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Locating, characterizing and computing the
stationary points of a function

Micuaer N. Vranams and BEvanceLia C. TriANTAFYLLOU

A method for the localization, characterization and computation of the stationary points of a continuously
differentiable real-valued function of 1 variables is presented. It is based on the combinatorial topology
concept of the degree of a mapping associated with an oriented polyhedron. The method consists of two
principal steps: (i) localization (and computation if required) of 2 stationary point in an n-dimensional
polyhedron; (i) characterization of a stationary point as a minimum, maxitnum or saddle point. The
method requires only the signs of gradient values to be correct and it can be successfully applied to
problems with imprecise values.

[Tonck, xaaccuduKaasa u BEIIUCAEHE
CTallMOHAPHBIX TOUeK (PYHKIMM

M. H. Beaxatuc, E. C. Truanutacusay

[Ipemioken METoa HOMCKA, XJIACCHBDUKAUMH M BRIYHCIEHMS CTAUMOHAPHBIX TOYEK HEeNpepuiBHe aud-
thepeHuHpyeMoRt BeueCTBeHHOR (DYHKIMH Ti nepeMeHHBIX. MeTon OCHOBAH Ha 3aHMMCTBUBAHHOM H3
KOMBHHATOPHONR TONOAGIMM HOHSATHH CTENEHM OTOOPIKEHMS, (BASAHHOI) € OPHEHTHPOBAHHBIM MHOTG-
rpaHHuKoM. MeTon cocTOMT M3 ABYX OCHOBHBIX miarop: 1) soxamsamua (w, ecu HEOBROAHMO, BEIMS-
C/IEHNE) CTAHOMAPHOR TOMKM B Ti-MEPHOM MHOTOrpanHinke; 2) xiacoudbsxalis CTAUHOHAPHOR TOMKH
KaK TOMRH MHHHMYM2, MakcumyMa i ceasnomoir Touki. lpumenenne metona Tpefiyer 3HAHRA TOABKO
3HAKOB TPAANEHTOR, MOITOMY AAHHBIA METOL MOXET YCTEHIHO HCIKJIBIOBATHCA ARA PELfEHHA 3amay ¢
NOFPELIHOCTAMY B YCIOBHSX,

1. Introduction

Several methods for finding the stationary points of a function f: D C R® — R, where
D is open and bounded, have been proposed with many applications in different scientific
fields (mathematics, physics, engineering, computer science etc.). Most of these methods require
derivative calculations, one dimensional sub—minimization, or/and approximation of the inverse
of the Hessian matrix. Even the most efficient methods require precise function and gradient
values. In many applications though, such as numerical simulations, precise values are either
impossible or time consuming to obtain [6]. These problems can be dealt with by methods that
do not require precise function and gradient values 2, 4, 7, 8, 11, 12].

in this contribution a method is presented for the localization, characterization and com-
putation of the stationary points of an n-dimensional real function, which can be applied to
problems with imprecise function values, since it requires only the signs of gradient values to
be correct. The proposed algorithm implements topological degree theory and especially the
concept and properties of the characteristic n-polyhedron by which we avoid all calculations
concerning the exact value of the topological degree.
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This method consists of two principal parts. In the first part, a stationary point of
a continuously differentiable function f: D C R® — R, where D is open and bounded, is
localized within a given n-dimensional polyhedron. This procedure is based on a rootfinding
algorithm [9-11]. Specifically, the nonzero value of the topological degree of the gradient of
f. Vf, at the origin © = (0,...,0) relative to the polyhedron P, denoted by deg{V{, P, 9],
is examined. In the case where a nonzero value of the topological degree has been obtained
a stationary point of the function f is located within the polyhedron. In the second part of
the algorithm, a new criterion is proposed for the characterization of the located stationary
point as a minimum, maximum or saddle point. This procedure is based on the property of
the examined polyhedron to be a characteristic n-polyhedron with a specific orientation on its
vertices. This criterion does not require derivatives of V f or approximations of them, but only
the algebraic sign of Vf. The located stationary point can be computed if required.

