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With this issue, we start a new section: short reviews of papers and books that describe
applications of reliable scientific computing, i.e., computations with guaranteed accuracy (interval
computations, etc.).

The experience of the International Workshop on Applications of Interval Computations
(El Paso, TX, February 23—25, 1995) has shown that there are many unexpected application
areas and results that are not widely known in the reliable computing community.

It is very difficult to trace such papers because papers of applications of reliable scien-
tific computing are published not only in mathematical journals (that are usually covered by
Mathematical Reviews, Zentralblatt fur Mathematik, etc.), but also in the journals of the corre-
sponding application areas, that are, as a rule, not covered by traditional mathematical review
journals. Moreover, reviews published in Mathematical Reviews, Zentralblatt fur Mathematik,
etc., may only describe the result without explaining that interval methods {or other methods of
reliable scientific computing) have been actually used. In view of this difficulty, we decided to
provide the readers of RC with short reviews of application papers (something like an ongoing
annotated bibliography).

We strongly believe that the information about the current applications is of interest to
this community.

For the reasons expressed above, we are currently not covering all current application
papers. To increase the coverage, we need your help. If you know of any recent papers
devoted to applications of reliable scientific computing, please send the references to Vladik
Kreinovich at vladik@cs.utep.edu, or by regular mail to

Viapix KremovicH

Department of Computer Science
University of Texas at El Paso
El Paso, TX 79968, USA

If you have written your own reviews, or if you would like to write reviews, please contact
Vladik as well. Authors, please send information and/or copies of your own application papers
(papers in Russian and German are also welcome). Reviews should be in LaTeX, but ASCII is
also acceptable.

This is a new section, and we want the reader’s input about how to make it better. For
example, when we have more reviews, it may make sense to divide this section into subsection
devoted to different application areas. Any suggestions and recommendations will be highly
welcome.

Editorial Board
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Laws of physics are typically given in the form of a wiriatinal principle, ie., each of these laws state
that some characteristic S of the fields and particle coordinates, called action, must take optimal (usually,
minimal) value. These laws can be used to predict the values of desired physical quantities based on the
measurements resuits. The action § is usually a smooth function of its variables; therefore, eg., in field
theory, we can usually extract a system of differential equations from the variational principle and thus;
predict the future values of the fields provided that we have measured their current values at all spatial
points. There are infinitely many points in space, and, in reality, we cannot measure infinitely many
values, s0, we measure finitely many values, and use an approximate version of the variational principle
{or of the resulting differential equations) to predict the values of the desired physical quantities,

In general, let us assume that we measure the quantities 7, ..., My, and we are interested in the
values of the quantities Z1,..., 2. To determiné Z; from my;, we use the variational principle

S{my,...,Mn, %1, .., &) — min
Ly yeenrZhe
for a known funcion §. Differentiating over zj, we get a nondinear system of equations:
Si(my, ..y M, T1y .-, Zk) = 0, 1 1 < k, where S; is.a partial derivative of § wrt. z;.

Since the functions S; are smooth {differentiable), for almost all values of m = (my,...,my), the
dependency of T; on m; is also smooth. Thus, in a small neighborhood of a point my, there exists a
constant C' > 0 such that to determine z; with a desired accuracy € > 0, we must measure m; with an
accuracy € -£. In terms of the number of digits: to find d digits of z;, we must, for some appropriate
¢, know m; with an accuracy of d + ¢ binary {or decimal) digits.

The dependency of T; on m; is, however, not always smooth: eg., in state equations, we have phase
tramsitions, in which the dependency changes in a non-smooth manner {sometimes even discontinuously).
This non-smoothness drastically decreases the accuracy of the resuit: eg, if the dependency is of the
type T; = /M; (ie., z? — m; = 0), then for m; = 0, to find d digits of T;, we must know 2d digits
of m; (in terms of accuracy: to compute T; with an accuracy €, we must know m; with an accuracy
Ce? for sume C). For cubic roots, the situation is even worse. In general, the higher the degree of the
equation that determines Z;, the worse is the accuracy. How bad can it he?

Of course, even for a single measurement result 7 and a single desired variable =, we can have, in
principle, an equation ¥ —m = 0 for an arbitrary large N; as N grows larger, this equation requires
better and better accuracy in m to achieve the same accuracy in Z. So, in principle, it can be as bad as
possible.

The next natural question is: how frequent are these bad cases? Are almost all situations bad or
bad sicuations are {in some reasonable sense) rare?

