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With this issue, we start a new section: short reviews of papers and books that describe 
applications of reliable scientific computing, i.e., computations with guaranteed accuracy (interval 
computations, etc.). 

The experience of the International Workshop on Applications of Interval Computations 
(El Paso, TX, February 23-25, 1995) has shown that there are many unexpected application 
areas and results that are not widely known in the reliable computing community. 

It is very difficult to trace such papers because papers of applications of reliable scien- 
tific computing are published not only in mathematical journals (that are usually covered by 
Mathematical Reviews, Zentralblatt fur Mathematik, etc.), but also in the journals of the corre- 
sponding application areas, that are, as a rule, not covered by traditional mathematical review 
journals. Moreover, reviews published in Mathematical Reviews, Zentralblatt fur Mathematik, 
etc., may only describe the result without explaining that interval methods (or other methods of 
reliable scientific computing) have been actually used. In view of this difficulty, we decided to 
provide the readers of RC with Short reviews of application papers (something like an ongoing 
annotated bibliography). 

We strongly believe that the information about the current applications is of interest to 
this community. 

For the reasons expressed above, we are currently not covering all current application 
papers. To increase the coverage, we need your help. If you know of any recent papers 
devoted to applications of reliable scientific computing, please send the references to Vladik 
Kreinovich at vtadik©cs,  ua;ep, edu, or by regular mail to 

V~D~: K~m'qov~cr~ 
Department of Computer Science 
University of Texas at E1 Paso 
El Paso, TX 79968, USA 

If you have written your own reviews, or if you would like to write reviews, please contact 
Vladik as well. Authors, please send information and/or copies of your own application papers 
(papers in Russian and German are also welcome). Reviews should be in LaTeX, but ASCII is 
also acceptable. 

This is a new section, and we want the reader's input about how to make it better. For 
example, when we have more reviews, it may make sense to divide this section into subsection 
devoted to different application areas. Any suggestions and recommendations will be highly 
welcome. 

Editorial Board 



1 9 6  REVIEWS 

Z e e m a n ,  E. C. Catastrophe theory. Selected papers, 1972-1977. A d d i s o n - W e s l e y ,  L o n d o n ,  1977 .  

P o s t o n ,  T .  a n d  S t e w a r t ,  I. N.  Catastrophe theory a n d / t s  app//cat/ons. P i t m a n ,  L o n d o n ,  S a n  F r a n c i s c o ,  

1978 .  

G u c k e n h e i m e r ,  J. Comments of catastrophe and chaos. In :  " S o m e  m a t h e m a t i c a l  q u e s t i o n s  i n  b i o l o g y  ~, 

IX,  L e c t u r e  N o t e s  o n  M a t h e m a t i c s  i n  t h e  Li fe  Sc iences ,  A m e r .  M a t h .  So:. ,  P r o v i d e n c e ,  RI ,  1978 ,  

p p .  1-ft .  

K r e i n o v i c h ,  V.  Letter on catastrophe theory. Not i ce s  A m e r .  M a t h .  Soc. 2 6  (5) (1979).  

S a u n d e r s ,  P. T .  An introduction to catastrophe theory. C a m b r i d g e  U n i v .  Press ,  C a m b r i d g e ,  1980 .  

Catastrophe, theory and applications. W i l e y ,  N.Y., 1981.  
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Laws of physics are typically given in the fi)rm of a mritahnud princ.ip&, i.e., each . f  these laws state 
that .,~me characteristic ..,¢ of the fields and particle ccx~rdinates, called tuft*m, must take thOti,tud (usually, 
mini, l~d) value. These laws can be used t,~ predict the values t~f desired physical quantities based on the  
measurements results. The  action S is usually a stnt~th fimctitm of its variables; theretbre, e.g., in field 
theory, we can usually extract a system of differential equatitms fr, m~ the variational principle and thus; 
predict the furore values of the fields pnwided that we have measured their current values at all spatial 
points. There  are infinitely nrany points in space, and, in  reality, we cannot measure infinitely many 
values. ~ ,  we measure finitely many vahtes, and use an appruximate version ,~f the variati, mal principle 
(or of the r~sulting differential equatitms) tu predict the values of the desired physical quantities, 

In general, let us assume that we measure the quantities r a t , . . . ,  ran,  and we are interested in the 
values of the quantities z t , . . . ,  zk. Tu determine a:i from ra.~, we use the variational principle 

S ( m t  . . . . .  m n , z l  . . . . .  ; r ~ ) ~  min  
3~X,...,2k 

fi~r a known function S. Differentiating over z~, we get a nero-linear system c~f equatilms: 
S i ( m t , . . . , m n ,  Zl,  . . . , z k )  = 0, I _< i < k, where Si is a partial derivative of S w.r.t, z i .  