2. The method

To locate and compute a stationary point of a continuous function f: D C R® — R, where
D is open and bounded, we implement a generalized bisection method based on the notion of
the characteristic n-dimensional polyhedron (CP) [9—-11]. To define CP, let B} be the n-digit binary
representation of the integer k — 1, 1 < k < 27, counting the leftmost digit first. Then the
nbinary matrix M, = [C5], 1 = 1,2,...,2% j =1,2,...,n, is the matrix whose entry in the
i-th row and j-th column is the j-th digit of Bf'. By replacing each zero element in the matrix
M by ~1 we get a new 2" X n matrix M, = [Cj;], which we call an n-complete matrix; ie.
for n = 2 we have:

Bi=100 B? 00 -1 -1
B =01 . | B}|_|01 -1 1
B2=10 — M=|m|=|10] Me=1 1
B} =11 B:? 11 1 1
Suppose now that II" = (v}, v%,...,v%") is an oriented n-polyhedron in R™ with 2" vertices

and let F = (fy, fa,..., fo): [I" C R® — R™. Then the matrix of signs associated with F and II",
denoted S(F;II"), is the 2" X n matrix whose entries in the i-th row are the corresponding
coordinates of the vector sgn F(v') = (sgn fi(v'),sgn fa(v?), ..., sgn fn(v‘)), where sgn defines
the well known sign function. An n-polyhedron II" is a CP if S(F;II") = M,. Under some
suitable assumptions on its boundary, a CP always contains at least one solution of the system
F(X) = © (CP-criterion), since the absolute value of deg[F,CP,©)] is equal to one [13] In
order to approximate this solution, a generalized bisection method is used, in combination
with the CP-criterion outlined above, which bisects a CP in such a way that the new refined
n-polyhedron is also a CP. To do this, we compute the midpoint of a proper l-simplex (edge)
of II" and use it to replace that vertex of II" for which the vectors of their signs are identical.
Finally, the number B of characteristic bisections of the edges of a II" required to obtain a new
refined CP, II?, whose longest edge length, A(II7), satisfies A(II7) < ¢, for some ¢ € (0, 1), is
given by B = {logz (A(H“) 6'1)-‘, (for details see [9, 10, 13}

It is important to notice that the CP-criterion avoids all calculations concerning the
topological degree since it requires not its exact value but only its nonzero value.

The procedure outlined above can be implemented for Vf, in order to determine the
stationary points of f. Specifically, the problem of computing a stationary point of a continu-
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ously differentiable function f: D C R* — R, where D is open and bounded, is equivalent to
obtaining the corresponding solution z* € D of the equation Vf(z) = ©. In the case where a
nonzero value of deg[V f, P, 0], relative to an n-dimensional polyhedron P, has been obtained,
a stationary point of the function f is located within this polyhedron. This procedure makes
use only of the algebraic signs of V f, while derivatives of V f or approximations of them are
not required.

Now, using the concept and properties of the CP we can also characterize the located
stationary points of a function as minimum, maximum or saddle points. This can be done as
soon as a CP is constructed. According to the orientation of its vertices, the included stationary
point is characterized and can be accurately computed, if required. If saddle or maxima points
are not required then our algorithm does not proceed with their computation. Also, when
a stationary point is given the method can easily characterize it. Our experience is that this
criterion behaves predictably and reliably. The following theorem clarifies this “characterization”
procedure.

Theorem 2.1. Let f: D C R® — R be twice continuously differentiable in an open neighbor-
hood D of a point' z* € D for which Vf(z*) = © and the Hessian of f at z*, V2f(z*),
is positive definite. Then there exists an oriented CP, such that S(Vf; CP) = M,, which
includes the minimizer z* of f.

Proof. Clearly, the necessary and sufficient conditions for the point z* to be a local minimizer
of the function f are satisfied by the hypothesis V f(2*) = © and the assumption that V2 f(z*)
is positive definite (see for example [1]).