Catastrophe theory is a formalism that provides a partial answer to this question. Its basic result,
first proven by R. Thom and E. C. Zeeman, states that if the number &k of the unknowns is 5 or less,
then for almost all functions § (in some reasonable topological sense) the solution zi(ma,...,myp) of the
equations S; = 0 can be locally represented as a compasition of three mappings:
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® a smooth MAPPIng ™My, ..., My — MY, ..., Mh;

e a mapping m’; — x} described by the condition
pping m; i y
+ £ 2 '] :
Sa{mi,....,m,, x7,...,2%) — min

where S, is a function from a finite list of polynomial functions called dementary catastrophes;
® a smooth mapping i,..., Tk, M1, ..., M = Ty, ..., Tn.

Thus, for almus all functions S, the only part of the algorithin that requires a non-linear increase in
accuracy is the second one, and in this second part, the degree of the polynomial S; (and hence, the
increase in accuracy) is bounded.

This result is proven for almost all systems S; it might so happen that it is not true for the actual
physical action functions S; luckily, however, this decomposition result is true for known physical action
functions as well.

When we represent a mapping in the form of this compaosition, then the only part of this mapping
in which we must take special care of accuracy (because linearlization estimates do not work) is the
second one, in which we actually follow one of the standard systems Sg. For these finitely many standard
systems, we can pre-compute the desired accuracy.

So far, we talked about the situatibns in which we already know §. In many reallife problems,
however, we know that there is a variational principle, but we do not know the exact function S. In
such situations, we must determine S from the experiments. Usually, to determine S, we expand S
into a power series {cut after a certain power), and determine the (unknown) coefficients of this series
from the results of the experiments. We have mentioned that it is computationally advantageous to
find z; using the three-mapping representation. Therefore, rather than finding S and determining
the mappings, it is easier to find the mapping directly from the experiments: namely, we expand the
formulas for these mapping into Taylor series, and find the unknown coefficients of these expansions
directly from the experimental results.

This methodology forms of the bhasis of applied catastrophe thenry.  There exist many successtul

applications of this methodology (and even more suggestions and speculations on the possibility of other
applications).
Comment. Qur description of catastrophe theory is aimed at the interval computations conumunity, and
is, therefore, different from the usual expositions of this theory: Although the computational {including
computational accuracy) aspects of catastrophe theory are {implicitly or explicitly) present in the papers
and monographs, these aspects are usually overshadowed either by cumplicated mathematics, or by the
description of successful applications. or {as in original papers of Thom) by philosophy.

Th. Swenson and V. Kreinovich

Marks, M. and Hammond, K. |. 4 review of Allen, |. F, Kautz, H. A, Pelavin, R. N, and Tenen-
berg, J. D. “Reasoning about plans™, Morgan Kaufmann, San Mateo, CA, 1991. ACM SIGART (Special
Interest Group in Artificial Intelligence) Bulletin 4 (2) (1993), pp. 8~11

The book that Marks and Hammond review describes the use of intervals for planning. Marks and
Hammond emphasize that the interval approach to planning (originated from the works of Allen) is
based on the assumption that expert knowledge about time is consitent. If expert specifications turn out
to be inconsistent, then we must inform the experts about this inconsistency and ask them to correct their
specifications. This tedious procedure is absolutely necessary in critical situations, when every requirement
is absolutely necessary {hard). In real life, however, many requirements are sft (recommendations rather
than requirements), so inconsistency and the resulting impossibility to satisfy all the requirements may be
quite admissible.

M. Beltran
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and Ferguson, G. Actions and events in interval temporal logic. J. Logic Computat. 4 (5)
531-579.

The authors describe-an interval-based temporal logic in which usual non-temporal basic statements of
the type P(s) (“the property P holds for objects 57) are replaced by temporal statements P(s, [t~,1%])
{“the property P holds for vbjects s for all moments of time ¢ € {t,¢%]"). The basic relation between
intervals is “meets™ {t,t*] meets [s7, 5] iff tT = s~. All other ordering relations between intervals
can be expressed in terms of “meets™ eg., “t = [t7,1¥] precedes s = [s7,s¥] (meaning £+ < 57} s
equivalent o

Ju {t meets u & u meets s).

The authors show how this logic can he used to represent expert knowledge about actions, and how i
can be used for prediction, planning, and explanations,

A. Provett

Barth, W, Lieger, R,, and Schindler, M. Ray tracing general parametric surfaces using interval arithmetic.
The Visual Computer, International Journal of Computer Graphics 10 (7) (1994), pp. 363—371.

