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Locating, characterizing and computing the 
stationary points of a function 
I v h c ~  N.  V~m.~as  and EVANGELIA C. TRIANTAFYLLOO 

A meth~ fi~r the hmalization, characterizadcm and ctnnputatitm of the stationary ptfints of a cxmtinutatsly 
differentiable real-valued fimction tff n variables is presented. It is based on the annbinatoriai topohgy 
concept of the degree of a mapping associated with an oriented polyhednm. The method consists of two 
principal steps: (i) Iocalizati, m (and am~putation if required) of a ~ationary point in an nMimensional 
polyhedron; (ii) characterizatkm of a stationary point as a minimum, maximmn or .saddle txfint. The 
method requires truly the .signs of gradient values to be currect and it can be successfiflly applied to 
pn~blems with impredse values. 

rIOHCK  KAacc c  KaI  b I BbIq CaeHHe 
CTaI HOHapHbIX T0tIeK C yHKImH 
M. H. BPAXaT~C, E. C. Tr,~n-r^onAay 

l - lpeaao~eH Mcr(m IIOHCKa, IGrlaCCH{]I}H1G~IlIHH H BI~IMHCdleHH~I CrnlBIoHaptlMX TOMeK HeH~pbIBHO / H I ~  

~peHmlpyeMof~  ~ m ~ T ~ H a O f i  qbyagllHH n nepeMerlHblX. MeToa ¢~HOi~tH Ha 3aHM(Tr~Bi~HHOM |13 

KOM6HHaTOpHO~t TOlIOJ]OrHH IR)H~THH crel leHg OTt~pa~KeHHH, C.BH3aHHt)rI~ C opHeHTH~BaHHb~M MHoro- 

FpaHHHKOM. Meron  COCTOHT H3 ~By3~ OCHOBHIdX lllaroB: 1) JloKaalH3atmH (H, eCJIH He{~'e~XO/tHMO, BbltlH - 

c/leHHe) CTaUHoHapHO~ TOqgR B r/,-MepHoM MHororpaHHHKe; 2) g,~accttqbnxamm CT'aUJIoHapHo~ roqKH 

gaK TOtlKH MHHHMyMa, MRKCHMyMa ~ H  CeaflOl~t TOqKH. npiiMeHeHHe MeTOJla Tpe6yeT 3mlHHH TOBbKO 

3HaKOB rpa~tlteuTtm, rR)3TOMy A3HHMi~I MeTOA MO~U~r yc t leumo HCIIOAb3OBaTI~H A$1H pelIIeHHH 3aRaq c 

ilorpeitlH¢~=r.qMlt B yCdR~BH~IX. 

1. Introduction 
Several methods for finding the stationary points of  a function f :  D C R n ~ R, where 
7) is open and bounded, have been proposed with many applications in different scientific 
fields (mathematics, physics, engineering, computer  science etc.). Most of these methods require 
derivative calculations, one dimensional sub-minimization, or/and approximation of the inverse 
of  the Hessian matrix. Even the most eff ident  methods require precise function and gradient 
values. In many applications though, such as numerical simulations, precise values are either 
impossible or time consuming to obtain [6]. These problems can be dealt with by methods that 
do not require precise function and gradient values [2, 4, 7, 8, 11, 12]. 

In this contribution a method is presented for the localization, characterization and com- 
putation of  the stationary points of  an n-dimensional real function, which can be applied to 
problems with imprecise function values, since i t  requires only the signs of  gradient values to 
be correct. The  proposed algorithm implements topological degree theory and especially the 
concept and properties of  the characteristic n-polyhedron by which we avoid all calculations 
concerning the exact value of the topological degree. 
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This method co,~sts of two principal parts. In the first part, a stationary point of 
a continuously differentiable function f :  D C R" --+ R, where 29 is open and bounded, is 
localized within a given n-dimensional polyhedron. This procedure is based on a rootfinding 
algorithm [9-11]. Specifically, the nonzero value of the topological degree of the gradient of 
f ,  V f ,  at the origin 6) = (0 , . . . ,  0) relative to the polyhedron P, denoted by deg[Vf, P, O], 
is examined. In the case where a nonzero value of the topological degree has been obtained 
a stationary point of the function f is located within the polyhedron. In the second part of 
the algorithm, a new criterion is proposed for the characterization of the located stationary 
point as a minimum, maximum or saddle point. This procedure is based on the property of 
the examined polyhedron to be a characteristic n-polyhedron with a specific orientation on its 
vertices. This criterion does not require derivatives of V f  or approximations of them, hut only 
the algebraic sign of V f .  The located stationary point can be computed if required. 

