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Reducing 
caches 

division latency with reciprocal 
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Floating-point division is generally regarded as a high latency operation in typical fl{}ating-l~int appli- 
c~tions. Many techniques exist for increasing division performance, often at the cost of increasing either 
{:hip area, cycle time, or bx~th. This paper presents two meth~mls for reducing the latency of divisi~m. 
Using applications from the SPEC£p92 and NAS benchmark suites, these meth~Ls are evahmted to deter- 
mine their effects on overall system perfiwmance. The notion of recurring cmnputation is presented, and 
it is shown how recurring division can be exploited using an additkmai, dedicated division cache. For 
multiplication-based division algorithms, reciprocal caches ~m be utilized to store recurring reciprocals. 
Results show that reciprocal caches can achieve nearly a twtr-times speedup in division performance fi}r 
reas~mahte cache .sizes. 
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C II,,.xlolltbto TecToBI~IX npc,rpaxl,~ tt3 l laKeroa  SPECfp92  n NAS. l'lpumull.rrc,q i |orlsrrlle peKyppeH'rHblX 
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1. Introduction 
Floating-point division has received increasing attention in recent years, Division has a higher 
latency, or time required to perform a computation, than addition or multiplication. While 
division is an  in f requent  ope ra t ion  even in f loa t ing-poin t  intensive appl icat ions,  its h igh  la tency 
can result  in s ignif icant  system p e r f o r m a n c e  d e g r a d a t i o n  [4]. Many  me thods  for  i m p l e m e n t i n g  

h igh  p e r f o r m a n c e  division have  a p p e a r e d  in the l i te ra ture .  However ,  any  p r o p o s e d  division 

p e r f o r m a n c e  e n h a n c e m e n t  should  be ana lyzed  in t e rms  o f  its possible silicon a rea  a n d  cycle 
t ime  effects. 

Richardson  [6] discusses the technique  of  resul t  cach ing  as a means  of  dec reas ing  the  

l a t e n c y  of  otherwise h igh- la tency  opera t ions ,  such as division. Result  cach ing  is based on 

r e c u r r i n g  or  r e d u n d a n t  computa t ions  tha t  can be f o u n d  in appl icat ions.  Often,  one  o r  both  o f  

the  inpu t  o p e r a n d s  for  a ca lcula t ion a re  the  same as those in a previous  calculat ion.  In  m a t r i x  
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inversion, for example, each entry must be divided by the determinant. When such recurring 
computation is present, it is possible to store and later reuse a previous result without having 
to repeat the computation. 

This study investigates the use of a reciprocal cache as a method for reducing the latency 
of floating-point division. By recognizing and taking advantage of redundant division compu- 
tations, it is possible to reduce the effective division latencY. The performance and efficiency of 
reciprocal caches is compared with division caches. Additionally, due to the similarity between 
division and square root computation, the performance of shared reciprocal/square root caches 
is investigated. 

21 Reciprocal caches 
2.1. Iterative division 
Division can be implemented in hardware using the following relationship: 

where Q is the quotient, a is the dividend, and b is the divisor. Certain algorithms, such 
as the Newton-Raphson and Goldschmidt iterations, are used to evNuate the reciprocal [1]. 
These two algorithms can be shown to converge quadratically in precision. The choice of 
which iteration to use has a ramification on the use of a redprocal cache. Whereas Newton- 
Raphson converges to a reciprocal and then multiplies by the dividend to compute the quotient, 
Goldschmidt's algorithm prescales the numerator and denominator by an approximation of the 
reciprocal and converges directly m the quotient. Thus, Goldschmidt, in its basic form, is not 
suitable for reciprocal caching. However, a modification of Goldschmidt can be made where 
this algorithm, too, converges to the reciprocal of the divisor. It is then necessary to multiply 
the reciprocal by the dividend to compute the quotient. This has the effect of adding one 
additional multiplication delay into the latency of the ,"dgorithm. 

Given an initial approximation for the reciprocal, typically from a ROM look-up table, 
the algorithms converge to the desired precision. Each iteration in these algorithms comprises 
2 multiplications and a two's complement operation. Goldschmidt has the advantage that its 
multiplications are independent and can take advantage of a pipelined multiplier. Higher 
performance can be achieved by using a higher precision starting approximation. Due to the 
quadratic convergence of these iterative algorithms, the computation of 53-bit double precision 
quotients using an 8-bit initial approximation table requires 8 iterations, while a 16-bit table 
requires only 2 iterations. This results in a tradeoff between area required for the initial 
approximation table and the latency of the algorithm. In this study, we present the additional 
tradeoff between larger initial approximation tables and cache storage for redundant reciprocals. 

