
Reliable Computing 2 (2) (t996), pp. 161-165

Interval operations involving NaNs
EVGENIJA D. POPOVA

This paper considers some aspects of the implementatitm tff interval arithmetic built on IEEE floating-
print ~stems. Interval operations and functions on arguments involving special elemems, Not-a-Numbers
(NaNs) and signed zero, supported by the IEEE floating-ptfint fi~rmats are discu.~sed. A simple model of
interval exceptions and their handling in IEEE ram-trapping mcgte is pn)po~d and interval operations
on arguments involving NaNs are defined. Based on the floating-point exceptkms and their handling,
the propped m~xtel provide consistency between interval and IEEE arithmetics.

IAHTepBaAI HbIe oliepalIm
 AeMeHTOB Tmla NaN

C HCIIOAI:,3OBaHHeM

E. A. HOnOBA

P:K;CMaTptlBaK~TC~ HeKOTOpble acneKTl~ peaBH2~I]IHH HHTCpBHJIbHOI:I apllC~MeTnKll Ha O I ~ ¢ M a X C |l~'laBa-

loJllefi TOqKOfi, y,atm,tleTl~)p~lollitlx cTaH.aap'raM IEEE. ()~'y~K/|alC)TCJ, l)IHTep~|dlhHIA¢~ o n e p a t n . l n n c])yHg-

ram, cpeatt apryMen'roB goTop~x npncyzcrByK~v omn.aat-n~e ~aeMewrta -rmm NaN (Not-a-Number,
((He-qllG~Io)) H H()dll) Ct) 3HaKOM, IIOB~ep~HBaOMhle (~)opMaTOM 3HaqeH}II~i C RaaI~ax)meft TOqg¢)fi IEEK
[Ipe/Lqal 'aeTCa l l p ~ T r a a MOaedSb HHT~:pI~?21bHIAX HCKJIR)t~)ITeJtbHIAX C~ITyallnIT.t it |~X (x~pa~)TKlt n p t t ¢)T-

KgIB)tleHHOM pe~ t tMe OTc.ae-x't,.l'tBaHitfl npep taBanHf i s IEEE, a "raK:,Ke l taeTca ()ltpe.JleneHtte)IHTepBaJIbHIAX

t)ttepa~lHfi 2L~t~ apryMeH'roB, CoJlepl, KalltHX 3aeMeH'rM "rltna NaN. ["Ipe~'lozKeHHa~I Mt)llo~rtb, OCHI)t~'IHHaH Ha

MexaHn3Me |¿CK2nOqHTe2n~,HbIX CHTyaIl)l#! H HX (~ p a ~) T K e B o lc ' reMe C nBaBaR)lRe#t Tt}tlKt)I4, (~=cnetJHBae' l "

COBMeC'rtIMOC'rb miTepBaat, UO~t aptt(~bMeT)tK)! Co UraHaapToM IEEE.

1. Introduction
Ten years ago the IEEE standard [1] for floating-point arithmetic became official. Each IEEE
floating-point format supports: its own set o f finite real numbers, 4-00, two distinguished values
+0 and - 0 and a set of special values called NaNs (Not-a-Number), Arithmetic operations
include operations on numeric, non-numeric or mixed operands in four rounding modes. A
number of exceptional situations may arise during numerical computations. Every exception,
when it occurs, must raise a flag that a p rogram may subsequently sense and/or take a t rap
intended to handle the detected exceptional condition. The mandatory default response to the
exceptional situations is not to t rap on them, but to compute and deliver to the destination a
default result, specified for each possible exception.

Now, an increasing number of computers and software feature IEEE arithmetic. Contrary
to the programs written before the IEEE standard became official, p rograms which are written
to be used under IEEE arithmetic should be prepared to expect any exceptions that can arise
and deal with them properly. Some recent works [3] show that algorithms working uniformly
and robustly across rather different systems and languages are a lot easier to design and usually
more efficient if they rely on a non- t rapping exception handling paradigm.

Most recent interval arithmetic implementations [8] are in a standard conforming environ-
ment. Recently, some specifications of Basic Interval Arithmetic Subroutines (BIAS) appeared

@ E. D. Pop)va, 1996

162 E.D. eoeov^

[2, 5] showing a movement toward standardization of the user interfaces for interval arithmetic
software.

Although the IEEE standard has been intended to facilitate, between other things, the
implementation of interval arithmetic [6] nowadays there are no general implementation re-
quirements for interval arithmetic under IEEE systems. Since there is no meaning of the
arithmetic operations on intervals involving NaNs their implementation is up to the implemen-
tor's option. Moreover, no agreement exists about how to deal with the exceptions arising
on interval operations and no default interval response has been proposed. The emphasis
in computing was traditionally on speed but we have to develop also credible and accurate
programs. For a program to be credible, the result it produces must never be misleading.