Atallah, M.

This paper describes an algorithm for ray tracing general parametric surfaces. After dividing the surface
adaptively into small parts a binary tree of these parts is built. For each part a bounding volume is
calcufated with interval arithmetic. From linear approximations and intervals for the partial derivatives
it is possible to construct parallelepipeds that adapt the orientation and shape of the surface parts very
well and form very tight enclosures. Therefore an algorithm for rendering can be developed which is
similar to that used with Bezier- and B-Spline-surfaces, where the bounding volumes are derived from
the convex hull property. The tree of enclosures {generated once in a preprocessing step) guarantees
that each ray that may hit the surface leads to an iteration on 2 very small surface part; this iteration
can be robustly {and very fast) performed in real arithmetic.

W. Barth, R. Lieger, and M. Schindler

J+ Chen, D. Z,, and Lee, D. T. An optimal algorithm for shortest paths on weighted interval

and circular-arc graphs, with applications. Algorithmica 14 (1995), pp. 429—441.

How t design a traffic control scheme for a long highway of length L? We have n possible controt
teams; team # i can effectively control traffic on an interval [a], a;}], and the cost of this team’s use
is ¢;. We must select the teams so that the entire highway is covered, and the total cost is the smallest
possible.
Similar problems emerge:
e in scheduling; eg., if we schedule the teaching assistants to supervise a computer lab;

® in biolygy, where, eg., we must decode the DNA in the cheapest possible way by decoding its
segments (a7, o)

e in VLS design, where we must find the cheapest set of tests that covers the entire path of the
signal;

e and in many other application areas.

The traditional way to solve this problem is to design a graph whose nodes are intervals a,b,..., and
in which a and b are connected iff aNb # . Such a graph is called a Gweighted) interval graph, and the
problem is reduced to finding a shortest path in this graph.

Traditional shortest path algorithms require time that is quadratic in the size 7 of the input. In this
paper, a new linear time algorithm is proposed. (To be more precise, this algorithm requires linear time
if we assume that the set of all endpoints af is already ordered: otherwise, it takes time O{nlog(n)})
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In many reallife problems, we have a similar problem: we have ares on a drde, and we must find
the cheapest set of arcs that covers the entire circle. For example, in traffic control, the road may be a
loop. For this problem, the authors propose a quadratictime algorithm.

V. Kreinovich

Barth, W. Using special arithmetic in geomeiric algorithms. To appear in: “Numerical Methods
and Error-Bounds”, Proceedings of the IMACS-GAMM International Symposium, University of
Oldenburg, Germany, AKADEMIE Verlag, Berlin, July 1995.

The application of interval arithmetic shown in this paper deals with geometric algorithms. The purpose
for which we use this reliable computation is different from the usuai one, It is not to find an inclusion
for the final results, but it is to control the algorithm correctly, ie. to find the right branch the algorithm
has to follow from the signs of intermediate results, this means assuring reliable control. The problem
arises when working with the method of Edelsbrunner and Miicke for eliminating all special cases in
geometric algorithms.  Of course the sign of an intermediate result (arithmetic expression) can only
be determined correctly without any exception by exact arithmetic. But it is much more efficient to
calculate such an expression first with interval arithmetic, and only in the few cases where the résulting
interval contains zero the time consuming exact calculation has to be performed.

W. Barth

Bender, M. A, Gastaldo, M,, and Morvan, M. Parallel interval order recognition and construction of
interval representations. Theoretical Computer Science 143 (1995), pp. 73—91.

The authors propose parallel algorithms for solving the following scheduling problem: we have n tasks
t1,...,tn, and we have selected m pairs (tf(i),t,(i)) of these tasks {1 < ¢ < m) that must overlap in
time. We must schedule these m tasks (i.e, map each of them into a time interval) in such a way that only
intervals that correspond to m given pairs of tasks overlap, and intervals corresponding to other pairs
don’t overlap. The proposed algorithms run in time O(log(n}) on n + m processors and in constant
time on O{n?) processors,

V. Kreinovich

Blondel, V. On interval polynomails with no zeros in the uni disc. IEEE Transactions on Automatic
Control 40 (3) (1995), pp. 479—480.

