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Numerical solutions of Burgers' 
a large Reynolds number 

equation with 

MASAAKI SUGIHARA and SB]~ FUJINO 

In this article the exact ~lution of Burgers' equation represented as an infinite series is transfi~rmed 
into a simpler form inw)Iving the elliptic functi~m 1.¢3(v, q). "l), evaluate 198(v , q), we use the Jac¢~bi 
Imaginary Transfiwlnation. It is made dear  that the ~flutions obtained by the proposed approach are 
numerically stable and p r e d . .  
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Ilpen;Io;,Keno npell6pa3llP~lHHe rO~lHOl'O pememm ypaBHel-IH~.l Bu~pre~t, Ilpe,~lCTilBdleFl}lorl~ B Illllle 6eCKo- 
HeqHoro pmla, B ¢k~aee llpOCTylO EI:x~pMy C IIClllIJ'It£1111~IHIleM 3dI.IIIIITIIMeCKOI~I (]:lyl.IKl[llll ~3('0, q), ]Jdl$t 
BbltlltC:leHllJ,,l "I~3(U, q ) tICII,I;,,'II£1yeTcI,,! MHIIMIle Ilp~x~pa3l~.BaHlle ~KI~II, l'|oKa=laHl), ~'1"II. IIl:qlyqeHHMe TaKItM 
I~pa3oM pellletttl~l :ItBdlI-IIOTF.$1 ~-ItlC;IeHt.II) yCrlll:lqllBblMI! 11 TOqHMMII. 

1. Introduction 
It is known that Burgers' equation: ut + uux = uuxx(= luz~) has a similiarity to the Navier- 
Stokes equation. Here, u = u(z,  t) denotes the velocity for space and time, and the parameter 
u denotes a value which corresponds to an inverse of a Reynolds number R of viscous fluid 
flow problems. Moreover, the exact solution of Burgers' equation can be expressed as an infinite 
series due to the so-called Cole-Hopf Transformation [2, 3]. Numerical difficulties, however, 
have been experienced in evaluating the series when the Reynolds number R is large [1, 4]. 

In this paper we show how to transform the infinite series into a simple form involving 
the elliptic function ~93(v , q). Using the Jacobi Imaginary Transformation for calculating the 
elliptic function t93(v, q), we make clear that numerical solutions with a larger Reynolds number 
/ t  can be gained with numerical stability. 

2. Exact solution of Burgers' equation 
We consider the following initial-boundary-value problem of Burgers' equation. 

Ou Ou 02u 
~+u~=, ,b -  F, 0<x<l.  (1) 

Initial condition: u(z,O) = u°(a:), boundary conditions: u(0, t) = u(1, t) = 0. For this 
problem, we apply, the Cole-Hopf Transformation: u(:c, t) = -_v~.')" 1 oo Then the exact solution 
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can be represented as an infinite series as follows: 
oo 1 

41ry E hi. ( ~  sin(n~rx)exp(-n2~':vt) 
. = l  \ 2v,r / = 4~-~, v(=, 0 (2) 

2"o + 2 ~ I,~ cos(n~rx) exp(-n2z~Uvt) 
n---1 \ / 

where I0 and In are the modified Bessel functions. We modify (2) by expressing the numerator 
v(x, t) and the denominator w(x, ~) with the help of an elliptic function. 

31 Modification of the exact solution 

3.1. 

1 

1 

Modification for the numerator v (x ,  t)  

/ } n eos(nlr~) sin(nrx) exp(-n2~2vt)  d~ 
t n = l  

oo 

From the definition of the elliptic function 03(v,q) = 1 + 2 ~_, qn2cos2nlrv we see that 
n----1 

-~,03(v, q)= -4re ~ q'~2nsin(2nzcv). Thus, the numerator v(x, t) of (2)is given as 
n = l  

167r flexp \ 2-~ , k'-'-~ 'e )÷ t73 (~-~' e-"")) ~" (3) 

Using the two relations 2~03 ( ' ~ )  =<'ak "~' { +Lt~2 7' -2~03 (~'fi) = O~ (~2-~) and partial integra- 
tion, (3) yields 

v(z,t) = , {exp CO-,  

, ( c o ~ . ~  

Here we abbreviate O3(v, q) as O~(v). Moreover, (3) can be represented in the following form 
using the periodicity of the elliptic function (as 03(z+1~2 / = b % ( ~  "~))" 

v(=, 0 = ~ i - l ' i ' ( '~)  exp t 2-777-~ / 

t ( , (¢o..¢~. (~ +=~. .  
- , ~ . ~  - i : = ~ = ( ~ , ~ ) o x ,  t 2-~-. ) ° . t - - r - )~  