Consider the 2" vectors p = (1, P2, ..., Pn) whose coordinates are nonzero and their signs
form all possible combinations of ~1 and 1. Then there exists a point z € (z*,z* + p) for
which the following relation holds:

f@* +p) = flz") + Vi (z)"p.

Now, since z* minimizes f, the inequality f(z* + p) > f(z*) holds in every direction p and
consequently Vf(z)Tp will be positive. Therefore, the points z can form the vertices of an
oriented CP such that S(Vf; CP) = M,. Thus the theorem is proved.

Based on the results of the above theorem and the properties of a characteristic polyhedron
we are able to characterize the located stationary points.

To do this we transform the oriented CP = (v!,v%,...,v%") so that its n proper 1
simplexes with a common vertex are edges of the polyhedron with vertices formed by the
rows of the 2" x n matrix R, defined as follows. Let x;“i“ = min{v},v?,...,vf“}, P =
max{v},v}, . ..,Uf"} be the minimum and maximum of all the j-th components v} of the CP
vertices v*, respectively. Then we define the matrix R = G + M. B, where G is the rank-1,
2" X n, matrix with elements in the j-th column having the value 27" and B is the n x n
diagonal matrix with ith element the difference h; = z™* — z®, For example, for n = 2 we
have:

:z:‘f‘f” zgn 00 e zg
R=G+M=| T Z0 14100 .{hi 0]= zpn ap
P 1§ 10 0 hy P e
e gn 11 P pgex

Next, we construct the matrix S(V f; R) and we distinguish the following cases:
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a) If 2! rows of S(Vf; R) with the same sign in one of their columns are identical with
the corresponding rows of M,, then z* is considered to be a local minimum.

b) If 2*~! rows of S(Vf; R) with the same sign in one of their columns are identical with
the corresponding rows of —M,, then z* is considered to be a local maximum.

¢) Otherwise, if these rows are not identical with the corresponding rows of M, or —M,,
z* is considered to be a saddle point.

3. Numerical applications

The above procédures were implemented using a new portable Fortran program named MIN-
BIS, which has been applied to several test functions. Our experience is that the algorithm
behaves predictably and reliably. The results were satisfactory without any redundant function
evaluations. Some typical computational results are given below where the reported parameters
are: n dimension; z° = (T3,Z2,...,%,) starting point; b = (hy, he,..., hs) stepsizes in each
coordinate direction used to form the starting polyhedron [9}; 6 (= 0.625E—-5 for the following
examples) positive input parameter (if it is less than the machine precision it is set equal to
0.0625) that is used for the construction of CP [10}; z* = (z},z3,..., ) approximated local
stationary point computed within an accuracy of € (predetermined precision not less than the
machine precision, ¢ = 1078 for the following examples); NFE the total number of function
evaluations for the characterization and computation of a stationary point.

Example 3.1. Kearfoit function, [5] The objective function f is given by:
fz) = (2 + 23 -2+ (af - 23 - 1)’

with four local minima z} = (=v1.5,-v0.3), =5 = (-v15,v05), z3 = (vV1.5,v05),
z; = (v1.5,-v0.5), one maximum z§ = (0,0), and four saddle points zj = (v15,0),
zt = (-v15,0), z; = (0,v/0.5), x5 = (0,—+0.5). In Table 1 we exhibit indicative results
obtained by MINBIS for various instances of the problem.

