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Numerical solutions of Burgers' equation with
a large Reynolds number

Masaakt SuciHara and Sem Funno

In this article the exact solution of Burgers' equation represented as an infinite series is transformed
into a simpler form involving the elliptic function 93(v,q). To evaluate 93(v, g), we use the Jacobi
Imaginary Transformation. It is made dear that the solutions vbtained by the proposed approach are
numerically stable and precise.
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1. Introduction

It is known that Burgers’ equation: u¢ + uuy = Vugg(= —}iuu) has a similiarity to the Navier-
Stokes equation. Here, u = u(z,t) denotes the velocity for space and time, and the parameter
v denotes a value which corresponds to an inverse of a Reynolds number R of viscous fluid
flow problems. Moreover, the exact solution of Burgers’ equation can be expressed as an infinite
series due to the so-called Cole-Hopf Transformation [2, 3] Numerical difficulties, however,
have been experienced in evaluating the series when the Reynolds number R is large [1, 4]

In this paper we show how to transform the infinite series into a simple form involving
the elliptic function ¥3(v,g). Using the Jacobi Imaginary Transformation for calculating the
elliptic function 93(v, ), we make clear that numerical solutions with a larger Reynolds number
R can be gained with numerical stability.

2. Exact solution of Burgers' equation

We consider the following initial-boundary-value problem of Burgers’ equation.

Su  Ou o%u
; +u8:r Ve 0<z<1 (1)

Initial condition: u(z,0) = u®(z), boundary conditions: u(0,t) = u(1,t) = 0. For this

problem, we apply the Cole-Hopf Transformation: u(z,t) = -—21/%%%. Then the exact solution
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can be represented as an infinite series as follows:

dmy Z nh, ( ﬂ.) sin(nz) exp(—n’n’vt)
u(z,t) = n=1
( 1 ) + ZZI ( ) cos(nmz) exp(—nniut)

where /y and I, are the modified Bessel functions. We modify (2) by expressing the numerator
v(z,t) and the denominator w(z,t) with the help of an elliptic function.

_ v(z, t)
- mjw(x, t)

(2)

3. Modification of the exact solution
3L Modification for the numerator v(z,t)

v(z,t) = 5 / e {Z n cos(nré) sin(nwz) exp(—n I/t)} d¢

=3[ {‘ > n {sin (nm(§ + 2))e ™™™ + sin (nr(E — ) ) W}} %

From the definition of the elliptic function J3{v,q) = 1+ 2 E g’ cos2nmy we see that
nm=l

2‘%;193(11, q) = —47 'i ™'n sin(2n7v). Thus, the numerator v(z,t) of (2) is given as

1 2 - 2
v(z,t) = "_l_é—w/_ exp (co;(:{;’)) {193 (6—;—{,6"'“”) +19§(x 7 E,e"' "')}d{. 3)
Using the two relations 2—193( ) DA ( "") —23‘5-193 (-:—;5) =95 (Ezﬁ) and partial integra-
tion, {3) yields
1 cos e E+z z- e\
e {exp( ) (o (57) - ()L
+/ -é———ﬂ'sm(w& exp (COSW ) { (E 5 m) - 2193(3:; )}d§
1 1 l+zx z -1
() 20+
+= / sin(m€) exp (cgswﬁ) {193(6 ; 3:) - ﬁs(z ; 5) } dt.

Here we abbreviate 93(v, g) as ¥3(v). Moreover, (3) can be represented in the following form
using the periodicity of the elliptic function (as P3(E) = I3(52)).

v(z,t) = 16_7:1/ /_11 sin{mé) exp (C;if) {193(E ; :c) - 193($ ; £> } dé
- s - Losatrerem () (57 )

+ / sin(r€) exp (C°S“€)193(“’ - ¢ )dg).

v(z, t)

[ 3]
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With the variable transformation £ = —n it can finally be seen that the first term is the same
as the second one so that
_ cos 7€ T—-€
v(z,t) = / sin(7€) exp( o )193( 5 e )dﬁ‘ 4
3.2. Modification for the denominator w(z, t)

The modification for the denominator w(z,t) of (2) is given as follows:

