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Interval approach challenges Monte Carlo 
simulation 
J ,~ '~  Pr.so~,,~ and EF.RO Hw6~a,~ 

Intervals are used t() represent impreci~ nmnerical values. Modelling uncertain values with precise 
ba)unds without considering their probability distribution is infeasible in many applications. As a ~)ludon, 
this paper propo~s the use of probability density functions instead of intervals; we consider evaluati(m 
of an arithmetical functkm of random variables. Since the result density canm)t in general be solved 
algebraically, an interval method tirr deternfining its guartnae,d bounds is developed. This l~)ssibility 
challenges traditional Monte Carl,) methods in which truly stochastic characterizations fi)r the result 
digributi,m, such as confidence Ix)unds fi)r fractiles, can be determined. 

I/[HTepBaABHBIfl rIOAXOA COCTaBA, eT 
KOHKypeH mO MoAeA pOBaHmO MeTOAOM 
MoHwe-Kapao 
,s~L UECOHEH, ~ .  XI4BOHF..H 

HHTepBa.rlM HCIXOJIb3ya)TC~ /L/I~I llpedlCTaB.rleHH~ He'rOqHblX '¢HC/IeHH~X 3Ha~leH~it~. O/tHaKo MO/IeBH~()Ba- 
HHe HeTOtiHMX B~dlHtlHH ttHTepl~'lJlaMH C "IX)qHMMH rpam.ltlaMt.t ~ 3  yqeTa pacIlpC/ledleHHl~ Be]J4)~ITH(XTr|I 
3TIlX BC,rlHttHH BO MH(}I"HX cayqam: HenpHeM,'leMO. B KaqecrBe oaHoro i~3 pellleI-ltll~l llpelL~¢DIr, eHo HClIOJlb- 
3OBaTb ~byHKIDI)I II31OTH(~2TH Bepo.slTHt~"rll BM~CTO l.tttTept~aAol~.. PaCCM,"tTpHBaeTC~ e.hlql, t~leHtle  apuqb- 
MeTJ, I t t~KO~ c[3yHKttttl4 cayqafmt~x nepeMemmtx, t-h~cKom,xy IIJIOTHOCTb peayabTa,a He Morner 61~Tb B 

o6ttleM c.ayqae no.qyqeHa a.rlFef)paHMeCKlfMH MeTO/IaMH, ltpeJular;le't-c.',I HHTepBaJIbHhI~ llt)/l(XO2t) JIaR)LIIHI~I 

adl~l ~TOH BeJI)IMHHI.~I ~¢Z~81111l~4#1~¢1~, I'~HI411]~. "I'agOFl nolIxDa C¢~TaB/IReT KOHKypCHIDIIO T ~ H I U I O H -  

HblM MeTO/IaM MoHve-Kapao, KOVOphm IlO3BOJIHIOT ollpelledBiTb TO/IbKO CTOXHCTHqeCKlt¢ XapaKTeptICTHKH 

pacrtpelte,aeHtL.q pe3y~b'raTa, Tag.zte KaK aoBepHTedlbtlMe I'pRHilIIM KB~HT|U|eI~. 

1. Introduction 
An interval is a range of possible values but says nothing about the probability distribution. 
In many applications such information is essential. For example, the manufacturing tolerance 
of a resistance R is not an interval but rather a truncated normal distribution. This means 
that R should be treated as a random variable when used in an arithmetical function Y = 
h( . . . .  R , . . .  ). The function value Y is then also a probability density function (PDF) fy(y) 
over the feasible y-values. Unfortunately, it is not possible to solve the algebraic form of fy(y) 
in the general case [8]. One usually has to use numerical or approximative techniques. 

The most widely used numerical technique for the problem is Monte Carlo simulation 
(MCS) [4]. Here h is evaluated at different points by stochastic sampling. The resulting sample 
set is a stepwise approximation of the cumulative density function (CDF) for which stochastic 
confidence bounds can be calculated. 