Since the functions St are smcx~th (differendahle), for almost all values of m = ( r a t , . . . , m ~ ) ,  the 
dependency of xi  on ra j  is al.~ smtx~th. Thus, in a small neighh~rh, x~d of a txfint m j ,  there exists a 
constant C > 0 such that to determine xi with a desired accuracy ~ > 0, we nmst measure m.~ with an 
accuracy C' .  ~. In terms of the nmnber t~" digits: m find g digits of zi ,  we must, fi~r mine appropriate 
c, know m j  with an accuracy of g + c binary {tar dedmfl) digits. 

The  dependency of :r i on m j  is, however, not always smtaJth: e.g., in state equations, we have phet~ 
tra~L~/m~s, in which the dependency changes in a non-sm*~)th manner  (sometimes even discondmmusly). 
This non-smoothness drastically decreases the accuracy of the result: eg., if the dependency is t~f the 
type ~ri = ~ (i.e., a:~ - m j  = 0), then fi~r ra j  m 0, to find d digits of zl ,  we must know 2d digits 
of m j  (in terms of accuracy: to cmnpute zi with an accuracy ~, we must know m.$ with an accuracy 
C$ 2 for some C). For cubic rc~)ts, the situation is even worse. In general, the higher the degree of the 
equatitm that determines z t ,  the wor~ is the accuracy. How had can it be? 

Of  cottr~, even for a single ln~astlrement result m and a single desired variable z ,  we can have, in 
principle, an equation z N -- m --- 0 fi~r an arbitrary large N ;  as Pc" grows larger, this equatkm requires 
better and better accuracy in m to achieve the ~ m e  accttracy in a:. St), in prindple, it can be as had as 
possible. 

The  next natural question is: how frequent are these had cases? Are almost all situaticms bad c)r 
bad situations are (in some reasonable ~nse) rare? 

Catastrophe theory, is a formalism that provides a partial answer to this question. Its basic result. 
first proven by R. Thorn and E. C. Zeeman, states that if the nmnber k of the unknowns is 5 or less, 
then fi~r dnmrt a// functions S (in some rea.~mable tOl~)kgical ~nse) the .~)lution a t ( m r  . . . . .  ran)  of the 
equations Sj  = 0 can be hmally repr~ented as a compositicm of three mappings: 
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• a sTmmth mapping r o t , . . . , r n ,  n --* m ~ , . . . , m t n ;  

• a mapping m~ --* x~ described by the ctmdition 

S . ( ~ L . .  ' ' ' ., ran,  x l, . . . ,  xk) ---* rain 

where Sa is a function from a finite li~ c~f potymanial funcrkms called e.lmm~emy tzat~ea.optm~; 

• a .~ntmth nmpping x~ . . . .  ,x~,mt . . . .  ,rnn ---* xz , . . . ,xn.  

Thus, fi~r rdma¢ rdl fimctions S, the cmly part of the algorithm that requires a non-linear increase in 
accuracy is the secured one, and in this sectmd part, the degree t~f the F~lynmnial Sa (and hence, the 
increase in accuracy) is Ixmnded. 

This resnlt ks pnwen for rdmaa rdl systents ,.q'; it might so happen that it is mR true for the actual 
physical action functicms S; luckily, however.-this decoml~mition result is true for km~wn physi~d acthm 
functions as wall. 

When we represent a mapping in the fi~rnt of this cmnl~sition, then the only part (~f this mapping 
in which we mu~ take spedal care of accuracy (because linearli:~ati~m e.stimates dt~ m~t w~rk) is the 
secured one, in which we actually follow one of the .s*xmdard systems St .  For these finitely many standard 
systems, we can pre-c~mtpute the desired accuracy. 