+/_:..<.,)ox. _ 
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With the variable transformation ~ = - r /  it can finally be seen that the first term is the same 
as the second one so that 

) v(~,t) = ~ t - 7 - , ~  - ~ -  ~ .  <4) 

3.2. Modif icat ion for the denominator  w(x, t) 
T h e  modification for the denominator w(x, t) of  (2) is given as follows: 

~(x, t) = ~ ]-1 e 5.= 1 + 2 ~ eos(n~) cos(n~) ~v(-,~t) d~ 
n = l  

= - n~(~ x)) + cos d~. 
2 J - 1  

1 exp t93 + z93 d~ 

:,S, ,,+.,-- 'l_'ex°( ) ( ) .  4 t ~ )"t---'2--) a<~+~ co~_~_~) •. Z~ d~ 

In (5) the first term is the same as the second one because of  the variable transformation 
= -r] .  Therefore,  the denominator  of  (2) is given as 

1 1 w(x,t)= ~ Si exp (c°~)) ~. (~--J, e-"") d~. (6) 

3.3. Computable form for the exact solution 

Finally, the exact solution u(x, t) of Bur~ers equation is represented as follows: 

....... 1, S:sin~r, exp(~).3(~2~ e-.'.t)d , 81rv I 
_ e x p  , d~ 

4. On the computation of t93(v , q) 
The  elliptic function 03(v, q) is usually defined as 

vq3(v, q) = 1 + 2 ~ qn= cos2nfrv. (S) 
n : l  

However, when q (=  e -~2"~) is near 1, that is, the parameter  v is small, this series converges 
very slowly. Then  it is not effective and efficient for  us to compute v~3(v, q) via (8). T o  avoid 
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these numerical difficulties, we adopted the Jacobi Imaginary Transformation (abbreviated J.I;I'.) 
given by 

~(v ,  e -~'"t) = v~e - ' ~ '  1 + 2 ~ e - n ~  cosh27rncv 
n=l (9) 

= x/~e-'~=2 { 1 + 2(e-~%osh 27rcv + e-4~" cosh4rrcv + e -~"  cosh67rcv + . . .  )} 

where c = ~ = ~--~. Considering the above series, we can see that the remainder with 
the exception of the three terms in the brackets of (9) is negligibly small, so that this series 
converges rapidly as compared with (8). Accordingly, we expect that it is sufficient and efficient 
for the elliptic function v~3(v, e -=2"t) to be approximated as 

x 1 + 2 err  cosh + e ";r eosh + e';r cosh 

5. Numerical experiments 
In this section, we discuss some numerical approaches for the exact solution of Burgers' equation. 
All the computations were done on a workstation Sun-4/10 in double precision arithmetic and 
IEEE extended precision arithmetic. We tested three numerical approaches: (i) Equation (2) with 
the Bessel function, (ii) Equation (7) With Equation (8) and (iii) Equation (7) with Equation (10), 
i.e., J.I.T. In the tables below, we abbreviate these approaches as (i) Bessel, (ii) Equation (8) and 
(iii) J.I.T., respectively. 

In the first approach, we used a mathematical library for the computation of the modified 
Bessel function In(z) in double precision arithmetic. In this case, the range of the variable z 
is restricted to [zl < 173. In the latter two approaches, numerical integration is necessary in 
(7). Since the integrands are periodic, we took the trapezoidal rule. 

In Tables 1 and 2 we show the numerical results of  the three approaches for the parameter 
v = 0.01 at t = 0.4, t = 1.2 and 0.2 < a: < 0.98. In addition, we show the results obtained with 
the asymptotic approximations of Cole [2]. When we had to evaluate an infinite series ~n~=1 an 
in (i) Bessel and (ii) Equation (8), we adopted as the convergence criterion that I s . -  a,,-xl/la~l 
(= s) is less than 10 -12. Concerning the sample points of the numerical integration, we show 
the results using 4097 points for (ii) Equation (8) and those using 257 points for (iii) J.I.T. in 
these tables, 

The calculation of (i) Bessel was done in double precision arithmetic because of the 
limitation of z for the Bessel function I,~(z). The calculation of (ii) and (iii) were done in IEEE 
extended precision arithmetic. From these tables, it can be seen that the solutions at t = 1.2 
agree with each other in comparison with those at t = 0.4. Moreover, in Table 1, we can 
observe that the solutions of (i) Bessel do not agree with (ii) Equation (8) and (iii) J.I.T. when 
z is near 1. 