Also interval techniques have been applied to the problem. Berleant [1] discretizes indepen- 
dent argument densities into histograms representing probability mass distributions, after which 
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stepwise guaranteed bounds for the GDF can be determined. However, since this approach 
transforms argument densities into probability masses, information concerning the density is 
lost. Williamson [6] derives stepwise bounded CDFs for binary operations with another method, 
but the resulting density is not considered. 

There are good reasons for determining bounds for the actual continuous density function 
instead of calculating the approximative or bounded CDF. Firstly, bounded PDF is more 
fundamental than bounded or approximated CDF: bounds for the CDF can be constructed 
from the bounded density function, but bounded PDF cannot be formed from the CDF- 
approximation or from the stepwise CDF-bounds. Secondly, from the user's viewpoint, the 
form of the density function is more informative than the form of the CDF in many situations, 
like when displaying relative probability values, the most likely values (modes), the actual shape 
of the distribution (skewness, kurtosis, etc.) and small changes in probability density [4]. In 
this paper we present an interval method that calculates guaranteed bounds for the continuous 
PDF. 

2U Calculation of density bounds 
Consider a function Y = h(X1,  X2, . . . ,  Xn) of independent random variables X~, each with a 
known PDF fx,(x~).  We want to know f y ( y ) ,  the density of Y. If at least one variable, say 
X1, can be solved in terms of Y and other X's, then under certain assumptions (cf. [3]) 1 f v (Y)  
can be represented by the integral form 

g(Y, X2, ' ' ' ,  Xn) = fX1 (gX, (Y, X2, ' ' ' ,  ;Tn), 2g2,''','T'n)gJ(Y, X2, ' ' ' ,  Xn) (1) 

where gx,  is xl solved out from Y = h(X1,  X2 . . . .  , X,,) and gs is the Jacobian term 

gs(y, xu, . . . , xn) = i Cggx* (y' x2' " " xn) " (2) 

If a closed form solution for  (1) cannot be determined, then it is possible to consider -fv(~) 
in subboxes by partitioning _~ and the argument distribution support intervals Z2,- . . ,  ~ ex- 
h u s t i v e l y  and exclusively into sets { ~ } ,  {Zl~}, . . . ,  {Z~:}. Under the a~sumptions of (1) the 
following interval formula can thenbe  used for bounding fv(Y): 

7_y(~5) = v"-~,~. ,-  ~ ~ , ,  =,~ . _ z_,~_~g ,~-2 , - - - , ~  )Fdz_~ ) . .Fdz_-~,% 
$ 

(3) 

Here the sum is taken over the Cartesian index set S = {(s2, . . . ,  sn)}, F i ( ~  ~) is the probability 
mass of f x ,  within interval ~ ' ,  and ~_ is an interval extension of 9, i.e., its value is [g_, ~] where 

. ,  ~ r  X 9_ < in fg (y ,  x2, . .  x~,) and ~ > supg(y, x2, . . . ,x , , ) ,  y E y ,  2 E ~ , . . . , x , ,  E x_-~?. It is next 
shown that (3)bounds the density of Y. 

Proposition 1. Formula (3) provides bounds for (1), i.e., f y ( y )  f y(y_ ), i f  y E ~ .  

Proof. Formula (1) can be expressed as 

t°-2- is continuous and y~ 0 at all (xl . . . . .  xn) and fxl(xl)  .fx,,(xn) is contintmus at all but a finite nmnber ~Xl  " " 

of points x = (Xl ... . .  zn). 
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"~I . . . . . .  f~'  g(y, x2, Yr (y) = r ,  , fx,, (z,) dz,  (4) 

where each sum term has a corresponding term in (3). Thus it is sufficient to prove that each 
sum term in (4) is contained in the corresponding sum term in (3), i.e., 

- -  , , . o  

~(~,~',...,Z~,~")F2(x_-g')...F,~(~.~ s") (5) 

For the left hand side (ths) of (5) we can write inequalities 

".._. - - 

(o) 

from which it is evident that 

g(~r,z_-~:,...,_~?)F2(~_[2)... F , , (~")  < l h s  < y(y__L_[2,... ,~")F2(~.[2)... F,,(z_-~ ") [] 

Using (3) provides thus safe outer hounds for the actual density within the given subinterval 
_~'. The finer partitions one makes, the narrower densities one gets. Formula (3) approaches 
the analytic integral form (1), when individual subinterval widths in all partitions approach 
z e r o .  