So far, we talked about the situatilms in which we already km~w 5'. In ntany real-life problems, 
however, we know that there is a variati, mal principle, but we do m~t know the exact fimcdon ,.q. In 
such ~tuations, we must deteranine 5' from the experiments. Usually, m determine 5', we expand S 
into a power series (cut after a certain power), and determine the (unknown) coefficients of this series 
fi'~nn the results of the experiments. We have mentioned that it is computationally advantagemts m 
find xi  using the three-mapping representation. Therefi~re, rather than finding 5' and determining 
the mappings, it is easier to find the mapping directly from the experiments: namely, we expand the 
formulas for these mapping into Tayk~r series, and find the unknown coeffidents of these expansions 
directly from the experinaental results. 

This method~flogy forms of the basis of applied rattz~tr#p~ th~;ry. There exist many successfifl 
applicati~ms of this methodology (and even more suggestions and speculati~ms on the i~ssibility ~f other 
applications). 
Cmmneut. Our description of cata~rophe the~ry is aimed at the interval computati~ms c~nnmunity, and 
is, therefi~re, different from the ttatal expositions of this theory: Although the computathmal (including 
computational accuracy) a s ~ s  of catastrophe the~ry are (implidtly or explicitly) present in the papers 
and monographs, these aspects are usually overshadowed either by complicated mathenmtics, or by the 
description t~f successfld appticati~ms, or (as in original papers of Thorn) by philo.~phy. 

Th. Swen.~m and V. Kreimwich 

M a r k s ,  M. a n d  H a m m o n d ,  K. J. A review of Allen, j .  F, Kautz, H. A, Pelavin, R. N ,  and Tenen. 
berg, j .  D. "Reasoning about plans", Morgan Kaufmann, San Mateo, CA, 1991. A C M  S I G A R T  (Spec ia l  

I n t e r e s t  G r o u p  in  A r t i f i c i a l  I n t e l l i g e n c e )  B u l l e t i n  4 (2) (1993) ,  p p .  8 - 1 1 .  

The I~x~k that Marks and Hmmnond review describes the use tff intervals fi~r planning. Marks and 
Hammtmd emphasize that the interval approach tt~ planning (originated fr(ml the wt~rks c~f Allen) is 
based on the assumption that expert knowledge about dnte is rxnt~te~a. If expert specificati~ms turn out 
to be inconsistent, then we must infi~nn the experts abuut this inconsistency and ask thent to cc~rrect their 
spedfications. This tedious procedure is ah.~flutely necessary in critical ~tuations. when every requirement 
is absoluteiy necessary (hard). In real life, however, uiany requirements are .u~fl (rec, mnnendatkms rather 
than requirements), st~ inccmsistency and the resuking imlx~'sibility to satisfy all the requirements may be 
quite admissible. 

M. ]~ltmn 
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Allen, J. F. and Ferguson, G. Actions and events in interval temporal logic. J. Logic Computat. 4 (5) 
(1994), pp. 531-579. 

The authors describe, an interval-based teml~ral hgic in which usual mm-teml~ral ha.tic statements of  
the type P ( s )  (~the pn~perty P holds for object.s s ' )  are replaced by temporal statements P(8,  [ t - ,  t+]) 
("the property P holds for cabjects s for all mmnents ~ff time t E I t - ,  t+]"). The basic relatkm between 
intervals is "meets': I t - ,  t +] meets I s - ,  s +] iff t + = s - .  All other ordering relations between intervals 
can b e  expressed in terms of  "meets': e.g., "t = [ t - , t  +] precedes s = [8-,s+]" (meaning t + < s - )  is 
equivalent to 

~ha ( t  meets  u & u meets  s).  

The authors show how this logic can be used to represent expert knowledge about actkms, and how it 
can be used fi~r prediction, planning, and explanatinns. 

A. Pr~wetti 

Barth, W., Lieger, R., and Schindter, M. Ray tracing general parametric surfaces using inter~t arithmetic. 
The Visual Computer, International Journal of Computer Graphics 10 (7) (1994), pp. 863-371. 

This paper describes an algorithm fi)r ray tracing general parametric surfaces After dividing the surthce 
adaptively into small parts a binary tree of these parts is built. For each part a branding wdume is 
calculated with interval arithmetic. Frn,n lin~tr apprcmimations and intervals fi~r the partial derivatives 
it is possible to omstruct paralldepipeds that adapt the orientation and shape of the surthce parts very 
well and fi)rm very tight enclosures. Therefiwe an algorithm fiw rendering can be developed which is 
similar to that used with Bezier- and B-Spline-~irfaces, where the t~amding w~lumes are derived from 
the convex hull property. The tree of  enclosures (generated once in a prepnw.essing step) guarantees 
that ~'tch ray that may hit the surface leads to an iteratiml em a very small*surface part; this iterati~m 
can be rnhtstly (and very fast) performed in real arithmetic. 