2. The method 
To locate and compute a stationary point of a continuous function f :  29 C ~n ~ L~, where 
29 is open and bounded, we implement a generalized bisection method based on the notion of 
the characteristic n-dimensional polyhedron (CP) [9-11]. To define CP, let B~' be the n-digit binary 
representation of the integer k - 1, 1 < k < 2", counting the leftmost digit first. Then the 

* = * 2 n j = 1 , 2  . . . .  ,n,  is the matrix whose entry in the n-b/nary matr/x M n [C;j], i = 1, 2,~. . ,  , 
i-th row and j-th column is the j-th digit of B n. By replacing each zero element in the matrix 
.M n by - 1  we get a new 2 n x n matrix )kdn = [G/j], which we call an n-complete matrix; i.e. 
for n = 2 we have: 

B~ = O0 
= o i  

B2=I0 
B42=II 

) 

0 0 
0 1 
1 0 
1 1 

----+ .A42 = 

- 1  - 1  
- 1  1 

1 - 1  
1 1 

Suppose now that H" = (v 1, v2 , . . . ,  v 2") is an oriented n-polyhedron in R'* with 2" vertices 
and let F = (fl ,  f 2 , . . . ,  fn): I'In C •" ~ ]R n. Then the matrix of signs associated with F and !I", 
denoted ,.q(F; I'in), is the 2" x n matrix whose entries in the i-th row are the corresponding 

coordinates of the vector sgn F(v' )  = (sgn f l  (vi), sgn f2(vi ) , . . . ,  sgn fn(v i)), where sgn defines 
the well known sign function. An n-polyhedron l'I n is a CP if S(F;  II '~) - A4n. Under some 
suitable assumptions on its boundary, a CP always contains at least one solution of the system 
F ( X )  = e (CP-criterion), since the absolute value of deg[F, CP, e] is equal to one [13]. In 
order to approximate this solution, a generalized bisection method is used, in combination 
with the CP-criterion oudined above, which bisects a CP in such a way that the new refined 
n-polyhedron is also a CP. To do this, we compute the midpoint of a proper 1-simplex (edge) 
of II '~ and use it to replace that vertex of 17' for which the vectors of their signs are identical. 
Finally, the number B of characteristic bisections of the edges of a l'I n required to obtain a new 
refined CP, t"I, n, whose longest edge length, A(H,~), satisfies A(II,  n) < c, for some ~ E (0, 1), is 

given by B : [ log2(A( l - i '~)e- ' ) l ,  (for details see [9, I0, 18]). 
It is important to notice that the CP-criterion avoids all calculations concerning the 

topological degree since it requires not its exact value but only its nonzero value. 

The procedure outlined above can be implemented for V f ,  in order to determine the 
stationary points of f .  Specifically, the problem of computing a stationary point of a continu- 
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ously differentiable function f :  1) C R n -* R, where 2) is open and hounded, is equivalent to 
obtaining the corresponding solution z* 6 1) of the equation Vf (z )  = O. In the case where a 
nonzero value of deg[Vf, P, O], relative to an n-dimensional polyhedron P, has been obtained, 
a stationary point of the function f is located within this polyhedron. This procedure makes 
use only of the algebraic signs of V f ,  while derivatives of V / o r  approximations of them are 
not required. 

Now, using the concept and properties of the CP we can also characterize the located 
stationary points of a function as minimum, maximum or saddle points. This can be done as 
soon as a CP is constructed. According to the orientation of its vertices, the included stationary 
point is characterized and can be accurately computed, if required. If saddle or maxima points 
are not required then our algorithm does not proceed with their computation. Also, when 
a stationary point is given the method can easily characterize it. Our experience is that this 
criterion behaves predictably and reliably. The following theorem darifies this %haracterization" 
procedure. 

Theorem 2.I. Let f :  73 C R" --~ R be twice coneinuousl 7 differentiable in an open neighbor- 
hood l)  of a pointx* E 19 for which V f (x* )  = 0 and the Hessian of  f at x*, V2f(x*), 
is positive detinite. Then there exists an oriented CP, such that ,.q(Vf; CP) - .h~,~, which 
includes the minimizer x* of f .  

Proof. Clearly, the necessary and sufficient conditions for the point x* to be a local minimizer 
of the function f are satisfied by the hypothesis Vf(x*) = O and the assumption that V2f(z  *) 
is positive definite (see for example [1]). 

Consider the 2 n vectors p = (Pl,P2,. . . ,P,) whose coordinates are nonzero and their signs 
form all possible combinations of - 1  and 1. Then there exists a point z E (x*, x * +  p) for 
which the following relation holds: 

f (x* + p) = f ( z ' )  + v/(z)Tp. 

