) + d(Y, Z).

• I x l > o.

• txl = o ~ . x = [o, o1.
• IX + zf -< IXl + IZl.
• I x , YI = lXl • IYI.
• x _c Y ~ IXl < I Y I

MECHANISING THE THEORY OF INTERVALS USING OBFJ 99

3. OBJ3
OBJ3 [3] is a general-purpose declarative language, especially useful for specification and
prototyping. A specification in OBJ3 is a collection of modules of two kinds: theories and
objects. A theory has loose semantics, in the sense that it defines a variety of models. An
object has tight or standard semantics; it defines, up to isomorphism, a specific modelni ts
initial algebra. For example, the usual specification of the natural numbers as an object would
describe predsety what is understood by the natural numbers. As a theory, it would describe
any model that satisfies the required properties; for instance, integers would be a model. One
of the consequences of the distinction between a theory and an object is that it is valid to use
induction for an object, but not for a theory.

A module (an object or a theory) is the unit of a specification. It comprises a signature and
a set of (possibly conditional) equations--the axioms. The equations are regarded as rewrite
rules and computation is accomplished by term rewriting, in the usual way.

An elaborate notation for defining signatures is provided. As OBJ3 is based upon order
sorted algebra, it provides a notion of subsorts which is extremely convenient in practice. For
example, by declaring I n t e g e r as a subsort of F loa t no conversion function is needed to turn
an integer into a float.

A general mixfix syntax can be used to define operators; users can define any syntax
including prefix, postfix and infix. The argument and value sorts of an operator are declared
when its syntactic form is declared.

Moreover, operators may have attributes describing useful properties such as associativity,
commutativity and identity. This makes it possible to document the main properties of a given
operator at the declaration level. As a consequence, the number of equations that need to
be input by the user is reduced considerably in some cases. Most ~ importantly, OBJ3 provides
rewriting modulo these attributes.

Modtfles may be parametrized by theories which define the structure and properties
required by an actual parameter for meaningful instantiation. The instantiation of a generic
module requires a view--a mapping from the entities in the requirement theory to the entities
in the actual parameter (module). As a simple example, an object to describe sets of arbitrary
elements, say SET, should be parametrized by a theory which requires the argument module to
have (at least} one sort. Then this module can be instantiated to obtain sets of elements of the
desired sort.

Apart from the mechanisms for defining generic modules and instantiating them, OBJ3
provides means for modules to import other modules and for combining modules. For example,
A + B creates a new module which combines the signature and the equations of A and B.

OBJ3 can also be used a~ a theorem prover. In particular, computation is accomplished
by term rewriting which is a widely accepted method of deduction. If the rewrite rules of the
application theory are confluent (or Ghurch-Russer) and terminating, the exhaustive application
of the rules works as a decision procedure for the theory: the equivalence of two expressions
can always be determined by reducing both to normal form (an expression that can be reduced
no longer); the equivalence holds if the two normal forms are (syntactically) the same.

100 M.A. CAMPOS, A. C. A. SAMPAtO~ A. H. F. BRAINER

4. Formalizing and implementing intervals
The theory INTERVAL must include the boolean (BOOL) and real (REAL) values with their
respective operators and usual properties. OBJ3 has a built-in module which implements the
boolean algebra (B00L). The module RFAL as used in this work is an incomplete specification of
the real ,lumbers (but which is enough tbr our purposes), where we introduced a sort Real and
some operations such as addition, multiplication and subtraction with the relevant properties.
For conciseness, we will not present BOOL nor REAL here; only the module which desoibes
intervals is presented for the purpose of illustration.

Furthermore, given the features of the interval operations, it is necessary to use real sets.
This may be done by specifying the theory of sets as a generic module (parametrized by the
type of the elements). Then this genetic module may be instantiated with the ,nodule REAL.
Apart from the declaration of the type of elements, it is necessary to define a total order
between elements, because the interval theory uses properties of sets, such as the maximum
(max) and the minimum (rain) of a set.

The theory INTERVAL contains a description of the type (sort) INTERVAL as well as its
unary and binary operators. The module B00L is imported using the clause p ro l ;ec t ing , which
means that INTERVAL adds no new elements to this algebra and that no distinct elements in
B00L (such as true and false) are identified in INTERVAL. As the module SET is generic, it can
only be imported into INTERVAL after being instantiated; in our particular case, this module is
instantiated with the module REAL, as we are interested in sets of real numbers.

The relation subsort declares that intervals may be represented as sets. This facility of
OBJ3 is particulary useful in the definition of intersection and union of intervals when the
result of some operation may be the empty set. The constructor of the type interval ([_,_])
is a partial operator: the lower bound of the ~ te rva l must be less than or equal to the upper
bound. The symbols [p rec 2], [p rec 4], [p rec 5], and [prec 6] are the precedences of
the operators reciprocal, negation, multiplication and subtraction. This means, for example,
that the precedence of the negation is lower than the precedence of the multiplication in terms
that involve both. The additional properties of the operators are described by equations (eq)
and conditional equations (cq). It is possible to associate a name (label) with the equations (see
[2] for more details).

th INTERVAL is

pro%ecting BOOL .

protecting SET[REAL]

sort Interval .

subsort In%erval < Set .

op-as C_,_]
op_+_

op-_

op_-_

op _*_

op_-I

op_/_
op w_

: Real Real -> Interval for [xl,x2] if xl <= x2 .

: Interval Interval -> In%erval [prec 6] [¢o,,n assoc id:

: Interval -> Interval [prec 4]

: Interval Interval -> Interval [prec 6] .

: Interval Interval -> Interval [prec 5] [comm assoc id:

: Interval -> Interval [prec 2]

: Interval Interval -> Interval [prec 5] .

: Interval -> Real .