Goals of this paper are to consider some algorithmic aspects of the implementation of
interval arithmetic involving NaNs or signed zeros (Section 2) and to propose (Section 3) a
simple model of interval arithmetic exceptions and their handling in IEEE non-trapping ,node
facilitating thus an extension of the BIAS for IEEE systems.

Interval operations involving NaNs or -4-0
Here we shall point out some of the pitfalls for the implementation of interval arithmetic in
an IEEE environment. We presume that the I n v a l i d Operat ion (II3) trap is disabled and
that the IEEE system works in the default non-trapping mode.

Definition 1. An interval over the set of floating-point numbers supported by an IEEE format
is called unordered i f its end-points compare unordered.

According to the standard two operands are in relation ~unordered" only when at least
one operand is a NaN. In addition to the TRUE/FALSE response an I0 exception shall be
signaled when unordered operands are compared using a predicate not involving "?" ('?"
being a predicate for unordered comparison).

Proposition 1. Interval operations (and functions) implemented by using [loatng-point compar-
ison not involving unordered will signal IO exception on unordered and mixed type ope,.'ands.

Corollary 1. Unlike scalar floating-point arithmetic where quiet NaNs propagate through arith-
metic operations without precipitating exceptions, interval arithmetic multiplication and division
operations, implemented by predicates not involving unordered, will signal IO exception on
unordered or mixed type operands.

Examples for interval operations satisfying the above proposition are the operations mul-
tiplication and division, interval hull and intersection, and all relational operations. Suppose
the classical unexceptional Algorithm 2.1 for interval hull is implemented in an IEEE environ-
ment and let the hull of the intervals [qNal~, -5] and [12, 16] be computed by this algorithm.
Although the first comparison operation will signal I0 exception, in non-trapping mode it
will return FALSE as a default result. Thus a misleading result [12, 16] will be produced
instead of the indeterminate but more correct result [qNaN, 16]. For the same reason we obtain
[-3, 6] = [-3, qNaN] x [-2, 1] using a classical algorithm for interval multiplication. Further-
more, different implementations of the multiplication and division operations may result in
different but equally dangerous numerical results. That is why some additional programmer's
effort is required to ensure a reasonable interval result. Various implementation schemes are

INTERVAL OPERATIONS INVOLVING NANS 163

if (a<_c) then x = a
else x = C

if (b < d) then y = d
else y = b

Algorithm 2.2. Ix, y] = [a, b] U It, d]

if (a_<c) then x = a
elseif (exi_ioO) then X = q.NaN

io.xeset 0

el~ X=C

it" (b<__d) then y = d
elseif (ex i_ ioO) then y = q_NaN

io_reset 0
ei~ y=b

Algorithm 2.3. Ix, y] = [a, b] U It, d]

if (a ? c) then x=q_NaN
elseif (a < c) then x = a

else x = c

if (b ? d) Omn y = q - N a N
elseif (b < d) then y = b

el~ y = d

Algorithm 2.4. [X, y] ----- [a, b] 12 [c, d]

if (a<c) ,hen z = a
elseif (a ? c) then z = q-NaN

el~ x = c

if' (b < d) then y = b
els~f (b ? d) then y = q - N a N

else y = d

possible: Algorithm 2.2 checks the I0 exception flag after each floating-point comparison to
detect the existence of an unordered operand. The function exc_io() returns TRUE if the
I0 status flag is raised, then the procedure i o _ r e s e t () clears it and a quiet NaN constant
is assigned to the corresponding end-point of the result. Algorithms 2.3 and 2.4 use the
unordered predicate to test the existence of unordered arguments instead of handling the
I0 status flag. In IEEE style (I0 is raised when NaN is created from non-NaN operands)
Algorithm 2.3 prevents the occurrence of an T0 exception while Algorithm 2.4 signals I0 on
unordered operands. If a "?" predicate is not supported, an implementation may use predicates
x = = x and x! = x, which do not signal TO and deliver FALSE, resp. TRUE on unordered
arguments, or a classification function in order to account for NaNs.

Interval arithmetic implementations are so far left ambiguous about the behavior of
interval operations with respect to the special elements supported by IEEE formats causing
confusion and controversy insofar as programmers have to agree upon their definitions. For
example, interval arithmetic in PASCAL-XSC is always trapping on operands involving NaNs
and on interval division when the divisor has zero at some end-point despite the result of such
operation being a mathematically well defined semi-infinite interval and infinities participate
in all other interval operations. Although IEEE comparisons say +0 and - 0 are equal, the
division operation is affected by the zero sign; 1/(+0) = +oo but 1 / (-0) = -oo. The zero sign
propagates through certain arithmetic operations according to rules derived from continuity
considerations; for instance (-2) x (+0) = -0 , (- 0) / (- 3) = +0 and V (z - x) = - 0 for every
finite real z. Let us consider the expression [2, 3]/([0, 5] - [-2, 0])= [2,3]/[-0, 7] computed
under IEEE arithme~-ic. The division operation will produce: [-o0, 3/7], if implemented by
min/max functions; [2/7, - ~] , if implemented by checking signs of the intervals and [2/7, co],
if implemented by a test for zero end-points. The first two completely wrong results wilt be
due to not sensing the sign of zero while the correct result in terms of Kahan's outer intervals
should be U [2/7, oo].