W. Barth, R. Lieger, and M. Schindler 

AtaUah, M. J., (::hen, D. Z., and Lee, D. T. An optimal algorithm for shortest paths on weighted intert~l 
and circular-arc graphs, with applications. Algorithmica 14 (1995), pp. 429-441. 

How to design a traffic c, mtrol scheme fi~r a long highway of length L? We have n po.~sible omtrol 
teams; team # i can effectively control traffic on an interval [a~-,a+], and the cost of this team's use 
is ca. We nmst select the teams so that the entire highway is covered, and the total cost is the smalle~ 

l~ssihle. 
Similar problesns esnerge: 

• in sr.heduling; e.g., if we ~hednle the teaching assi~ants to supervise a computer hb; 

• in bioh~gy, where, e.g., we nmst dec~ie the DNA in the cheapest l~ssihle way by dec~n:ling its 

~gments bF, a+l; 
• in VLSI d~ign, where we must find the cheapest set nf tests that covers the entire path of  the 

signal; 

• and in many other appticati*m areas. 

The traditkmal way to ~lve this problem is u~ design a graph whose nodes are intervals a, b~. . .~  and 
in which a and b are connected iff a N b  # O. Such a graph is called a ~aeighted) i~n~d gr#~Oh, and ti~e 
problem is reduced to finding a shortest path in this graph. 

Traditional shortest path alg~withms require time that is quadratic in the size r~ of  the input. In this 
paper, a new line.ar tb~w algorithm is proposed. (To be more precise, this algorithm requires linear time 
if we assume that the .set of all endp~,ints a~  is already ordered; otherwise, it takes time O ( n  log(n)).) 
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In many real-life prt~lenm, we have a similar problem: we have arts ~n a rirde, and we tuna  find 
the cheapest set of arcs that covers the entire circle. For example, in traffic conmfl, the r(md may be a 
kx~p. For this prt~blem, the authors prolx~se a quadratic-time algorithm. 

V. Kreim~vich 

B a r t h ,  W.  Using special arithmetic in geometric algorithms. T o  a p p e a r  in:  " N u m e r i c a l  M e t h o d s  

a n d  E r r o r - B o u n d s " ,  P r o c e e d i n g s  o f  t h e  I M A C S - G A M M  I n t e r n a t i o n a l  S y m p o s i u m ,  U n i v e r s i t y  o f  

O l d e n b u r g ,  G e r m a n y ,  A K A D E M I E  V e r l a g ,  B e r l i n ,  J u l y  1995 .  

The application tff interval arithmetic shown in this paper deals with get,metric algorithms. The  purpose 
fi~r which we use this reliable computation is different from the usual ~me. It is not to find an indnsion 
fi~r the final results, but it is to c~mtrol the algorithm correctly, i.e. to find the right branch the algorithm 
has to fi~llow from the signs of intermediate results, this means a~uring reliable c~mtrol. The  problem 
arises when working with the method of Edelsbrunner and M(icke fi~r eliminating all special cases in 
ge~mletric algorithms. Of course the sign of an intermediate result (arithmetic expressitm) can only 
be determined c~wrecdy without any exception by exact arithmetic. But it is much more efficient to 
calculate such an expre.~sion first with interval arithmetic, and only in the few cases where the resadting 
interval c~mtains zero the time consuming exact calcadation has to be perfi~nned. 

W. Barth 

B e n d e r ,  M.  A., G a s t a l d o ,  M., and" M o r v a n ,  M.  Parallel i n t e r ~  order recognition and construction of  

interval rep'esentations. T h e o r e t i c a l  C o m p u t e r  S c i e n c e  1 4 8  (1995) ,  pp .  7 3 - 9 1 .  

The authors propose parallel algorithms fi~r ~flving the fiflh~wing ~heduling problem: we have n rusks 
t t , . . . ,  tn, and we have selected rn pairs (ty(1), is(i)) of t h e ~  tasks (1 < i ~ ra) that must overlap in 
time. We must .whedtde these rn tasks (i.e., map each of them into a time interval) in sudt a way that only 
intervals that c~rreslxmd to rn given pairs of tasks *werlap, and intervals corresponding m other pairs 
(hm't overlap. The protx)sed algt~rithms run in time O( log(n) )  on n + m proces.~rs and in constant 
time o n  O ( n  2) processors. 