:}2— / P {1 +2 Z cos(nw€) cos(nnz) exp(—n :rrzut)} d¢

n=1

=3 / 5 {1 +2 il -;—{ cos (mr(& + a:)) + cos (mr(g - x))}e—n%ﬁut} dt.

o[ o5 0(57)
(ol L (e o

In (5) the first term is the same as the second one because of the variable transformation

i

wiz, t)

§ = —n. Therefore, the denominator of (2) is given as
- 2/ (COS(WE )193(:3 ; 5,6—‘”2”)@5. (6)
33. Computable form for the exact solution

Finally, the exact solution u(z,t) of Burgers' equation is represented as follows:
1 L COS(‘R’f) I"S ~rut
P / sin € exp ( T 93 7€ dé
u(z,t) = 4drv cos(7E) z-¢
TS

t cos(m€) z—-€ _.a,
/;lsmfrﬁexp( S )193( 7€ ‘)df

M
1 - 2
.[-1 exp (Cozsgg))ﬁs(z 5 f’ P ut)dg
4. On the computation of ¥3(v, q)
The elliptic function J3(v, g) is usually defined as
Y3{v,q) =1+2 i g** cos 2nmv. (8)

n=1

2 . . . . .
However, when ¢ (= ™™ **) is near 1, that is, the parameter v is small, this series converges
very slowly. Then it is not effective and efficient for us to compute ¥3(v,q) via (8). To avoid
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these numerical difficulties, we adopted the Jacobi Imaginary Transformation (abbreviated J.IT.)
given by

B3(v, e~ = (foe~™* {1 +2%° e~ cosh 27mcv}

n=l (9)
= \/Ee"‘c”z{l + 2(e~™ cosh 2mcv + e~*™ cosh 4wcv + e cosh 6mev + - - - )}
where ¢ = o= = =L, Considering the above series, we can see that the remainder with

the exception of the three terms in the brackets of (9) is negligibly small, so that this series
converges rapidly as compared with (8). Accordingly, we expect that it is sufficient and efficient
for the elliptic function 93(v, e ™) t0 be approximated as

1 —?
Ba(v,e”™) = /= exp ("’E‘)
X {1 -+ 2(6'—»?1 cosh (21—)> + e:‘:% cosh (ﬁlﬁ) + ¢ cosh (92)) }
vi vi vt

5. Numerical experiments

(10)

In this section, we discuss some numerical approaches for the exact solution of Burgers’ equation.
All the computations were done on a workstation Sun-4/10 in double precision arithmetic and
IEEE extended precision arithmetic. We tested three numerical approaches: (i) Equation (2) with
the Bessel function, (i) Equation (7) with Equation (8) and (iii} Equation (7} with Equation (10),
ie, JLT. In the tables below, we abbreviate these approaches as (i) Bessel, (i) Equation (8) and
(iii) J.LT., respectively.

In the first approach, we used a mathematical library for the computation of the modified
Bessel function I,(z) in double precision arithmetic. In this case, the range of the variable z
is restricted to |z] < 173. In the latter two approaches, numerical integration is necessary in
(7). Since the integrands are periodic, we took the trapezoidal rule.

In Tables 1 and 2 we show the numerical results of the three approaches for the parameter
v=001latt=04,7=12and 0.2 <z <0.98. In addition, we show the results obtained with
the asymptotic approximations of Cole [2]. When we had to evaluate an infinite series 3270, an
in (i) Bessel and (ii) Equation (8), we adopted as the convergence criterion that |a, =~ n-1|/]ax]
(= €) is less than 10~!2, Concerning the sample points of the numerical integration, we show
the results using 4097 points for (i) Equation (8) and those using 257 points for (iif) J.LT. in
these tables.

The calculation of (i) Bessel was done in double precision arithmetic because of the
limitation of z for the Bessel function I,(z). The calculation of (i) and (iii) were done in IEEE
extended precision arithmetic. From these tables, it can be seen that the solutions at ¢ = 1.2
agree with each other in comparison with those at ¢ = 0.4. Moreover, in Table 1, we can
observe that the solutions of (i) Bessel do not agree with (i) Equation (8) and (iii) J.LT. when
z is near 1.