164 E.D. POI'OVA

Two implementing paradigms are possible with respect to the zero elements of the IEEE
system. One is the algebraic sign of zero not to be interpreted by the interval arithmetic which
will lead to a simpler but restricted implementation. The other is to consider the algebraic sign
of zero as specified by the standard. This will complicate the basic interval software but will
allow the implementation of a wider understanding of intervals [4]. We can consider intervals
with end-points zero as open or closed; for instance [-0, 1] indudes 0 as an internal point but
[+0, 1] does not. Whatever is the imptementor's decision about these two paradigms, it should
be followed for all interval operations.

3. Interval exceptions and their handling
General Principle. Since interval operations are compound operationswbesides empty set
intersection and division by an interval containing zero as an internal point--interval operations
themselves will signal no exceptions. All the exceptions arising on execution of an interval
operation are floating-point exceptions arising on floating-point operations which compound
the corresponding interval operation.

Next we specify credible results for interval operations on unordered operands irrespective
of whether I0 will be signaled by underlying floating-point comparisons (Section 2) or not.

• The result delivered by the interval operations multiplication and division should involve
at least one quiet NaN as end-point on unordered or mixed type operands.

• The result delivered by the operations interval hull and intersection should be an interval
with a quiet NaN at that end-point at which NaN is involved in the arguments.

• I0 exception should be signaled on ,all interval relational operations and FkL$E should be
delivered as a default result if some operand is unordered.

• The result delivered by an auxiliary interval function of unordered argument should, if a
floating-point result is to be delivered, be a quiet NaN.

• I0 exception may be signaled by an interval standard function when its argument does
not belong to the definition domain of that function. The default result delivered if the
exception occurs without trap may be the result of the same function of an argument
which is the intersection of the user-defined argument and the definition domain of the
corresponding function.

The proposed scheme of interval exceptions and their handling has the advantages to:
permit an undoubted and correct implementation of interval arithmetic operations and functions
in IEEE arithmetic; permit a maximal closure to the interval algorithms for non-IEEE arithmetic;
allow full user control on the floating-point exceptional situations and their handling; permit a
non-contradictory performance in both trapping and non-trapping mode; be applicable to most
extensions and generalizations of conventional interval arithmetic.

4. Conclusion
Keeping to rigorous definitions of the operations on intervals involving NaNs and interval
arithmetic exception handling will benefit the end users of interval software in being able

INTERVAL OPERATIONS INVOLVING NANS 165

to rely on its credible execution in an IEEE environment and software developers in writing
portable code which uses features of the standard. An implementation of the proposed model
is provided by the PASCAL-XSC module EXI_ARI [7] for extended interval arithmetic where
conventional interval arithmetic is involved as a special case. This implementation proves that
the proposed scheme is suitable and gives the opportunity to be tested in different situations.

Acknowledgements
This work was partially supported by the Bulgarian National Science Fund under grant
No. 1-507/95.

References
[1] IEEE standard for" binary floating-point arithmetic. ANSI/IEEE Std 754-1985, New York, 1985.

[2] Corliss, G. F. Proposal for a basic interval arithmetic subroutines library (BIAS). Tech. Rep., Mar-
quette Univ. Dept. of Maths, Statistics and Computer Science, Milwaukee, Wisc., 1991.

[3] Demmel, J. and Li, X. Faster numerical algorithms ~ exception handling. IEEE Trans. on
Computers 43 (8) (1994), pp. 983-992.

[4] Kahan, W. M. Interval arithmetic options in the proposed IEEE floating point arithmetic standard.
In: Nickel, K. (ed.) "Interval Arithmetic 1980", Academic Press, 1980, pp. 99-128.

[5] Knfippel, O. BIAS--basic interval arithmetic subroutines. Bericht 93.3, TU Hamburg-Harburg,
Hamburg, 1993.

[6] Moore, R. E. Interval analysis. Prentice-Hall, N.J., 1966.

[7] Popova, E. Extended interval arithmetic in IEEE floating-point environment. Interval Computations
4 (1994), pp. 100-129.

[8] Wolff von Gudenberg, J. Programming language support for scientific computation. Interval Com-
putations 4 (6) (1992), pp. 116-126.

Received: October 27, 1995 Institute of Biophysics, Bulgarian Academy of Sciences
Revised version: November 30, 1995 Acad. G. Bonchev str., bldg. 2t

BG-1113 Sofia
Bulgaria

E-mail: epopova~bgearn, acad. bg

