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Rank of convex combinations of matrices

Tomasz Szurc

Let A and B be complex rectangular matrices of the same rank r. We characterize the property
that all convex combinations of A and B are of rank r. Moreover, for A and B of full rank, some
conditions for the mawrix set T(A, B) (c(A, B), resp) whose rows (columns, resp) are independent
convex combinations of the rows (columns, resp) of A and B are also proposed.

PaHr BHIIYKABIX KOMOMHALVT MaTpuil

T. mMyax

Mycts A w0 B — KoMnaekcHbie NPAMOYIojbHBE MATPHIE! (IHOMO M Toro Xe padra r. Jokasmsaercs,
uTo BCE BHAYKAbE XoMOuHawm A u B takxe uMewt panr r. Kpose toro, s vatpun A u B nomioro
DAHTA BHBOUATCH HEXoTapaie cBuficTBa Muokectsa Matpuu 7(A, B} (i, cooteetcrsenno, ¢4, B)), wbn
CTpokM (Iast CTOIBUBL) ABMAIOTCA HEIABHCHMBIMH BRUIYKIMMA ROMOHHAIMAMH CTPoK (Man cronBuos)
satpiu A u B,

1. Introduction

Let A and B be m-by-n complex matrices, m > n, such that rank(A) = rank(B) =r < n.
Consider the matrix sets:

h(A,B) = {C: C=aA+(1-a)B,ac0,1}},
r(A,B) = {C: C=TA+(I-T)B}, and
¢(A,B) = {C: C=AS+B(I-5)}

where T and S are diagonal m-by-m and n-by-n real matrices, respectively with diagonal
entries from [0, 1].

Our goal is to characterize the above sets with respect to the inheritance of rank r, which
is meant that each matrix from these sets is of rank .

It should be noted that, for square and nonsingular A and B, nensingularity of our sets
has been studied in [2].

We shall close this section with an extract of results from [2] which are basic for our
considerations.

Theorem A (Johnson, Tsatsomeros [2]). Let A and B be n-byn complex nonsingular matrices.

(a) h{A, B) is nonsingular iff the matrix BA™ has no negative eigenvalues.

(b) If BA™! is a P-matrix, ie., if all the principal minors of BA™! are positive,
then r(A, B) is nonsingular.

() If B~'A is 2 P-matrix then c(A, B) is nonsingular.
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2. Full rank sets

Our first result characterizes h(A, B) with respect to the inheritance of full rank of A4 and B.

Theorem 1. Let A and B be m-by-n complex matrices, m > n, and let rank(A) = rank(B) = n.
Then the set h(A, B) is of full rank iff the matrix

BB 0]|[AA A'B+BA-4A-BB]"
77 el 4 &
has no negative eigenvalues (here X* denotes the hermitian conjugate of X).
Proof. “Necessity”. Assume that h(A, B) is of full rank. So, for each a € {0, 1},
rank(ozA +(1- a)B) =n.
Then, from a well known property of the rank, we get
n= ra,nk((aA +(1- oz)B)‘(aA +(1- a)B)). (2)

So, (aA +(1- a)B)‘(aA +(1- a)B) is nonsingular and after slight manipulations saving
the nonsingularity it becomes

aA*A+{(1-a)B*B+a(l —a)(A"B+B"A-A"A- B"B). (3)
But the matrix (3) is the Schur complement 1] of I in the matrix

[ aA*A+(1-a)B*B a(A*B+B*A- A*A-B*B) } (4)

-1-a) I
So, (4) is nonsingular and therefore so is the matrix

AA AB+BA-AA-BB| BB 0
el ) I -1 I}

The assertion follows by applying to the last matrix the result of Johnson and Tsatsomeros.
“Sufficiency”. If (1) has the mentioned spectral property then

| B*B o] {A'A A*B+B'A- A"A- BB

-1
-1 1| o I } +81

is nonsingular for each 8 > 0. From this we have that, for each a € [0,1],

) I -1 I

A*A A"B+B*A—A*A-B"B]_I_(l__a)[B*B o}

is nonsingular. Applying some arguments used in the proof of “necessity” we get equality (2).
So, the assertion follows.