In Table 3, we show the results of (ii) Equation (8) and (iii) J.I.T. for the parameter 
v = 0.01 at t = 0.4, z = 0.40 when the number of sample points of the numerical integration 
varies. The convergence criterion e for evaluating the infinite series in (ii) Equation (8) is the 
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x (i) Be~el (ii) Equation (8) (iii) J.I.T. Cole 

0.20 0.27452386 0.27452390 0.27452386 0.27452 
0.40 0.53792160 0.53791933 0.53792160 0.53792 
0.60 0.77345464 0.77345467 0.77345464 0.77345 
0.80 0.94103638 0.94103653 0.94103631 0.94100 
0.90 0.95246557 0.95245234 0.95245224 0.94891 
0.92 0.93671097 083669749 083669806 0.93655 
0.94 0.90182451 0.90169973 0.90170253 0B9998 
0.96 0.81309686 0.81289557 0.81289599 0.81227 
0.98 0.55870490 0.55850821 0.55851721 0.56583 

Table 1. Comparison of four methods for the parameter v = 0.01 at t = 0.4 and 
0.20 < x < 0.98 

a: (i) Bessel (ii) Equation (8) (iii) J.I.T. Cole 

0.20 0.13092009 0.13092010 0.13092009 0.13092 
0A0 0.26128123 0.26128124 0.26128123 0.26128 
0.60 0.39043845 0.39043846 0.39043845 0.39044 
0.80 0.51752803 0.51752800 0.51752803 0.51753 
0.90 0.57781210 0.57781208 0.57781210 0.57781 
0.92 0.58472371 0.58472372 0.58472371 0.58472 
0.94 0.57778815 0.57778815 0.57778815 0.57779 
0.96 0.52523899 0.52523910 0.52523899 0.52524 
0.98 0.35060231 0.35060206 0.35060231 0.35061 

Table 2. Comparison of four methods for the parameter v = 0.01 at t = 1.2 and 
0.20 < x < 0.98 

Sample (ii) Equation (8) (iii) J.I.T. 

33 0.53637410 0.53792162 
65 0.53714812 0.53792160 

129 0.53753493 0.53792160 
257 0.53772828 0.53792160 
512 0.53782494 0.53792160 

1024 0.53787327 0.53792160 
2048 0.53789744 0.53792160 
4096 0.53791933 0.53792160 

Table 3. Numerical results of Equation (8) and J.I.T. for the parameter v = 0.01 at t = 0.4, 
x = 0.40 when the number of sample points of the numerical integration varies 
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Sample e=10 -s (105) ~=10 -12 (115) ¢=10 -15 (125) 

256 0.41163746 0.41163745 0.41163745 
512 0Al178366 0Al178365 0.41178365 

1024 0.41184801 0.41184800 0.41184800 
2048 0.41188178 0.41188178 0.41188178 
4096 0.41205971 0A1205971 0.41205971 
8192 0.41194105 0.41194105 0.41194105 

16384 0.41189615 0.41189615 0.41189615 
32768 0.41186312 0.41186313 0.41186313 
65536 0.41187385 0.41187385 0.41187385 

Table 4. Numerical solutions by (ii) Equation (8) for the parameter v = 0.001 at t = 0.4, 
x = 0.30 when the convergence criterion e varies 

Sample (iii) J.I.T. 
32 0.387704357344037 
64 0.411466334934168 

128 0.411686285023018 
256 0.411686285023031 
512 0.411686285023031 

1024 0ALI686285023031 
2048 0.411686285023031 
4096 0.411686285023031 

Table 5. Numerical solutions by (iii) J.I.T. for the parameter v = 0.001 at t = 0.4, x = 0.30 
when the number of the sample points of the numerical integration varies 

same as that of Tables 1, 2. From Table 3, we can easily see that the convergence rate of the 
numerical integration of (ii) Equation (8) is very slow as compared to that of (iii) J.I.T. 

In Tables 4 and 5, we show solutions using (ii) Equation (8) and (iii) J.I.T. for the parameter 
v = 0.001 at t = 0.4, x = 0.30: In Table 4, we investigated the relation between the sample 
points of the numerical integration and the convergence criterion for the infinite series for c = 
10 -s, 10 -12 and 10 -15, respectively. The number in brackets is the number of terms of the 
series necessary to satisfy the convergence criterion. We mention that in this case the solution 
by (i) Bessel is 0.41235888. From Table 4, it can be observed that the solutions oscillate as the 
number of the sample points of the numerical integration increases. Therefore, we can see that 
the approach of (ii) Equation (8) has a numerical instability. On the contrary, Table 5 shows 
that the proposed approach of (iii) j.I.T, is numerically stable. 
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