
Reliable Computing 2 (2) (1996), pp. 147-153

Reducing
caches

division latency with reciprocal

STUART F. OBERMAN and MICHAEL J. FLYNN

Floating-point division is generally regarded as a high latency operation in typical fl{}ating-l~int appli-
c~tions. Many techniques exist for increasing division performance, often at the cost of increasing either
{:hip area, cycle time, or bx~th. This paper presents two meth~mls for reducing the latency of divisi~m.
Using applications from the SPEC£p92 and NAS benchmark suites, these meth~Ls are evahmted to deter-
mine their effects on overall system perfiwmance. The notion of recurring cmnputation is presented, and
it is shown how recurring division can be exploited using an additkmai, dedicated division cache. For
multiplication-based division algorithms, reciprocal caches ~m be utilized to store recurring reciprocals.
Results show that reciprocal caches can achieve nearly a twtr-times speedup in division performance fi}r
reas~mahte cache .sizes.

YCKOpeH e AeAeHmz c IIOMOIKbIO
K mHpoBaHmI o6paTm,IX 3HaneHH;
C . OBEPMAH, M . ~ ^ H H H

,,.~e21eHlle ~31taqeHl|lTt C llJlaBal()lllel'l TOqKI}ITI I~ ItplldlO,~t.eHIl.':lX, llCll(L1b3ylOllllIX aptlqb.',leTIIKy C llJlath'lK)lllel~l

fl)tiK{}~l, ¢,~blqHO Tpe~yeT 6Oflbll)l.lX 3a 'rpaT BpesteHH. ,LL'IJI Ill)BblllleH|lkl ~ K T t l B I . I (~ T t l /leJleH$i/4 Hpe/t-

21oTgeH{I HeMad/o MeTO/II}B, MHOFIIe 113 KOTOpbtX T p e t y l o r yBe.'lr{qeHlt,q lldloHlli2[tl KplicTaJvla, CHl~2geHlt$1

TaKTI}BOfl ,~acrtrrta Ilarl n TOF{h 14 apymro: l'llYeacraa-tem,~ ;iml MeTl~21a ycKnperllls-I ollepa}[lIl , I !leJleHIt/.L
~pHBoII~ITC~I /laHHble O B./IItSFIIIII 3THX MeTO/IOB Ha O~lllyl~} llF~ll3BO21|lTedlbHCkcTIfb CttCTeMbI, llOdlyqeHHble

C II,,.xlolltbto TecToBI~IX npc,rpaxl,~ tt3 l laKeroa SPECfp92 n NAS. l'lpumull.rrc,q i |orlsrrlle peKyppeH'rHblX

Bblqtlc.leHIlt~l t4 ltpe/L'larae'rc~l cllt}c(x'5 pe~tJlll2&ll[|[}| p e g y p p e n T r m r o g'le.'leNll.q c tl{)MlllllblO Jl{)llOdtH|lTeflb-

HOlt K)III-IIIIM~TII, OTBeJteHHof{ (;}let[ll.'ldlbHO ,RJI~I 3't'of~l Ollepallllll. B aJll'llpllTMaX /ledleH|{$1, OCHOl3aHHblX

Ha yMHI}~KeH$I||~ ,MOXKHO HC[IOflb3oBa'l'b Kall|-I|aMJ.lTIb lldlH xpaHeH|l~l peKyppeHTHblX "I~paTHI~IX 21Hatle -

H~I~I. Pe3ydlbTaTbl CBII/ItgTe./IbCTBylOT, TO K~II{-II~|M.qTL~ JLrl.q Ih'~pHTHblX 3HatleH|l~l MO~KeT {~'~cl[eqllTls IlOtlTtl

aByKpaTrme yBemi,aemle cKopoc'rn 11e.rlemtsl l lptl cpaamrre:lhrlo HO;~XUIIalII(}M ee pa3.~tepe.

1. Introduction
Floating-point division has received increasing attention in recent years, Division has a higher
latency, or time required to perform a computation, than addition or multiplication. While
division is an in f requent ope ra t ion even in f loa t ing-poin t intensive appl icat ions, its h igh la tency
can result in s ignif icant system p e r f o r m a n c e d e g r a d a t i o n [4]. Many me thods for i m p l e m e n t i n g

h igh p e r f o r m a n c e division have a p p e a r e d in the l i te ra ture . However , any p r o p o s e d division

p e r f o r m a n c e e n h a n c e m e n t should be ana lyzed in t e rms o f its possible silicon a rea a n d cycle
t ime effects.