Remark 1. Comparing our result with (a) in Theorem A it is natural to ask if the condition that
B+ A, where Bt is the Moore-Penrose generalized inverse of B, has no negative eigenvalues
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is necessary and sufficient for h(A, B) to be of full rank. To answer this question we consider

an example.
A:{O} and B=[l}.
1 —€

Example. Let
Then it is easy to see that rank(A) = rank(B) = ra.nk((A, B)) = 1. But an inspection yields

A = “5}
B4 [1-%—52'

So, for € > 0, B*A does not possess the mentioned spectral property.
The example suggests our next three results.

Theorem 2. Let A and B be m-by-n complex matrices, m > n, and let rank(A) = rank(B) =
n. If BT A has no negative eigenvalues then h(A, B) is of full rank.

Proof. By (a) of Theorem A we obtain that the set h(B*A,I) is nonsingular. So, for each
a€10,1],

rank(aB*A +{1- a)I) = n. (5)

It is well known that, for B of full column rank, BY = (B*B)~'B*. Using this formula and
some rank properties, (5) becomes

rank(B* (ad+(- a}B)) =n

Observing that rank(B*) = n the assertion follows by the property of the rank of the product
of matrices. a

Theorem 3. Let A and B be m-by-n complex matrices, m > n, and let rank(A) = rank(B) =
n. If ATB is a P-matrix then the set ¢(A, B) is of full rank.

Proof. Since (A*B)~! is also a P-matrix, by (c) of Theorem A we get that
¢(I, A*B) is nonsingular.

The assertion follows by reasoning used in the proof of Theorem 2. a
We shall close this section with a partial characterization of full rank property of the set

r{A, B).

Theorem 4. Let A and B be m-by-n complex matrics, m < n, and let rank(A) = rank(B) = m.
If AB* is a P-matrix then r(A, B) is of full rank.

Proof. Using again the fact that the inverse of a P-matrix is a P-matrix, by (b) of Theorem A,
we get
r(AB*,I) is nonsingular.

Since, by the assumptions, B is of full row rank therefore B* = B*(BB*)~!. The assertion
follows by reasoning used in the proof of Theorem 2. O
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3. Constant rank sets

Theorem 5. Let A and B be m-by-n complex matrices, m 2 n, and let
0 < rank({A) =rank(B) =r < n.

Moreover, let for an r-by-n complex matrix W both

A B
Y= { I-Ww(W*)" } and 2= [ I-W*(W*)" ]
be of full column rank and let the matrix

22z 0l[YY YZ+2V-YY-22]"
-1 I 0 I

have no negative eigenvalues (here W~ denotes any weak inverse of W, i.e, a matrix satisfying

W = WW~W). The set h(A, B) is of rank r iff the matrix

WB*BW* 0][ WA"AW* W(A*B+B*A- A*A-BB)W* ™
[ -1 } [ 0 I ] (6)
has no negative eigenvalues.
Proof. “Necessity”. Assume that for each o € [0, 1],
ra.nk(aA +(1- a)B) =7 (M

Following the assumptions, by Theorem 1, the matrix

aA-!—(l—oc)B}

aY -+ (1 - G)Z = { I- W:(W*)_

has, for each @ € [0,1], full column rank. So, by Corollary 6.1 from [3] and by (7), we get

rank((afi +(1- a)B)W*) = rank(aA +(1- a)B) =r

Observing that the matrix ((aA +{1- a)B) W”) ((aA +(1- a)B)W*) is nonsingular the
assertion follows by the argument used in the proof of “necessity” of Theorem 1.

" “Sufficiency”. Assume that (6) has no negative eigenvalues. Then, by reasoning used in
the proof of “sufficiency” of Theorem 1, we arrive at the equality

r= rank(aAW* +(1- a)BW') = ra,nk((aA +{1- o:)B)W*).

The assertion follows by Corollary 6.1 from [3]. g
Remark 2. 1t is well known [3] that an m-by-n complex matrix of a positive rank 7 admits a
full rank decomposition into two matrices of full rank r. Using Theorem 5, W can be chosen
as the matrix @ in a full rank decomposition PQ of A (or S in a full rank decomposition RS
of B).
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