2.2. Experimental methodology 
To obtain the data for the study, ATOM [8] was used to instrument several applications from 
the SPECfp92 [7] and NAS [8] benchmark suites. These applications were then executed on a 
DEC Alpha 3000/500 workstation. All double precision floating-point division operations were 
instrumented. An IEEE double precision operand is a 64-bit word, comprising a 1-bit sign, an 
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llobit biased exponent, and 52 bits of mantissa, with one hidden mantissa bit [2]. For division, 
the exponent is handled in parallel with the mantissa calculation. Accordingly, the quotient 
mantissa is independent of the input operands' exponents. 

For reciprocal caches, the cache tag is the concatenation of the divisor mantissa and a 
valid bit, for a total of 58 bits. Because the leading one is implied for the mantissas, only 52 
bits per mantissa need be stored. The cache data is the double precision reciprocal mantissa, 
with implied leading one, and the guard, round, and sticky bits for a total of 55 bits. These 
extra bits are required to allow for correct rounding on subsequent uses of the same reciprocal, 
with possibly different rounding modes. The total storage required for each entry is therefore 
108 bits. 

When a division operation is initiated, the reciprocal cache is simultaneously accessed to 
check for a previous instance of the reciprocal. If the result is found, the reciprocal is returned 
and multiplied by the  dividend to form the quotient. Otherwise, the operation continues in the 
divider, and upon computation of the reciprocal the result is written into the cache. 

2.3 .  Performance 
Reciprocal cache hit rates were first measured assuming an infinite, fully-associative cache. 
These results are shown in Figure l(a). The average hit rate of all 11 applications is 81.7%, 
with a standard deviation of 27.7%. From Figure l(a), it can be seen that the application 
tomcatv is unusual in that it has no reciprocal reuse, as demonstrated by its 0% hit rate. When 
tomcatv is excluded, the average hit rate is 89.8%, and the standard deviation is only 6.2%. 
Reciprocal caches of finite size were then simulated, and the resulting hit rates are shown in 
Figure l(b). Figure l(b) shows that most of the redundant reciprocal computation is captured 
by a 128 entry cache, with a hit rate of 77.1%. 
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Figure 1. Hit rates for (a) infinite and (b) finite redprocal caches 

To determine the effect of reciprocal caches on overall system performance, the effective 
latency of division is calculated for several iterative divider configurations. For this analysis, the 
comparison is made with respect to the modified implementation of Goldschmidt's algorithm 
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discussed previously. It is: assumed that a pipelined multiplier is present with a latency of 2 
cycles and a throughput of 1 cycle. 

The latency for a division operation can be calculated as follows. An initial approximation 
table look-up is assumed to take 1 cycle. The initial prescaling of the numerator and the 
denominator requires 2 cycles. Each iteration of the algorithm requires 2 cycles for the 2 
overlapped multiplications. The final result is available after an additional cycle to drain the 
multiplier pipeline. Thus, a base 8-bit Goldschmidt implementation without a cache requires 
10 cycles to compute the quotient. Two cases arise for a scheme using a reciprocal cache. 
A hit in the cache has an effective latency of only 3 cycles: 1 cycle to return the reciprocal 
and 2 to perform the multiplication by the dividend. A miss in the cache suffers the base 10 
cycle latency plus an additional 2 cycles to multiply the reciprocal by the dividend, as per the 
modified Goldschmidt implementation. The results of this analysis are shown in Table 1. 

ROM Size Cache Entries Latency (cycles)" Extra Area (bits) 
8-bit 0 10 0 

16-bit 0 8 1,046,528 
8-bit 8 9.48 864 
8-bit 32 8.69 3,456 
8-bit 64 7.14 6,912 
8-bit 128 5.06 13,824 
8-bit 512 4.79 55,296 
8-bit 2048 4.56 221,184 

Table 1. Performance/area tradeoffs for reciprocal caches 

Figure 2 shows the performance of the different cache sizes relative to an 8-bit initial 
approximation table implementation. Here, the speedups are measured against the total storage 
area required', expressed as a factor of the 8-bit initial approximation table size, which is 2048 
bits. This graph demonstrates that when the total storage is approximately eight-times that of 
an 8-bit implementation with no cache, a reciprocal cache can provide a significant increase 
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Figure 2. Speedup from reciprocal caches 
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in division performance, achieving approximately a two-times speedup. When the total area 
exceeds eight-times the base area, the marginal increase in performance does not justify the 
increase in area. A reciprocal cache implementation can be compared to the use of a 16-bit 
initial approximation table, with a total storage of 1M bits. This yields an area factor of 512, 
with a speedup of only 1.9.5. The use of various table compression techniques could reduce this 
storage requirement. However, the best case speedup with no reciprocal cache and requiring 2 
iterations is still 1.2,5. 