It is well known that a discrete-time linear system zfk + 1) = Az(k) if stable iff the eigenvectors
Z of A {ie. vectors for which AZ = AZ for some )) lead to stable trajecwories z(k} = A%, ie,
#f A* — 0 when k — oo, This, in its turn, is equivalent to |A] < 1. One way to compute
eigenvalues of a given matrix A is to take into consideration that eignevalues are roots of the the
characteristic polynomial $(A) = det(4 — AI). In terms of p, the ahove condition means that all
roots of the polynomial H{A) = poA™ + p1 A" + .-+ + p, must be inside the open unit disk. It is
often convenient to consider a new variable z = 1/X. To guarantee stability, this new variable must
satisfy the property |z] > 1. This new variable is a root of the polynomial equation p(z) = 0, where
p(z) = H(1/A) - A™ = pg + p1z + - -» + ppz™. For this new polynomial, the stability condition is that
p{z) should have no-zeros in the cosed unit disk.

When we start with z system with interval uncertainty {i.e., with an interval matrix A), we end up
with a polynomial p(z) = po + P12 + -+ - + Pn2™ with interval coefficients p;.

In the paper under review, a new necessary condition is formulated for all roots of an interval
polynomial to be outside the dosed unti disk. This condition uses only two coefficients pp and p;.

V. Kreinovich
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Bustince, H. and Burillo, P. Correlation of interval-valued intuitionistic fuzzy sets. Fuzzy Sets and
Systems 74 (2) (1995), pp. 237—244.

An expert system is a computer system that contains and uses expert knowledge. Expert statements that
constitute this knowledge are often formulated in terms of natural language that do not have a precise
meaning: eg. the expertize in controlling a car can bhe described in terms of the rules of the type
“f you are driving fast, and an obstacle is wry dosw, break hard” (the iralicized words are not formally
defined). The problem with describing the meaning of such words to a computer is that, for some values
of velodity, the expert is not 100% sure whether these values meun “fast” or not. 8o, to describe the
meaning of the term A that characterizes some quantity g, we must, for each value of g, characterize
the expert’s degree of belief p14(g) that g satisfies the property A.

The simplest way to describe uncertainty is to characterize the expert’s degree of belief in A(g) by
a-number pa{g) from the interval [0, 1] (eg. by asking the expert t describe hivher degree of belief
d on a scale from 0 1o, say, 10, and then assigning pa(q) = d/10). The resulting Runction pg from
the set § of possible value of ¢ to the interval [0,1] is called a fuzzy st

If we know the degree of helief r4(q) in A(g), then we can estimate the degree of belief in
~A(q) as 1 - palq).

A fuzzy set is not a perfect description of expert’s uncertainty: eg. it assigns 0.5 hoth to the case
when we have exactly as many arguments in favor of A{g) and in favor of —A(g), and to the case
when we do not anything about A{qg). To distinguish between these two situations, we can ask an
expert to estimate fwo values: hisher degree of confidence p4(q) in A(g), and degree of confidence
E-a{g) in -A(q). In the resulting formalism (called intuitionistic fuzzy logic), the degree of helief in A(q)
is characterized by an mterwal {pa(g), 1 — p~a(g)] (with pa(g) <1 - p-a(q)).

This description is better but still not perfect because in reality, it is often difficult for an expert
to pinpoint his degree of confidence very narrowly. A more realistic description of an expert's degree
of confidence is an iterval of possible values [y {q),p}(q)}. If we only consider the degree of behief
in A, then we get interml-wilued fuzzy seis. 1f we consider interval degrees of confidence for both A and
—-A, then we get an intermal-malued intuitionistic fuzzy set, in which the degree of helief is described (using
an appropriate interval term) hy a twin

fmalg).1 - m-a{g)]

where ma(q) = [13(g), £4(9)] and m-4(g) = [uZ4(q), uZ 4 (9)]-
An expert can formulate many rules; the more rules, the slower the resulting expert system. Hence,

to speed up the expert system, we must delete the rules that are redundant in the sense that they follow
from the others. In particular, if we have two rules “if A then...” and “if B then..” with different
conditions A and B, then, we would like to know to what extent the properties A and B are correlated.

If A and B are both described by fuzzy sets, then, as a degree of correlation, we can use the degree
to which 4 and B occur together, ie., the degree of helief in A&B. If we use the product to describe
&, then, for each g, we get the formula I(4, B,q) = pazes(q) = paly) - p8{g). So, as a degree of
correlation, we can take the average value of paggs(q) for all ¢: I(4, B) = |Q]™} Yecq (A B,q).
The properties A and B are correlated if A = B, and hence, if I(4, B) = I{A, A} = I(B, B). Su, we
can take K (A, B) = I(A, B)/+/I(A, A) - I(B, B) as the orrelution coefficient that takes values between
0 and 1, and that is equal w 1 iff 4= B.