Now, since x* minimizes f ,  the inequality f(x* + p) > f(x*) holds in every direction p and 
consequently Vf(z) ' rp  will be positive. Therefore, the points z can form the vertices of an 
oriented CP such that ,.q(Vf; CP) - jVl,. Thus the theorem is proved. 

Based on the results of the above theorem and the properties of a characteristic polyhedron 
we are able to characterize the located stationary points. 

To do this we transform the oriented CP = ( v l , v2 , . . . , v  2") so that its n proper 1- 
simplexes with a common vertex are edges of the polyhedron with vertices formed by the 
rows of the 2" x n matrix 7Z, defined as follows. Let x~ in = rmn{vj," 1 v~2 . . . .  , vj2"}, z~ax = 
max{v~, v ] , . . . ,  v 2"} be the minimum and maximum of all the j-th components v} of the CP 
vertices v', respectively. Then we define the matrix 7£ = Q + A4~,B, where Q is the rank-l, 
2 '~ × n, matrix with elements in the j-th column having the value x [  ~n and B is the n × n 
diagonal matrix with ith element the difference hi = x ~  x - z~ ni". For example, for n = 2 we 
have: 

= + = 

x ~  x ~  n 
Z~ lin Z~ lin 

2~ nin Z~ tin 

0 

0 + 
1 

1 

0 

0 0 h2 
1 

;~1 in ;Z:~ nin 

= i .  

Next, we construct the matrix ,.q(V.f; 7£) and we distinguish the following cases: 
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a) If 2 '~-1 rows of S ( V f ;  g )  with the same sign in one of their columns are identical with 
the corresponding rows of .A/f,,, then x* is considered to be a local minimum. 

b) If  2 n-1 rows of S ( V ] ;  7~) with the same sign in one of their columns are identical with 
the corresponding rows of -.M,~, then x* is considered to be a local maximum. 

c) Otherwise, if these rows are not identical with the corresponding rows of .A/in or -.A4n, 
x* is considered to be a saddle point. 

3. Numerical applications 
The above procedures were implemented using a new portable Fortran program named MIN- 
BIS, which has been applied to several test functions. Our experience is that the algorithm 
behaves predictably and reliably. The results were satisfactory without any redundant function 
evaluations. Some typical computational results are given below where the reported parameters 
are: n dimension; x ° = (x t , x2 , . . . , an )  starting point; h = (hl, h2 , . . . ,h~)  stepsizes in each 
coordinate direction used to form the starting polyhedron [9]; ~5 (= 0.625E-5 for the following 
examples) positive input parameter (if it is less than the machine precision it is set equal to 
0.0625) that is used for the construction of CP [10]; x* = (x~,x~, . . . ,x~)  approximated local 
stationary point computed within an accuracy of e (predetermined precision not less than the 
machine precision, e = 10 -8 for the fo!lowing examples); NFE the total number of function 
evaluations for the characterization :and computation of a stationary point. 
Example 3.1. Kearfott function, [5]. The objective function f is given by: 

f ( x )  = (x~ + x  2 - 2) 2 + (x~ -X~ - 1) 2 

with four local minima x~ = ( - ~ A - ~ , -  ov"~.5), x~ = (-v/~-'-5,~v/'6~), x~ = (vri--'~, 0vrt~.5), 
x~ = ( - v / ~ , -  0x~._5,), one maximum z~ = (0,0), and four saddle points x; = ( v / ~ , 0 ) ,  
x~ ( - v t l ~ , 0 ) ,  x s = (0, 0V~.5), x; = (0,-vZ0"~). In Table 1 we exhibit indicative results 
obtained by MINBIS for various instances of the problem. 

x ° h x~ NFE Characterization 
( - 1 . 5 , ' 1 . 5 )  (1,1) x~ 67 minimum 

(-1 .5 ,0 .5)  (1,1) x~ 68 minimum 
(0.5,0.5) (1,1) x~ 67 minimum 

(0.5 , -1 .5)  (1,1) x~ 68 minimum 
( - 0 . 5 , - 0 . 5 )  (1,1) x~ 7 maximum 

(1,-0.5) (1,1) z; 7"1 saddle 
(-1.5,-0.5)  (1,1) x; 64 saddle 

( -0 .5 ,0 .5)  (1,1) x~ 99 saddle 
( -0 .5 , . -1 .5)  (1,1) x; 142 saddle 

Table 1. Kearfott function, n = 2 

Example 8.2. Himmelblau function, [3 t In this case f is given by: 

f (x )  = (x~ + x2 - 11) 2 + (xl + x~ - 7) 2. 