[o , o] 3 .

[l,i]] .

MECHANISING THE THEORY OF INTERVALS USING OBJS 101

op absi_

op pm_

op d

op _om_

op _ok_

op _in¢_

op _/_

: interval

: Interval

: interval

:Interval

: Interval

: Interval

: Interval

-> Real .

-> Real .

Interval -> Real .

Interval -> Bool .

Interval -> Bool .
Interval -> Bool .

Interval -> Interval [comm assoc]

op _\/_ : Interval Interval -> Interval [comm assoc]

op _pertains : Real Interval -> Bool .

vat A B : Interval .

var xl x2 x3 x4 : Real .

[add] eq [x!,x2] + [x3,x4] = [xl + x3, x2 + x4]

[sym] eq - [xl,x2] = [- x2, - xl] .

[dif] eq A - B = A + - B .

[eq] eq [xl,x2] == [xS,x4] = (xl == x3) and (x2 == x4) .

[mult] eq [xl,x2]*[x3,x4] = [min({xl * x3} U {xl * x4} U {x2 * x3} U {x2 * x4}) ,

max({xl * x3} U {xl * x4} U {x2 * x3} U {x2 * x4})]

[rec] eq [xl,x2] -i = [I / x2, i / xl] .

[div] eq A / B = A * B -I .

[wid] eq w [xl,x2] = x2 - xl .

[abe] eq absi [xl,x2] = max({abs(xl)} U {abe(x2)}) .

[diet] eq d([xl,x2] , [x3,x4]) = max({abs(xl - x3)} U {abe(x2 - x4)}) .

[pm] eq pm [xl,x2] = (xl + x2) / 2 .

[om] cq [xl,x2] om [x3,x4] = true if x2 < x3 .

[ok] cq [xl,x2] ok [x3,x4] = true if xl <= x3 and x2 <= x4 .

[inc] eq [xi,x2] inc [x3,x4] = if x3 <= xl and x2 <= x4

then true

[±nt] eq [xl,x2] /\ [x3,x4] = if

else false

f± .

xl > x4 or x2 < x3

then {}

else [max ({xl} U {x3}), min({x2} U{x4})]

fi

[uni] eq [xl,x2] \/ [x3,x4] = if

fi

([xl,x2] / \ [x3,x4]) == {}

then {}

else [min ({xl} U {x3}), max({x2} U{x4})]

[pert] cq xl pertains [x2,x3] = true if x2 <= xl and xl <= x3 .

endth

5. Conclusions
The main purpose of this paper was to show how a teHn rewrite system such as OBJ3 can be

used both to formalize and to prove propert ies of interval mathematics.

The dual nature of the type interval (number or set) was easily solved with the subsort
declaration, i.e., s u b s o r t I n t e r v a l < S e t means that the set of elemertts having the first sort

102 M . A . CAMPOS~ A, C. A. SAMPAIOt A, H. F. BRAINER

(InZerval) is a subset, not necessarily proper, of the set of elements having the second sort
(set).

The formalization of the interval theory also illustrates the facilities related to the operator
declarations in OBJ3. When, for example, commutativity is defined as an attribute (at the
declaration level) there are implications related to termination.

The module system stimulates an incremental presentation of the theory. It was seen
that modules may be parametrized by theories and instantiated to meet particular needs. Such
facility is more powerful than the ones offered by most of the specification/programming
languages, where only the type of arguments is considered; OBJ3 ,also specifies the properties
that actual parameters must satisfy.

The theory presented here introduced only the type interval. A more complete theoretical
work must formalize all the spaces of the numeric computation. This can be done constructively
on top of the type interval by defining new type formation operators.

The functional language ML was originally designed to serve as the programming language
for the LCF theorem prover [8]. An interesting piece of work would be to do the specification
of the type interval using the specification language ML, and then compare the advantages
and drawbacks between both.

References
[1] Alefeld, G. and Herzberger, j. Introduction to inten~ computation. Academic Press, N.Y., 1983.

[2] Campos, M. A. Formalizing and implementing (or proving) tn'operties of inteJ~Jals using the OBJ3
system. Technical Report, No. 002, DI-UFPE-BR.

[3] Goguen, J., Winkler, T., Meseguer, J., Futatsigi, K., and Jouannaud, j. Introduction to OBJ.
Technical Report, SRI International, 1993, to appear.

[4] Hammer, R., Neaga, M., and Ratz, D. Pascal-XSC, new concepts f~r scientific cominaation and
numerical data In'ocessing. In: Adams, E. and Kulisch, U. (eds) "Scientific Computing with
Automatic Result Verification 189", Academic Press, 1993, pp. 15-44.

[5] Kulisch, U. W. and Miranker, W. L. Computing arithmetic in theoly and practice. Academic Press,
1981.

[6] Lawo, C. C-XSC, a programming environment for verified scientific computing. In: Adams, E. and
Kulisch, U. (eds) "Scientific Computing with Automatic Result Verification 189", Academic
Press, 1993, pp. 71-86.

[7] Moore, R. E. Methods and applications of interval analysis. SIAM, Philadelphia, 1979.

[8] Paulson, L. C. ML for the working programmer. Cambridge University Press, 1991.

[9] Walter, W. V. ACRITH-XSC, A Fortran-like language for verified computing. In: Adams, E. and
Kulisch, U. (eds) "Scientific Computing with Automatic Result Verification 189", Academic
Press, 1993, pp. 45-70.

Received: October 30, 1995 Universidade Federal de Pernambuco
Revised version: November 29, 1 9 9 5 Departamento de Inform.4tica, Caixa Postal 7851

CEP 50740-540 Recife-PE
Brasil

E-mail: {acas , ahfb , m a c } ~ d i . u f p e . b r