Richardson [6] discusses the technique of resul t cach ing as a means of dec reas ing the

l a t e n c y of otherwise h igh- la tency opera t ions , such as division. Result cach ing is based on

r e c u r r i n g or r e d u n d a n t computa t ions tha t can be f o u n d in appl icat ions. Often, one o r both o f

the inpu t o p e r a n d s for a ca lcula t ion a re the same as those in a previous calculat ion. In m a t r i x

@ S. F. Oberman, M. J. l, lynn, 1996

148 S. F. OBERMAN I M. J. FLYNN

inversion, for example, each entry must be divided by the determinant. When such recurring
computation is present, it is possible to store and later reuse a previous result without having
to repeat the computation.

This study investigates the use of a reciprocal cache as a method for reducing the latency
of floating-point division. By recognizing and taking advantage of redundant division compu-
tations, it is possible to reduce the effective division latencY. The performance and efficiency of
reciprocal caches is compared with division caches. Additionally, due to the similarity between
division and square root computation, the performance of shared reciprocal/square root caches
is investigated.

21 Reciprocal caches
2.1. Iterative division
Division can be implemented in hardware using the following relationship:

where Q is the quotient, a is the dividend, and b is the divisor. Certain algorithms, such
as the Newton-Raphson and Goldschmidt iterations, are used to evNuate the reciprocal [1].
These two algorithms can be shown to converge quadratically in precision. The choice of
which iteration to use has a ramification on the use of a redprocal cache. Whereas Newton-
Raphson converges to a reciprocal and then multiplies by the dividend to compute the quotient,
Goldschmidt's algorithm prescales the numerator and denominator by an approximation of the
reciprocal and converges directly m the quotient. Thus, Goldschmidt, in its basic form, is not
suitable for reciprocal caching. However, a modification of Goldschmidt can be made where
this algorithm, too, converges to the reciprocal of the divisor. It is then necessary to multiply
the reciprocal by the dividend to compute the quotient. This has the effect of adding one
additional multiplication delay into the latency of the ,"dgorithm.

Given an initial approximation for the reciprocal, typically from a ROM look-up table,
the algorithms converge to the desired precision. Each iteration in these algorithms comprises
2 multiplications and a two's complement operation. Goldschmidt has the advantage that its
multiplications are independent and can take advantage of a pipelined multiplier. Higher
performance can be achieved by using a higher precision starting approximation. Due to the
quadratic convergence of these iterative algorithms, the computation of 53-bit double precision
quotients using an 8-bit initial approximation table requires 8 iterations, while a 16-bit table
requires only 2 iterations. This results in a tradeoff between area required for the initial
approximation table and the latency of the algorithm. In this study, we present the additional
tradeoff between larger initial approximation tables and cache storage for redundant reciprocals.

2.2. Experimental methodology
To obtain the data for the study, ATOM [8] was used to instrument several applications from
the SPECfp92 [7] and NAS [8] benchmark suites. These applications were then executed on a
DEC Alpha 3000/500 workstation. All double precision floating-point division operations were
instrumented. An IEEE double precision operand is a 64-bit word, comprising a 1-bit sign, an

REDUCING DMSION LATENCY WITH RECIPROCAL CACHES 149

llobit biased exponent, and 52 bits of mantissa, with one hidden mantissa bit [2]. For division,
the exponent is handled in parallel with the mantissa calculation. Accordingly, the quotient
mantissa is independent of the input operands' exponents.

For reciprocal caches, the cache tag is the concatenation of the divisor mantissa and a
valid bit, for a total of 58 bits. Because the leading one is implied for the mantissas, only 52
bits per mantissa need be stored. The cache data is the double precision reciprocal mantissa,
with implied leading one, and the guard, round, and sticky bits for a total of 55 bits. These
extra bits are required to allow for correct rounding on subsequent uses of the same reciprocal,
with possibly different rounding modes. The total storage required for each entry is therefore
108 bits.

When a division operation is initiated, the reciprocal cache is simultaneously accessed to
check for a previous instance of the reciprocal. If the result is found, the reciprocal is returned
and multiplied by the dividend to form the quotient. Otherwise, the operation continues in the
divider, and upon computation of the reciprocal the result is written into the cache.

2.3 . Performance
Reciprocal cache hit rates were first measured assuming an infinite, fully-associative cache.
These results are shown in Figure l(a). The average hit rate of all 11 applications is 81.7%,
with a standard deviation of 27.7%. From Figure l(a), it can be seen that the application
tomcatv is unusual in that it has no reciprocal reuse, as demonstrated by its 0% hit rate. When
tomcatv is excluded, the average hit rate is 89.8%, and the standard deviation is only 6.2%.
Reciprocal caches of finite size were then simulated, and the resulting hit rates are shown in
Figure l(b). Figure l(b) shows that most of the redundant reciprocal computation is captured
by a 128 entry cache, with a hit rate of 77.1%.