In order to bound the whole density curve fy (y)  one has to calculate PDF bounds for 
all support subintervals in the partition of y. The result is step functions for lower and upper 
density bounds. The area between bounds defines a family of PDFs all of which must have 
quadrature one. Based on these PDF-bounds piecewise linear bounds for the CDF can also be 
computed. 

The derivative f~,(y) can be bounded in a similar way if the derivative of the solved 
variable does not contain singularities. This makes it possible to further constrain the uncertain 
area between bounds, because the density can now be bounded by linear splines with varying 
slopes instead of fiat steps only. Then CDF bounds are piecewise defined curves of second 
degree. 

The complexity of (3) is exponential w.r.t, the number of variables. If we have n variables 
each with a partition of size s and the result is wanted in m subintervals, then calculating 
bounds for the density curve requires the integrand to be evaluated in ms ('~-1) subboxes. This 
complexity can be reduced if the original function h can be decomposed into algebraically 
independent parts. Such parts can be calculated separately and the intermediate bounded PDFs 
can then be used in the subsequent operations. For example, if h is the sum of 8 variables 
each of which is partitioned into 100 subintervals and result is wanted in 100 parts, then 1016 
subboxes are processed with (3). But if we do the 7 additions one after another with 100 
subintervals in the result at each step, then only 7 × 104 boxes are needed. Our experiments 
seem to indicate that with pairwise evaluations narrower bounds are obtained even with smaller 
amount Of subbox evaluations. 

The sharpness of the bounds obtained depends not only on the subboxes used but also on 
how the integrand bounds in each subbox are evaluated. Local interval arithmetic that neglects 
dependences between multiple occurrences of a variable is fast but gives overestimations that 
in some cases can be very large. Then, global evaluation of the integrand is needed. 
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3. An example 
Assume a resistance R and voltage U given as the triangular distributions R = Triangle(I, 2, 3) 
and U = Triangle(2, 3, 4), where in Triangle(a, b, c) a is the left bound, b the most probable 
value and c the right bound. The task is to compute the support and PDF of the current 
I = U/R.  The result support is ~ = ~/r_- = [2/8, 4]. Suppose that we want the PDF bounds in 
30 equally wide subintervals of/-support.  U is selected to be the solved variable and R-support 
is partitioned into 100 equally wide subintervals. Then the integral form (1) is 

(T) 

Now we can use (3) to calculate bounds for both PDF and the derivative of PDF. Integrand 
bounds are calculated here with local interval arithmetic, which gives us unnecessary wide 
overestimates due to neglecting the dependence between two occurrences of variable r. 

Figure 1 shows results of such an evaluation: (a) depicts stepwise density bounds for 
intervals and short vertical segments show density bounds at partition boundary points; (b) shows 
dervadve bounds. By using also derivative information, the smoother piecewise linear PDF- 
bounds shown in Figure 2 are obtained. 

The bounding error between lower and upper bounds can be reduced by making partitions 
of i and r finer. In the example, partitions of equally wide subintervals were used, but a better 
strategy is to do partitioning dynamically in order to distribute the error evenly. For instance, 
Figure 2 shows that finer partitioning around the peak is needed than in the right tail, if the 
same relative accuracy is wanted. 