31 Division caches 
An alternative to a reciprocal cache to reduce division latency is a division cache. A division 
cache can be used for any form of divider implementation, regardless of the choice of algo- 
rithm. For a division cache, the tag is larger than that of a reciprocal cache, as it comprises 
the concatenation of the dividend and divisor mantissas, and a valid bit, forming 105 bits. Ac- 
cordingly, the total storage required for each division cache entry is 160 bits. The functionality 
of the division cache is similar to that of the reciprocal cache. When a division operation is 
initiated, the division cache can be simultaneously accessed to check for a previous instance 
of the exact dividend/divisor pair. If the result is found, the correct quotient is returned. 
Otherwise, the operation continues in the divider, and upon computation of the quotient, the 
result is written into the cache. The number of computations reusing both operands at best will 
be equal to and will be typically less than the number reusing only the same divisor. However, 
reciprocal caches restrict the form of algorithm used to compute the quotient, while division 
caches allow any divider implementation. 

Hit rates were measured for each of the applications assuming an infinite, fully-associative 
division cache. The average hit rate was found to be 57.1%, with a standard deviation of 36.5%. 
When analyzing only those applications that exhibited some redundant computation, excluding 
tomcatv and su2cor, the average hit rate is 69.8%, with a standard deviation of 25.8%. Thus, 
the quantity of redundant division in the applications compared with redundant reciprocals was 
lower and more variant. 

Finite division caches were simulated, and the resulting hit rates are shown in Figure 8(a), 
along with the hit rates of the reciprocal caches with the same number of entries. The results 
of Figure 3(a) demonstrate a kneenear  a division cache of 128 entries, with an average hit 
rate of 60.9%. In general, the shape of the reciprocal cache hit rate tracks that of the division 
cache. For the same number of entries, though, the reciprocal cache hit rate is larger than 
that of the division cache by about 15%. Thus, the quantity of redundant division in the 
applications compared with redundant reciprocals was lower and more variant. Additionally, a 
division cache requires approximately 50% more area than a reciprocal cache with the same 
number of entries. Further performance and efficiency analysis of division caches is presented 
in [5]. 

4D Square root caches 
The implementation of square root often shares the same hardware used for division computa- 
tion. It can be shown that a variation of Goldschmidt's algorithm can be used to converge to 
the square root of an operand [9]. Thus, the question arises as to the quantity of redundant 
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Figure 3. Hit rates for (a) division and (b) reciprocal/square root caches 

square root computation available in applications. Because both the reciprocal and square root 
operations are unary, they can share the same cache for their results. 

A similar experiment was performed for square root as was done for division and reciprocal 
operations. All double precision square roots were instrumented along with double precision 
divide operations. Hit rates were measured for finite shared reciprocal/square root caches, 
where both reciprocals and square roots reside in the same cache. The results are shown in 
Figure 3(b). The shared cache results show that for reasonable cache sizes, the square root 
result hit rates are tow, about 50% or less. Although the frequency of square root was about 
10 times less than division, the indusion of square root results caused interference with the 
reciprocal results. This had the effect of decreasing the reciprocal hit rates, especially in the 
cases of 64 and 128 entries. Thus, this study suggests that square root computations should not 
be stored in either a dedicated square root cache or a shared reciprocal cache, due to the low 
and highly variant hit rate of square root and the resulting reduction in reciprocal hit rate. 

5. Conclusions 
This study indicates that redundant division computation exists in many applications. Both 
division caches and reciprocal caches can be used to exploit this redundant behavior. For high 
performance implementations, where a multiplication-based algorithm is used, the inclusion of 
a reciprocal cache is an efficient means of increasing performance. In this scenario, too, a 
division cache could be used. However, the high standard deviation of a division cache's hit 
rates compared with that of a reciprocal cache argues against its usage and for the use of a 
reciprocal cache. Additionally, the analysis has shown that these applications do not contain a 
consistently large quantity of redundant square root computation. Thus, the caching of square 
root results as a means for increasing overall performance is not recommended. 

The primary alternative previously to decrease latency of multiplication-based division 
algorithms has been to reduce the number of iterations by increasing the size of the initial 
approximation table. This study demonstrates that a reciprocal cache is an effective alternative 
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to large reciprocal tables. The inclusion of a reasonably sized reciprocal cache can consistently 
provide a significant reduction in division latency. 
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