70 h  z! NFE Characterization
(-1.5,~15) (3,1) =z} 67 minimum
{(-1.5,0.5) (1,1) z; 68 minimum
(0.5,0.5) (1,1) =z3 67 minimum
(0.5,-1.5) (1,1) =z; 68 minimum
(-0.5,-0.5) f1,1) =zt 7 maximum

(1,-0.5) (1,1) =z 71 saddle
(-1.5,-0.5) (1,1) =3 64 saddle
(-05,05) (1,1) z; 99 saddle
(=05,-15) (1,1) =} 142 saddle

Table 1. Kearfott function, n = 2
Example 3.2. Himmelblau function, (3]} In this case f is given by:
fl@) = (22 + 22~ 112 + (21 + T2 —T)%

Executing the implemented program, one finds nine stationary points, which are: four local
minima z} = (3,2), 7} = (3.584428, ~1.848126), z3 = (-—3.77931, -3.283186) and z] =
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(—2.805118, 3.131312), one maximum zf = (—0.2708446, —0.9230387), and four saddle points
z§ = (0.8667755, 2.884255), z7 = (—3.073026, —0.8135307), x5 = (3.385154, 0.07385179) and
z5 = (—0.1279613, —1.953715). In Table 2 we exhibit some of the corresponding results
obtained by MINBIS for various instances of the problem.

z° h z} NFE Characterization
(2,1) (2,2) =} 21 minimum
(1,1) (4,4) =z 102 minimum
(3,-2) (2,2) = 107 minimum
(-4,-4) (1,1) =3 71 minimum
(-3,3) (2,2) =} 84 minimum
(-0.5,-1) (1,1) = 75 maximum
(-1,-1)  (3,3) =z 96 maximum

(0,0) (3,3) =z 48 saddle
(-5,-2) (3,3) =z 69 saddle
(3.2,-02) (06,1) =z 96 saddle
(-1,-3) (2,2) =} 93 saddle

Table 2. Himmelblau function, n =2

Example 3.3. Identity function, [5]. In this case f is given by:

This function has the minimum z* = (0,0,...,0). Various starting points and stepsizes were
utilized successfully. The algorithm appears to find and characterize the stationary points
independently of the dimension n of the problem. In Table 3 we exhibit indicative results
obtained by MINBIS for various dimensions n.

n z° h z} NFE Characterization
2 (=2,-2) 4,4) z* 7 minimum
3 (-2, -2,-2) (4,4,4) =z~ 13 minimum
4 (-2,-2,-2,-2) (4,4,4,4) z* 25 minimum
5 (-2,-2,...,-2) (4,4,....4) == 49 minimum
6 (~2,-2,...,-2) (4,4,...,4) == 97 minimum
T (=2,-2,...,-2) (4,4,....4) z* 193  minimum
8 (-2,-2,...,-2) (4,4,...,4) z= 363 minimum
9 (-2,-2,...,-2) (4,4,...,4) z* 705 minimum

Table 3. Identity function, n=2,3,...,9

Example 3.4. Extended Kearfoit function, [5]. In this case the components of the gradient are

given by:
9(z)
83:5
6f(z)
oz,

ziz—zH—lJ izl,Z,...,n—-l,

= an - 1.
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n z° h z; NFE Characterization
2 (0.5,0.5) (1,1) =z 7 minimum
2 (0.5,0.5) (1000,1000) =z7 41 minimum
3 (0.5,05,05) (L1,1) 2, 13  minimum
3 (0.5,05,05) (1000,1000,1000) z; 42  minimum
4 (0.5,0.5,0.5,0.5) (1,1,1,1) 27 25 minimum
4 (0.5,0.5,0.5,0.5) (1000,1000,1000,1000) z! 54  minimum
5 (0.5,05,...,0.5) (1,1,..,1) 2 49  minimum
5 (0.5,05,...,05) (1000,1000,...,1000) z; 78  minimum
6 (0.5,05,...,0.5) (3,1,...,1) =z} 65 minimum
6 (0.5,05,...,05 (1000,1000,...,1000) z! 94  minimum

Table 4. Extended Kearfott function, n = 2,3,...,6

The function has the minima zj = (1,1,...,1) and z} = (0,0,...,0). Indicative results for
various dimensions n are exhibited in Table 4.

The algorithm was tested on several other problems with satisfactory results. It must be
noticed that for different starting values or different input parameter § one gets different
number of function evaluations. In all cases, one local stationary point is localized, successfully
characterized and computed within the given accuracy.
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