~ 70 70

20 201

~0 10i

0 O'

~ ~ ~ ~ ~ "- .

(a)

;:.;..

/ "

t!"

j.s"
j . "

I I] I
16 ~12 84 128

1 I I , I
2,q6 51;! 1024 2048

N u m b e r o f E r ~ e s

(b)

Figure 1. Hit rates for (a) infinite and (b) finite redprocal caches

To determine the effect of reciprocal caches on overall system performance, the effective
latency of division is calculated for several iterative divider configurations. For this analysis, the
comparison is made with respect to the modified implementation of Goldschmidt's algorithm

150 S. F. OBERMANr M. I. FLYNN

discussed previously. It is: assumed that a pipelined multiplier is present with a latency of 2
cycles and a throughput of 1 cycle.

The latency for a division operation can be calculated as follows. An initial approximation
table look-up is assumed to take 1 cycle. The initial prescaling of the numerator and the
denominator requires 2 cycles. Each iteration of the algorithm requires 2 cycles for the 2
overlapped multiplications. The final result is available after an additional cycle to drain the
multiplier pipeline. Thus, a base 8-bit Goldschmidt implementation without a cache requires
10 cycles to compute the quotient. Two cases arise for a scheme using a reciprocal cache.
A hit in the cache has an effective latency of only 3 cycles: 1 cycle to return the reciprocal
and 2 to perform the multiplication by the dividend. A miss in the cache suffers the base 10
cycle latency plus an additional 2 cycles to multiply the reciprocal by the dividend, as per the
modified Goldschmidt implementation. The results of this analysis are shown in Table 1.

ROM Size Cache Entries Latency (cycles)" Extra Area (bits)
8-bit 0 10 0

16-bit 0 8 1,046,528
8-bit 8 9.48 864
8-bit 32 8.69 3,456
8-bit 64 7.14 6,912
8-bit 128 5.06 13,824
8-bit 512 4.79 55,296
8-bit 2048 4.56 221,184

Table 1. Performance/area tradeoffs for reciprocal caches

Figure 2 shows the performance of the different cache sizes relative to an 8-bit initial
approximation table implementation. Here, the speedups are measured against the total storage
area required', expressed as a factor of the 8-bit initial approximation table size, which is 2048
bits. This graph demonstrates that when the total storage is approximately eight-times that of
an 8-bit implementation with no cache, a reciprocal cache can provide a significant increase

~ 2.SO

~- z2s

t .25

LOD

0.75

0,50
1o loo

Figure 2. Speedup from reciprocal caches

REDUCING DIVISION LATENCY WITH RECIPROCAL CACHES 151

in division performance, achieving approximately a two-times speedup. When the total area
exceeds eight-times the base area, the marginal increase in performance does not justify the
increase in area. A reciprocal cache implementation can be compared to the use of a 16-bit
initial approximation table, with a total storage of 1M bits. This yields an area factor of 512,
with a speedup of only 1.9.5. The use of various table compression techniques could reduce this
storage requirement. However, the best case speedup with no reciprocal cache and requiring 2
iterations is still 1.2,5.

31 Division caches
An alternative to a reciprocal cache to reduce division latency is a division cache. A division
cache can be used for any form of divider implementation, regardless of the choice of algo-
rithm. For a division cache, the tag is larger than that of a reciprocal cache, as it comprises
the concatenation of the dividend and divisor mantissas, and a valid bit, forming 105 bits. Ac-
cordingly, the total storage required for each division cache entry is 160 bits. The functionality
of the division cache is similar to that of the reciprocal cache. When a division operation is
initiated, the division cache can be simultaneously accessed to check for a previous instance
of the exact dividend/divisor pair. If the result is found, the correct quotient is returned.
Otherwise, the operation continues in the divider, and upon computation of the quotient, the
result is written into the cache. The number of computations reusing both operands at best will
be equal to and will be typically less than the number reusing only the same divisor. However,
reciprocal caches restrict the form of algorithm used to compute the quotient, while division
caches allow any divider implementation.

Hit rates were measured for each of the applications assuming an infinite, fully-associative
division cache. The average hit rate was found to be 57.1%, with a standard deviation of 36.5%.
When analyzing only those applications that exhibited some redundant computation, excluding
tomcatv and su2cor, the average hit rate is 69.8%, with a standard deviation of 25.8%. Thus,
the quantity of redundant division in the applications compared with redundant reciprocals was
lower and more variant.