Another way to increase accuracy is to use interval analytic techniques such as [5] for 
determining stricter bounds for the interval integrand expression in the subboxes. In some 
cases this really is obligatory. Consider for example a situation, where R and U are lognormal 
distributions with the support maximums at infinity. Let's say that the rightmost r-part is 
__f = [a, c~] and that we are after the density bound at the point i = 1. One integrand term in 
the sum is the monotonicly decreasing product fu(i~_s)~_ s = fu([a, ex~])[a, oo]. For this local IA 
gives [0, fu(a)] x [a, oo] = [0, oo], while the true value is [0, fu(a)a]. This means that without 
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(a) Density bounds (b) Derivative bmmds 

Figure 1. Bounds for 30 subintervals of i with 100 iterations over r 
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Figure 2. Bounded probability density 

considering the two occurrences of r the upper density bound is always overestimated to be 
plus infinity. 

4. Conclusion 
Interval arithmetic can be used for bounding the result distribution of an arithmetical function 
of random variables. This approach challenges Monte Carlo simulation (MCS), where only 
stochastic bounds can be derived. 

The fundamental qualitative advantage of the interval approach is that guaranteed bounds 
for both PDF and CDF can be determined. MCS uses pointwise evaluations and can only 
characterize, the accuracy of the resulting CDF statistically, e.g., determine stochastic confidence 
bounds for the mean or fractiles. From the sampled set one can try to visualize the PDF 
by smoothing and derivating the stepwise CDF and then by adjusting the PDF-curve to have 
quadrature one. This may produce a curve close to reality or something totally wrong. Another 
method to perceive the distribution form is to construct a histogram from the sample. Two 
histograms from the same sample can however look very different if the histogram bins 
are different. Neither of these methods produces reliable results, because knowledge of the 
probability density is lost in simulation. 

To the user the actual form of the PDF (or its bounds) is often more informative than the 
CDF approximation from MCS. Consider, for example, risk analysis. In the interval approach 
any risk peaks--that may have very small probability--can be directly detected, while in MCS 
such points may be lost in the noise or are difficult to find at least to an unexperienced user. 
An inherent property of risks and exceptional events, for which MCS is widely used, is their 
low probability. These phenomena therefore by their very nature escape standard MCS analysis. 

In addition, the interval approach also challenges basic MCS on its home ground in 
fractile confidence analysis. Consider the given circuit example again. Suppose, that we want 
to determine an upper limit for the current such that exceeding it is at most 10 -s probable, 
and that one wants to be 0.95 confident of the result. To achieve this degree of certainty the 
required number of sample points is m 4 x 105 [4]. To be 0.9996 certain requires m 1.2 x 106 
samples. Using the bounded PDF (Figure 2) derived by our interval method one can say that 
the upper limit is guaranteed to be greater than 3.7355 and smaller than 3.8387. This result 
was achieved by evaluating only 3 × 103 subboxes with simple local IA. Interval approach seems 
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promising in regions with low probability mass, although there are advanced MCS techniques 
for better management of tail probabilities (such as importance sampling [2]). 

If only a tail fractile is of concern, then interval computations can be focused to the 
tail only--there is no need to construct the whole distribution. More generally, any result 
distribution part can be calculated independently of other parts. This enables, for example, 
directing computational effort towards distribution parts having largest uncertainty between the 
density bounds. 

A nice feature of MCS is that its time complexity is linear w.r.t, the number of function 
arguments [4], while for the interval approach this is a major problem. This suggests that 
the method is feasible only for small problems. There are, however, means to reduce the 
complexity. For example, a large function can be computed in smaller independent parts. 
Another problem is that, in contrast to MCS, the interval approach is very sensitive to the 
algebraic form of the function. 

In this paper, stochastic independence of argument variables was assumed; their .joint 
distribution was the product of their densities (1). However, the product can be replaced by 
any other joint density function [3]. Density bounds can still be calculated, but the procedure 
is somewhat different from the one presented here. 

The fundamental question when comparing MCS with the interval approach is how high 
precision is actually enough? In the interval approach all events, even those which have very 
low probability, can be captured within bounds. We believe that this possibility alone justifies 
further research on the interval approach. 
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