In Table 3, we show the results of (ii) Equation (8) and (iii) J.LT. for the parameter
v =0.01 at t = 0.4, = 0.40 when the number of sample points of the numerical integration
varies. The convergence criterion € for evaluating the infinite series in (ii} Equation (8) is the
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z (i) Bessel (i) Equation (8)  (iii) J.LT. Cole
0.20 027452386  0.27452390  0.27452386 0.27452
040 053792160 053791933  0.53792160 0.53792
060 0.77345464  0.77345467  0.77345464 0.77345
080 0094103638 094103653  0.94103631 0.94100
090 095246557 095245234 095245224 0.94891
092 093671097  0.93669749  0.93669806 0.93655
094 090182451 090169973 090170253 0.89998
096 081309686  0.81289557  0.81289599 0.81227
098 0.55870490  0.55850821  0.55851721 0.56583
Table 1. Comparison of four methods for the parameter v = 0.01 at ¢
0.20<z <098
z (i) Bessel (i) Equation (8)  (iii) J.LT. Cole
0.20 0.13092009  0.13092010  0.13092009 0.13092
040 0.26128123  0.26128124  0.26128123 0.26128
060 039043845 039043846  0.39043845 0.39044
080 051752803 051752800  0.51752803 0.51753
090 057781210 057781208  0.57781210 0.57781
092 0.58472371  0.58472372  0.58472371 0.58472
094 057778815 057778815  0.57778815 0.57779
096 052523899 052523910  0.52523899 0.52524
098 0.35060231  0.35060206  0.35060231 0.35061
Table 2. Comparison of four methods for the parameter v = 0.01 at t
0.20<2 <098

Sample (i) Equation (8) (i) J.LT.

33 0.53637410  0.53792162

65 053714812  0.53792160
129 0.53753493  0.33792160
257 0.53772828  0.53792160
512 0.53782494 0.53792160
1024 053787327  0.53792160
2048 0.53789744  0.53792160
4096 0.53791933  0.53792160

177
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Table 3. Numerical results of Equation (8) and JLT. for the parameter v = 0.01 at t = 0.4,
T = 0.40 when the number of sample points of the numerical integration varies
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Sample £=10"% (105) £=10"'% (115) e=10"1% (125)
256 041163746  0.41163745 041163745
512 041178366 041178365  0.41178365
1024 041184801 041184800  0.41184800
2048 041188178 041188178 0.41188178
4096 041205971 041205971 041205971
8192 041194105  0.41194105 0.41194105

16384 041189615 041189615 041189615

32768 041186312 041186313 041186313

65536 041187385 041187385 041187385

Table 4. Numerical solutions by (ii) Equation (8) for the parameter v = 0.001 at ¢ = 0.4,
z = 0.30 when the convergence criterion £ varies

Sample (i) J.LT.

32 0.387704357344037

64  0411466334934168
128 0411686285023018
256  0.411686285023031
512 0411686285023031
1024  0411686285023031
2048  0.411686285023031
4096  0.411686285023031

Table 5. Numerical solutions by (iii) J1T. for the parameter v = 0.001 at £ = 0.4, z = 0.30
when the number of the sample points of the numerical integration varies

same as that of Tables 1, 2. From Table 3, we can easily see that the convergence rate of the
numerical integration of (ii) Equation (8) is very slow as compared to that of (iii) J.LT.

In Tables 4 and 3, we show solutions using (ii) Equation (8) and (iii) J.LT. for the parameter
v=0.001 at t = 0.4, z = 0.30. In Table 4, we investigated the relation between the sample
points of the numerical integration and the convergence criterion for the infinite series for ¢ =
1078, 1072 and 10715, respectively. The number in brackets is the number of terms of the
series necessary to satisfy the convergence criterion. We mention that in this case the solution
by (i} Bessel is 0.41235888. From Table 4, it can be observed that the solutions oscillate as the
number of the sample points of the numerical integration increases. Therefore, we can see that
the approach of (i) Equation (8) has a numerical instability. On the contrary, Table 5 shows
that the proposed approach of (iii) J.LT. is numerically stable.
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