Finite division caches were simulated, and the resulting hit rates are shown in Figure 8(a),
along with the hit rates of the reciprocal caches with the same number of entries. The results
of Figure 3(a) demonstrate a kneenear a division cache of 128 entries, with an average hit
rate of 60.9%. In general, the shape of the reciprocal cache hit rate tracks that of the division
cache. For the same number of entries, though, the reciprocal cache hit rate is larger than
that of the division cache by about 15%. Thus, the quantity of redundant division in the
applications compared with redundant reciprocals was lower and more variant. Additionally, a
division cache requires approximately 50% more area than a reciprocal cache with the same
number of entries. Further performance and efficiency analysis of division caches is presented
in [5].

4D Square root caches
The implementation of square root often shares the same hardware used for division computa-
tion. It can be shown that a variation of Goldschmidt's algorithm can be used to converge to
the square root of an operand [9]. Thus, the question arises as to the quantity of redundant

152 S. F. OBF_.RMAN, M. J. FLYNN

m

11o

70

6O

50

4O

3O

20

~0

0

. _#~ ,r-
. ~,~.J,, * - ' - 8 0

s ¢. 70

t

• /d SO

," / o - . ~ Ree~m~e.at Gache 40
o ~ o Olv~"~ Cache 30

20

10

... . 1 1 I I t I t I 0
16 32 64 128 256 512 1024 2048

N u m b e r ol Enl f i~

.,.P
//"

,/

.¢¢/ • *

J * ~ * Scl~anJ Ftoca

I r I 1 1 t I |
t6 32 64 128 256 512 ;024 2O48

N u m b e r o l E n l r i e s

(a) (b)

Figure 3. Hit rates for (a) division and (b) reciprocal/square root caches

square root computation available in applications. Because both the reciprocal and square root
operations are unary, they can share the same cache for their results.

A similar experiment was performed for square root as was done for division and reciprocal
operations. All double precision square roots were instrumented along with double precision
divide operations. Hit rates were measured for finite shared reciprocal/square root caches,
where both reciprocals and square roots reside in the same cache. The results are shown in
Figure 3(b). The shared cache results show that for reasonable cache sizes, the square root
result hit rates are tow, about 50% or less. Although the frequency of square root was about
10 times less than division, the indusion of square root results caused interference with the
reciprocal results. This had the effect of decreasing the reciprocal hit rates, especially in the
cases of 64 and 128 entries. Thus, this study suggests that square root computations should not
be stored in either a dedicated square root cache or a shared reciprocal cache, due to the low
and highly variant hit rate of square root and the resulting reduction in reciprocal hit rate.

5. Conclusions
This study indicates that redundant division computation exists in many applications. Both
division caches and reciprocal caches can be used to exploit this redundant behavior. For high
performance implementations, where a multiplication-based algorithm is used, the inclusion of
a reciprocal cache is an efficient means of increasing performance. In this scenario, too, a
division cache could be used. However, the high standard deviation of a division cache's hit
rates compared with that of a reciprocal cache argues against its usage and for the use of a
reciprocal cache. Additionally, the analysis has shown that these applications do not contain a
consistently large quantity of redundant square root computation. Thus, the caching of square
root results as a means for increasing overall performance is not recommended.

The primary alternative previously to decrease latency of multiplication-based division
algorithms has been to reduce the number of iterations by increasing the size of the initial
approximation table. This study demonstrates that a reciprocal cache is an effective alternative

REDUCING DMSION LATENCY WITH RECIPROCAL CACHF.S 153

to large reciprocal tables. The inclusion of a reasonably sized reciprocal cache can consistently
provide a significant reduction in division latency.

References
[t] Flynn, M. On division by functional iteration. IEEE Transactions on Computers C-19 (8) (1970).

[2] ANSI/IEEE std 754-1985, IEEE standard for binary floating.point arithmetic.

[3] NAS parallel benchmarks release. August, 1991.

[4] Oberman, S. and Flynn, M. Design issues in floating-point division, Technical Report No. CSL-
TR-94-647, Computer Systems Laboratory, Stanford University, 1994.

[5] Oberman, S. and Flynn, M. On division and reciprocal caches. Technical Report No. CSL-TR-
95-666, Computer Systems Laboratory, Stanford University, 1995.

[6] Richardson, S. E. Exploiting trivial and redundant computation. In: "Proceedings of the 11th IEEE
Symposium on Computer Arithmetic", 1993, pp. 220-227.

[7] Spec benchmark suite release. February, 1992.

[8] Srivastava, A. and Eustace, A. ATOM: a system for building cuatomized program analysis tools.
In: "Proceedings of the SIGPLAN'94 Conference on Programming Language Design and
Implementation", 1994, pp. 196-205.

[9] Waser, S. and Flynn, M. Introduction to arithmetic for digital systems designers. Holt, Rinehart, and
Winston, 1982.

Received: October 20, 1995 Computer Systems Laboratory
Revised version: November 29, t995 Department of Electrical Engineering

Stanford University
Stanford, CA 94305-9030

USA