V. Kreincwich 

B t o n d e l ,  V. On interval potynomails with no zeros in the uni disc. I E E E  T r a n s a c t i o n s  o n  A u t o m a t i c  

C o n t r o l  4 0  (3) (1995) ,  pp .  4 7 9 - 4 8 0 .  

It is well known that a discrete-time linear sy~em x(k  + 1) = AxIk ) if stable iff the elgenvectors 
:~ of A (i.e., vectors fi,r which A~ = AY: fi,r .~)me A) lead to ~able trajectc)ries x(k) = Ak~, i.e, 
iff A k ~ 0 when k --, oo. This, in its turn, is e~tivalent t~) IA[ < 1. One way re) a)mpute 
eigenvalues of a given matrix A is to take into c~)nsideration that eignevalues are r(x)ts of tile the 
characteristic p~)lynomial if(A) = de t (A  - AI). In terms of p, the abe)re conditi(m means that all 
r~x~ts of the polym)mial if(A) = p0A n + plA n - t  + . --  + Pn must be inside the open unit disk. It is 
often convenient to ccmsider a new variable z = I /A.  To guarantee stability, this new variable must 
satisfy the property [z] > I. This new variable is a r ~ t  cff the polynomial equatkm p(z)  = 0, where 
p(z) = i f ( l /A)  • A n = I)o + ptz  + . . .  + pnz n, For this new polynomial, the stability c~mdition is that 
p(z) should have no zeros in the dosed unit disk. 

When we .start with a system with interval uncertainty (i.e., with an interval matrix A), we end up 
with a p~lymmlial p ( z )  = P0 + p t z  + " -  + pnz  n with interval coefficients Pi. 

In the paper under review, a new necessary condition is fi~rmulated fi~r all rcx~ts of an interval 
polynomial to be outside the dosed unti disk. This condition uses ~mly tw(~ cx~efficiems P0 and PI .  

V. Kreinovich 
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Bustince, H. and Burillo, P. Correlation of/nter0a/-va/ued /rdu/t/on/st/c furry sets. Fuzzy Sets and 
Systems 74 (2) (1995), pp. 287-244. 

An expert system is a computer systenl that contains and uses expert knowledge. Expert statements that 
constitnte this knowledge are often formulated in terms of natural language that do not have a precise 
meaning: e.g., the expertiz¢ in ccmmJlling a car can he descrihed in terms of  the rules of  the type 
"if y,m are driving fast, and an ,~bsmcte is ,~y c2r~, break ~zr~ (the italidzed words are not fi~nnally 
defined). The problem with describing the meaning of  such words to a computer is that, fi~r SOlne values 
~f vek~ty, the expert is not 100% sure whether these vahtes mean ~fast" or not. So, m describe the 
meaning of the term A that characterizes mine quantity q, we must, fi~r etch value of q, chanmterize 
the expert's degree ~f belief #A(q) that q .satisfies the property A. 

The simplest way to describe uncertainty is to characterize the expert's degree uf belief in A(q) by 
a nunther #a(q) fnml the interval [0,1] (e.g. by asking the expert to describe his/her degree ~f belief 
d cm a scale from 0 to, my, 10, and then assigning I~A(q) = d/10). ~l'he resulting fimctkm #A fi'mn 
the set Q of  possible value of q to the interval [0, 1] is called a .]kzzy .~t. 

If we know the degree of belief IzA(q) in A(q), then we can estimate the degree of belief in 
"~A(q) as 1 - l zA(q ) .  

A filzz.y set is mr  a perfe~ description of expert's uncertainty: e.g.. it a~signs 0.5 b~)th to the case 
when we have exactly as many arguments i n rawer of  A(q) and in rawer of  "~A(q), and t .  the ca~ 
when we do n~rt anything al~mt A(q). Tt~ distinguish between these tw~ situati~ms, we can ask an 
expert to estimate no0 values: hi~her degree of ccmfidence #A(q) in A(q), and degree of confidence 
#-A(q) in "~A(q). In the resulting formalism (called inl.uiti,,,,2~tiefitzzy h~gk:), the degree of belief in A(q) 
is characterized by an hrtmT,a ~A(q), 1 - -# -A(q ) ]  (with #A(q) < 1 --lZ.A(q)). 