If A and B are described by inmitionistic fuzzy sets, then for every ¢, we have an interval
{ualg),1 = u-4(g)] of possible values of degree of belief, and therefore, we get an intrroal of possible
values of pagea(g):

[14(0) - u5(@), (1 = 4-a(@) - (1 = p2(0))]-

As a numerical value J{A, B, q) of correlation, it is natural to take an average value from this interval,
ie, its midpoint

I{A,B,g) = -;- : (I»’-A(Q) -us(g) + (1 - F’--A(‘1)) . (1 - n~a(q)))-

For intervalvalued intuitionistic fuzzy sets, we have intervals for za(q) and for pp(g). As a result,
the above formula leads to an interval. Again, to get a numerical values, it is natural to take a midpoint
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of this interval; this idea leads to the formula

1480 = 3+ (k10450 + u5@) kB0
+ (1 - u:A(Q)) : (1 - uZB(Q)) + (1 - #f,q(q)) . (1 - ui’B(Q))>-

The paper under review introduces the above definitions and describes the properties of thus
defined correlation.

V. Kreinovich

Chen, S, Qiu, Z,, and Song, D. A new method for computing the upper and lower bounds on frequencies of
structures with interval parameters. Mechanics Research Communications 22 (5) (1995), pp. 431—439.

The frequency w of a structure can be determine as a square root w = VA of the solution to the
so-called generalized eigewwdue problem Ku = AMu, where K = {kij| is a siffues matrix and M = |my;] is
a mass marix. In real life, we often know only the intervals of possible values of ki; and my ; in such
sitirations, we want to know the interval of possible values of A,

There exist several interval methaods for solving the generalized interval eigenvalie problem; these
methods are mainly algebraic, based on the equation Ku = AMu. In this paper, a new method is
proposed that is based on the known representation of the eigenvalue problem as an optimization
problem (called Ruyleigh Quotient): the Largest eigenvalue is equal to

A = max uTKu
w0 uT Mu

similar formulas describe other eigenvalues (the correspunding formulas are slightly more complicated,
with min max instead of max).
The method is iustrated on the example of a multi-story structure.

V. Kreinovich

Kogan, J. and Leizarowitz, A. Frequency domain criterion for robust stability of interval time-delay systems.
Automatica 31 (3) (1995), pp. 463—469.

Stability conditions for time-delay systems are of great importance for industrial applications. Delays often
occur in the transmission of information or material between different parts of a system. Transportation
systems, communication systems, chemical processing systems, metallurgical processing systems, environ-
mental systems, and power systems are examples of time-delay systems. The mathematical formulation
of a time-delay system results in a system of delay-differential equations. Any mathematical model of an
engineering system possesses the unavoidable inacouracy. The existence of the inaccuracies implies that
the analysis of stability and performance as well as system design, based on a nominal model only, may
not be meaningful in applications.
In this paper, a new criterion is described for robust stability of interval time-delay systems.

From the authors’ summary



202 REVIEWS

Li, R. and Carmo, J. On completeness of a positional interval logic with equality, overlap and subinterval
relations. Journal of the IGPL (Interest Group on Propositional and Predicate Logic) 8 (5)
(1995), pp. 765-790.

A uew logic for reasoning about time intervals is presented and proven to be cmpiete in the standard
logical sense: if a statement S is true in all possible situations, then § can be deduced from the axioms
of this logic by using its deduction rules. This result can be used to design a computer system that
would automatically check whether a given statement about time intervals is true or not,

V. Kreinovich

Luo, J. S., Johnson, A. and van der Bosch, P. P. . Delay-independent robust stability of uncertain
linear systems. Systems and Control Letters 24 (1993), pp. 33—39.

The authors consider linear systems with uncertainty and time delay that are described by the equations
of the following type:

%(t) = Az(t) + Box{t — 10) + iﬂijz(t ~-75).
J=1

Here:

o The uncertainty in a matrix 4 is caused by m unknown factors a;: A = Ag+oy A+ ++0mAm;
the matrices A; (that describe the dependence of A on these facors) are known; the values of the
factors ; are unknown, but we know the hounds g; for these values: o; € [‘*ﬂi,}.‘g},

o The coefficients §; at the “unwanted” delay terms are unknown; we know the bounds v; for these
coefficients (B; € [~v;, 15]), and we know rthe marrices Bj that describe the influence of these
delays on the system.