Executing the implemented program, one finds nine stationary points, which are: four local 
minima z~ = (3,2), z~ = (3.584428,-1.848126), z~ -- ( -3.77931,-3.283186) and x~ -- 
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(-2.805118, 3.131312), one maximum x~ = (-0.2708446, -0.9230387), and four saddle points 
x~ = (0.8667755, 2.884255), x.~ = (-3.073026,-0.8135307),  x~ = (3.385154, 0.07385179) and 
x; = (-0.1279613,-1.953715).  In Table 2 we exhibit some of the corresponding results 
obtained by MINBIS for various instances of the problem. 

* NFE x ° h x i 
(2,1) (2, 2) =~ 21 
(1,1) (4,4) =~ 102 

( 3 , - 2 )  (2,2) x~ 107 
( - 4 , - 4 )  (1,1) z ;  71 

( -3 ,  3) (2, 2) x,] 84 
( -05 ,  -1)  (1,1) z; 75 

( - 1 , - I )  (3,3) x~ 96 
(0, O) (3, 3) x~ 48 

( - 5 , - 2 )  (3,3) x~ 69 
(3 .2 , -0 .2)  (0.6,1) x~ 96 

( -1 , -3 )  (2,2) x; 93 

Characterization 

minimum 
minimum 
minimum 
minimum 
minimum 
maxamum 
m a x i m u m  

saddle 
saddle 
saddle 
saddle 

Table 2. Himmelblau function, n = 2 

Example 8.3. Identity function, [5]. In this case f is given by: 

1 n 

f(x) = -~ E x~. 
i = l  

This function has the minimum x* = (0, 0 , . . . ,  0). Various starting points and stepsizes were 
utilized successfully. The .algorithm appears to find and characterize the stationary points 
independently of the dimension n of the problem. In Table 3 we exhibit indicative results 
obtained by MINBIS fo r  various dimensions n. 

n x ° h x$ NFE 
2 ( - 2 , - 2 )  (4,4) z" 7 
s ( - 2 , - 2 , - 2 )  (a,a,4) =* ls 
4 ( -2 ,  - 2 ,  - 2 , - 2 )  (4 ,4 ,4 ,4)  x* 25 
5 ( -2 ,  - 2  . . . . .  - 2 )  (4,4 . . . . .  4) x* 49 
6 ( - 2 , - 2  . . . . .  - 2 )  (4 ,4 , . . . , 4 )  x" 97 
z ( - 2 , - 2 , . . . , - 2 )  (4,4 . . . .  ,4) =" 198 
8 ( - 2 , - 2 , . . . , - 2 )  (4,4,. . . ,4) x* s~s 
9 ( - 2 , - 2 , . . . , - 2 )  (4 ,4 , . . . , 4 )  x* 705 

Characterization 

m i n i m u m  

minimum 
m i n i m u m  

m i n i m u m  

minimum 
minimum 
minimum 
m i n i m u m  

Table 8. Identity function, n = 2, 3 . . . .  ,9 

Example 8.4. Extended Kearfott 
given by: 

0f(z) 
Oxi 

0f(z) 
Oxn 

function, [5]. In this case the components of  the gradient are 

= xi2-xi+t,  i = l ,  2 , . . . , n - 1 ,  

. .~ X n  2 - -  X 1 ,  
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n x o 

2 (0.5,0.5) 
2 (o.5,o.5) 
3 (0.5, 0.s, 0.5) 
3 (0.5, 0.5, o.5) 
4 (0.5, o.5,o.5, 0.5) 
4 (0.5, 0.5, 0.5, 0.5) 
5 (o.5,0.5,...,0.5) 
5 (o.5,o.5,...,o.5) 
6 (o.5,o.5,...,o.5) 
6 (o.5,o.5,...,o.5) 

h x~ NFE 
(1,1) xl ? 

(1000, 1000) x I 41 
(1,1,1) ~i 13 

(10oo, lOOO, lOOO) zl 42 
(t,1,1,1) z l  25 

(1000, 1000, 1000, 1000) x I 54 
(1 ,1 , . . . , 1 )  x i 49 

(lOOO, lOOO,...,lOOO) zl 78 
(t ,1 . . . . .  1)  zl 65 

(1000, 1000,.. . ,  1000) x I 94 

Characterization 
m i n i m u m  

minimum 
mlmmum 
minimum 
minimum 
m i n i m u m  

m i n i m u m  

m i n i m u m  

m i n i m u m  

m i n i m u m  

Table 4. Extended Kearfott function, n = 2, 3 . . . .  ,6 

The function has the minima z I = (1, 1 . . . . .  1) and x~ = (0, 0 . . . . .  0). Indicative results for 
various dimensions n are exhibited in Table 4. 

The algorithm was tested on several other problems with satisfactory results. It must be 
noticed that for different starting values or different input parameter 6 one gets different 
number of function evaluations. In all cases, one local stationary point is localized, successfully 
characterized and computed within the given accuracy. 
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