This description is better hut still not perfect ~_~m~ in reality, it is often difficult tbr an expert 
to pinpoint his degree c~f confidence very narn~wly. A Ira~re realistic description of  an expert's degree 
,,f ~,,nfidence is an / , ,~, ,~ ,,f r~,ss~e vahtes [#~(q), , ,~(q)] .  If we ,,nly , , , ,si , te,  the degree ,,f belief 
in A, then we get intend-T,dural fi~2.y sets. If we c~msider interval degrees of confidence for h~th A and 
-,A, then we get an i~am~,d.t¢dued haui~hmi¢ic fuzzy :~. in which the degree of belief is described (using 
an appropriate interval term) by a twin 

[mA(q), 1 - m.A(q) ]  

where rag(q)  = LuA(q), #,~(q)] and rn.A(q) = [#-~A(q),#+A(q)]- 
An expert can formulate lnany rules; the inore rules, the slower the resulting expert system. Hence, 

to speed up the expert system, we must delete the rides that are redundant in the sense that they folh~w 
frmn the others. In particular, if we have two rules "if A then. . ."  and "if B then...~ with different 
condithms A and B, then, we would like to know to what extent the pn~perties A and B are ¢:o~'cebtt~. 

If A and B are t~th described by flmz-./sets, then, as a degree of correlati~m, we can use the degree 
to which A and t3 occur together, i.e. the degree ~f belief in A&B. If we u ~  the product m d e s ~ h e  
&, then, fi,r each q, we get the formula I(A,l~,q) = #a&n(q) = #A(q)" #B(q). S~), as a degree ,,f 
correlation, we can take the average value of #A&B(q) fi,r all q: I (A,  B) = IQ1-1 ~ q ~ 0  2"(A, B, q). 
The properties A and B are c~,rrehted if A ~ B, and hence, if I(A, B) ~ I(A, A) ~ I(B, B). S,. we 
can take K( A, B) = I(A, B)/ X/I(A, A) . I(B, B) as the correlatkm ¢.ve.ffidmtt that takes values between 
0 and 1, and that is equal to t iff A = B. 

If  A and B are described by intuitionistic flu.zy sets, then tbr every q, we have an interval 
[/~A(q), 1 -- ~ A ( q ) ]  of  l~Ssible values of  degree ,~f belief, and therefore, we get an inttrrml , ,f l~,ssible 

values of/~A&B (q): 

As a numerical value f ( A ,  13, q) of correlati~m, it is natural to take an average value fnnn this interval, 
i.e., its mldl~int 

I( a, B, q) = ~l " (l~a (q) " IzB(q) + (X -- I~-A (q) ) " (1--1z.B(q) ) ) 

For interval-vahmd intuititmistic fuzzy sets, we have inter~ds fi)r tzA(q) and for/.rB(q). As a result. 
the ab~we formula leads to an interval. Again, m get a numerical values, it is nan~r'al to take a midp~fint 
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~f thks interval; this idea leads m the fi~rmula 

+ + 

The paper under review introduces the al~ve definitions and describes the pr~,perties ~f thus 
defined c~rrelati~n. 

V. Kreim,vich 

Chen, S., Qiu, Z., and Song, D. A new method for computing the upper and lower bounds on frequencies of 
structures with interval parameters. Mechanics Research Communications 22 (5) (1995), pp. 431-439. 

The frequency t~ c)f a structure can be determine as a square rcx~t w = V ~  of the ~)lutitm t¢~ the 
.~-called genertdized e.ignn~dt~ problnn K u  = A M u ,  where K = Ik~.¢l is a ~t/~,~ ,natrlx and M = lrr~jt is 
a mat~ mtarix. In real life. we (fften know ~mly the intervals ~f p~ssible values ~f kgj and raij;  in such 
simatitms, we want to know the iriterval ~f l.~msible values of A. 

There exist ~veral interval meth~rLs fiw s~lving the generalized interval eigenvalue prt~blmn; the~ 
methtx, is are mainly tdgebrtEc, based on the equati~m K u  = A M u .  In this paper, a new methnd is 
pr~l~sed that is Imsed on the kn~wn repre~ntation of  ~he eigenvalue pr~blem as an ~ptimizati~m 
problem (called Rtqleigh Qdu~tient): the Largest eigenvahm is equal to 

u T K u  
.~ = rlla:x 

u:~o u T M u  

similar fi~rmulas describe other eigenvahtes (~tae ct)rresptmding fi~rmulas are slightly m~re c~m~plicated, 
with rain max  instead ~f me.x}. 