¢ The values of the delays 7 are unknown.

Based on the available information, we want to find out whether the system is stable or not; to he more
precise, whether the system is guaranteed to be stable (ie., is robustly stable), or it may not be stable for
some possible values of the unknown parameters oy, Bj, and 7x. The authors describe new sufficient
criteria for robust stability of such systems.

V. Kreinovich

Majumdar, S. Application of relational arithmetic in performance analysis of computing systems. In:
“Workshop on Interval Constraints (International Logic Programming Symposium ILPS95)",
Portland, OR, December 1995.

This paper presents a survey of the existing work in the area of interval arithmetic-based performance
analysis of computing systems.

Intervals in performance analysis are required when uncertainties or variabilities exist in the work-
lvad parameters for an analytical performance model of the sysem. Intervals are also wseful for
computing upper and lower bounds on system performance.

Most conventional analytic models accept a set of single valned parameters and produce a single
valued model output. Adaptation of these existing models to handle interval parameters require new
techniques that use an interval arithmetic engine.

Experiences with relational interval arithmetic provided by a constraint logic programming languages
in solving a number of performance analysis problems are described.

Previous publications on the applications of interval analysis to performance evahuation of computing
systems include;
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Majumdar, S. and Ramadoss, R. Tuterval-based peyformance analysis of computing systems. In: “Proc. Model-
ing, Analysis, and Simulation of Computer and Telecommunication Systers”, January 1995, pp. 345~351.

Majumdar, S., Woodside, C. M,, Neilson, J. E, and Petriu, D. C. Robust box bounds: network performance
guaranters for closed multicloss quening uetworks with winimal stochastic assumptions.  In: “Proc. of Infocom'92
Conference”, Florence, Italy, May 1992, pp. 2006~2016.

Majundar, 8, W«x)dside, C. M, Neilson, J. E, and Petriu, D. C. Performance bounds for concurrent
software with rendezvows. Performance Evaluation 13 (4) (1991), pp. 207-236.

Majumdar, S. Intervd arithmetic for performance analysis of distributed computing sytems. In: “Proc. Canadian
Conference on Electrical and Computer Engineering”, Quebec City, Canada, September 1991, pp. 3231~
3234.

Ramadoss, R. Tntervad-bused performunce analysis of computing sytems. M. Eng. Thesis, Department of
Systems and Computer Engineering, Carleton University, Ottawa, Canada, 1994.

Waodside, C. M., Majumdar, S, and Neilson, ]. E. Interoad arithmetic for computing performence guarantees
i dient-server sytews. In: Dehne, F, Fiala, F, and Koczkodaz, W. W, (eds) “Lecture Notes in Computer
Science: Advances in Computing and Information—ICCI'91”, Springer-Verlag, 1991, pp. 535—546.

S. Majumdar

Mori, T. and Kokame, H. Comments of “On the stability of discrete-time linear interval systems™. Auto-
matica 31 (6) (1995), pp. 921-922.

The authors comment on the paper by P. Myszkorowski published in Awtomaticn 34 (1994), pp. 913—
914. In that paper, the author proposes a new sufficient condition for stability of discrete-time linear
systems Tpay = A(k)zk, where for every k, components ayj(k) of the marix A(k) belong to the
known intervals [ai'j,a;;], Myszkorowski's criterion is difficult to check. The authors show that his
criterion is equivalent to the easily checkable fact that I — B is an M-matrix, where I is a unit matrix,
bi; = ma.x(!a;j!,!afj;), and an M-matrix is a matrix with non-positive off-diagonal entries for which
successive leading principal minors are all positive.

V. Kreinovich

Mori, T. and Kokame, H. Stability criteria for interval matrices via regularity conditions. IEICE Trans.
Fundamentals E78—A (5) (1995), pp. 553—555.

In order to check that a given control u = KT makes a given system £ = Ax + Bu with intervally
uncertain coefficient matrices A and B stable, we must check whether the interval matrix A 4+ BK
is stable (e, whether Re()\) < 0 for all its cigenvalues A). In general, checking stability is an NP-hard
problem. There exist several algorithms for checking stability (including several proposed by J. Rohn);
these algorithms require, in the worst case, exponentially long time.

In this paper, the author proposes several new, easily checkable, sufficient criteria for stability of
interval matrices,

V. Kreinovich