Tile method is illustrated tin the example ~,f a multi-st(~ry structure. 

V. Kreimwich 

Kogan, j. and Leizarowitz, A. Frequency domain criterion far robust stability of interval time-delay systems. 
Automatica 31 (3) (1995), pp. 463-469. 

Stability amditions fi)r time-delay systems are of great iml~rtance fi)r industrial appliGitions. Delays ~['len 
~ccur in the transmi.~si~m of infiwmation cw material between different parts ~f a system, Tr~msl~rtation 
systems, ccnnmtmicati~m systems, chemical pmce.,zsing systems, metallurgical processing syaems, environ. 
lnental systems, and p~wer systems are examples of time-delay systems. The mathematical formulation 
t~f a time-delay ~stem results in a system *~f delay-differential e~mficms. Any tnathenmtiGtl modal of an 
engineering system p*~ssesses the unawfidable inaccuracy. The existence ,~f the inaccuracies implies that 
the analysis ,Jr stability and perfi~rmance as well as system design, based cm a m~minal model ,rely, may 
not be meaningfld in applicati~ms. 

In this paper, a new criterion is described fi~r robust stability tff interval time-delay systems. 

Fr~m~ the atttht~rs' Sl.lllllnary 
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Li, R. and Carmo, J. On completeness of a positional int~nl  logic with equality, overlap and subinter~ 
relations. Journal of the IGPL (Interest Group on Propositional and Predicate Logic) 3 (5) 
(1995), pp. 765-790. 

A new logic fi~r reasming al'mut time intervals is presented and proven to be complete ill the standard 
logical .sen~: if a statelnellt S is true in aU l~ssihte situati~ms, then S ~m be deduced grt,m the axioms 
of this logic by using its deduction rules. This result c~m be used to design a compnter system ttlat 
would automaticaflly check whether a given statement al'x~l|t time intervals is true or not. 

V. Krein~wich 

Luo, J. S., Johnson, A., and van der Bosch, P. P. J. Delay-independent robust stability of uncertain 
linear systems. Systems and Control Letters 24 (1995), pp. 33-39. 

The authors consider linear systems wltll uncertainty and time delay that are described by the etlnalions 
of the fi~llowing type: 

r 

e(t) = Az(t) + Boz(t - "co) + ~-~/3jBjz(t - ~-j). 
g:=l 

Here: 

• The nncertainty in a matrix A is cansed by m unknown thctors ~i: A = A 0 + ~ I A I + . .  "+otmAm; 
the matrices Ai (that describe the dependence ~f A ~m these factors) are known; the values of  the 
factors a i  are unkn~wn, but we know the I'~unds/~i tbr these values: c~i E [-/zi,/~i]. 

• The coefficients/3 i al tile "unwanted" delay terms are unknown; we know tile I~mncLs t/i fiw these 
coemciems (/3j E [ - v j ,  vj]), and we know ~he matrices B i that describe tile influence of these 
delays on the system. 

• The wdues of  the delays r~: are unknown. 

Based ~m tile available in|brmatlon, we want to | |lid out whether tile systeln is .stable or not; m be more 
precise, whether the system is guaranteed to be stable (i.e., is robt6~tly stable), ~r it may not be stable for 
~nne pc~ssible values of  the unknown parameters ai ,  3j ,  and -r/¢. The authors describe new sufficient 
criteria fi~r n~bu~ .stability of s~.lch systems. 

V. Krein, wich 

M a j u m d a r ,  S. Application of relational arithmetic in performance analysis of computing systems. In:  

" W o r k s h o p  o n  I n t e r v a l  C o n s t r a i n t s  ( I n t e r n a t i o n a l  L o g i c  P r o g r a m m i n g  S y m p o s i u m  I LPS '9 5 )  ", 

P o r t l a n d ,  O R ,  D e c e m b e r  1995. 

This paper presents a survey of the existing work in the armt <ff interval arithmetic-l~lsed perfi~nnance 
analysis of computing ~stems. 

Intervals in perfi~rmance analysis are required when uncertainties <~r variabilities exist in the work- 
h)ad parameters fi)r an analytical performance m¢~ld of the system+ Intervals are al~) useful ti)r 
computing upper and h)wer hounds on system peril)finance. 

Most conventional analytic m(gtels accept a set of single valued parameters and pn)duce a single 
valued m(~el output. Adaptation ()f these existing mcr..leks to handle interval parameters require new 
techniqnes that use an interval arithmetic engine. 

Experiences with relational interval arithmetic provided by a constraint h)gic pn)gramming langnages 
in solving a number of  perfi)ranance analysis problems are described. 

Previ(lus publi~tions on the applications of interval analysis to) perfornmnce evaluati~m ()f cmnputing 
systems include; 
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Majumdar, S. and Ramado.~, R. haervtd-ha~d pe~fin'~utnu'z trntdy~i~ of cmnpl~,g .wtenL~. In: "Proc. Model- 
ing, Analysis, and Simulation of Computer and Teleconm|unication Systen~s", January 1995, pp. 345-351. 

Majumdar, S., W~x~side, C M., Neilson, J. F,, and Petriu, D. C. Robt~ box bana~d~: ~t~an'k p~Jrnuau'~ 
gaartn~teea for eh~e.,t mM~irJlL~ qiw.ahtg ~J~'t#tn'Ic*; laith min~n~d .~todu~gie tL~uanpti~nt~. In: "Proc. of Infoc~nn'92 
GmferencC, Florence, Italy, May 1992, pp. 2006-2016. 

Majumdar, S., "Wcmdside, C~ M., Neil.~m, j. E., and Petriu, D. C. Perfin~atuu:t Imttlu~ fi~r rsnwatrre~tt 
.~ware with rende.z~#nt*. Perfi~nnance Evaluation 18 (4) (1991), pp. 207-236. 

Majumdar, S, Interlard arith~ic fi~r pe~fim~uutce ttmdysi~ of distrib~aeA annp~ai~g .~ent~. In: "Proc. Canadian 
Gmference on Electrical and O~mputer Engineering", Quebec City, Canada, September 1991, pp. 32.3.1- 
32.3A. 

Ramadoss, R. hae~,d-lu~ed p~fin~un~e tnud~i~ of am~p~ting .~at~. M. Eng. Thesis, Department ,,f 
Systems and Omtputer Engineering, C, artet~m University, Otta~ra, Canada, I994. 

W~glside, C. M., Majumdar, S., and Neils, m, J. E. lnterz~d arittn~tic, fi~r amtputing perfi~rnuatc~, g~unm~te~ 
in client~uo~r .Wte~ts. In: Dehne, F., Fiala, E, and Koczk~az, W. W. (eds) "Lecture Notes in Gnnputer 
Science: Advances in G~mpufing and Infi~rmation~IC~rgt", Springer-Verlag, 1991, pp. 585-546. 

S. Majmndar 

Mori,  T.  and  Kokame,  H. Comments of "On the stability of discrete-time linear interval systems". Auto-  

mat ica  81 (6) (1995), pp. 9 2 t - 9 2 2 .  

The authors comment on the paper by P. Myszkorowski published in A~aonuaicn 84 (1994), pp. 913- 
914. In that paper, the author prop~ses a new sufficient condition fiw stability of discrete-time linear 
systems xk+t = A(k)zlc, where for every k, components aq(k) of the matrix A(k) belong to the 
known intervals [a~,,a+]. My,vzkorowski's criterion is difficult t,) check. The attthors show that his 
criterion is equivalent to the easily checkable fact that I - B is an M-matrix. where I is a unit matrix, 
bij = max(Jai l ,  la/~.l), and an M-matrix is a matrix with nnn-p,sitive t,ff-diagtmal entries for which 
successive leading principal minors are all positive. 

v. Kreinovich 

Mori,  T.  and  Kokame,  H. Stah'lity criteria for interval matrices via regularity conditions. IE ICE  Trans .  

Fundamenta l s  E 7 8 - A  (5) (1995), pp.  5 5 3 - 5 5 5 .  

In order to cheek that a given control u = K x  makes a given sy~em ~: = Am + Bu with intervalty 
uncertain c~efficient matrices A and B stable, we nmst check whether the interval nmtrix A + B K  
is .~Me (i.e.. whether Re(A) < 0 for all its eigenvalu~s A). In general, checking stability is an NP-hard 
problem. There exist several algorithms fi~r checking stability (including several proposed by J. Rohn); 
these algorithms rexluire, in the worst case, exl~mentially long time. 

In this paper, the author proposes several new, easily checkable, sufficient criteria fi~r stability of 
interval matrices. 

V. Kreinovich 


