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Self-correcting polynomial programs 
GUEVARA NOUBm and HENRI J. NUSSBAUMER 

In this paper,  we introduce a new self-correction a lgor i thm that  requires less queries than  the simple 
ma~rity vote. We aim introduce new random ~lf-redudbility fi~rmulas. 
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1. Introduction 
The theory of self-testing/correcting programs by random self-reducibility (RSR) [1, 2, 5] is a 
novel and powerful tool to approach the problem of program correction. It allows real-time 
testing and correcting of programs. Moreover, it allows the simultaneous checking of the 
hardware and software without requiring any knowledge of the implementation of a program. 
Basically, a function is random self-reducible of order k if its value at a given point can be 
efficiently reconstructed from its evaluation a t  k random points. The research conducted in this 
domain focuses on two main issues: the enlargement of the set of random self-reducible functions 
and the reduction of the complexity of self-correction schemes based on RSR. In this paper, 
we are interested in reducing the complexity of the self-correction scheme for mulfi-variate 
polynomials. We investigate two methods to achieve the complexity reduction: 1) by reducing 
the order of RSR in some special cases (e.g., studying polynomials defined over extension fields 
or introducing some determinism in the choice of the queries) and 2) by substituting a new 
generic self-correction algorithm to the simple majority vote. 

In Section 2, we recall some known results on the RSR of polynomials. In Section 3, 
we give a lower bound of RSR of polynomials. In Section 4, we introduce new random 
self-reducibility formulas. In Section 5, we introduce a new algorithm for the self-correction of 
polynomial programs. The proofs of the theorems can be found in [3]. 

2. Polynomials random self-reducibility property 
The random self-reducibility property allows the reconstruction of the value of a function f by 
using its evaluation on a finite number of elements taken from its domain of'definition. The 
reconstruction procedure has to be simpler and faster than the direct evaluation of f .  In this 
section, we recall some general results established in [1, 2]. 
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Definition 1. A function f defined over a set D is said to be random self-reducible of order k 
i f  and only i f  there exists a function ~o and a set of probabilistic functions a l , . . . ,  a~ such that: 

VXED,  VrED;  f (x )=~(r ,x , f (~r l ( r ,x ) ) , . . . , f (~&(r ,x ) ) ) .  (1) 

Functions ai(., x) have a well defined distribution, and functions ~o and ai can be computed 
el~lciently. 

A large class of mathematical functions have been proven random self-reducible (e.g., 
fast Fourier transform, matrix permanent, trigonometric functions, etc.). In the rest of this 
paper, we concentrate on polynomial functions (i.e., functions for computing univariate and 
multivariate polynomials). Lipton [2] and Blum et  al. [1] have studied polynomial functions and 
have shown that polynomials of degree 1 d are random self-reducible of order d + 1. This is 
illustrated in the following theorem: 

Theorem 1 [Lipton, Blum et al.]. For every set { a l , . . . ,  ad+l} of pairwise different elements 
of a finite field F such that [F[ > d + 1, there exists a finite set of elements { e l , . . . , C d + l }  

such that for every potynomhl P of degree d, defined over F, the following holds: 

d+l 
Vx, r e F; P(z)  = ~ c~P(x + a~r). (2) 

i=l  

In this case, the functions ai are defined by ai(r,x) = x + air. If (al , . . . ,ae+l)  = 
(1, 2 . . . .  , d + 1), then ci = (-1)~+1C~+1, i = 1 . . . . .  d + 1. 

Generic program for  self-correcting polynomials. The random self-reducibility property 
of functions can be used to improve the reliability of a program that has an error probability 
p. Let f be the function computed by a given program such that Prob[f(x)  ~ P(x)] > pert- 
Blum et al. give an algorithm that reduces the error probability from ~ to any value/3. 
We recall this algorithm and we show that it can be generalized to reduce the error probability 
from ..V_'(p < 1/2) to [3. Note that all what needs to be known about P is that it is a d+l 
polynomial of degree d. 

Algorithm 1. Generic self-correction program(t) 

N~-241n(1/3) 
F o r  m = 1 . . . . .  N Do 

Choose r Eu F 

Result ~ Majority{rm l m :  1 . . . .  , N} 
e n d  

Theorem 2 [Blum et al.]. I f  t_he program f has a probability of error less than or equal to 
1 then the result given by Algorithm (1) has an error probability less than •. 

4(d+1) ' 

T h e o r e m  8. Given a p r o g r a m  f with error probability ~ < 1 a+r ~ ,  the self-correction algo- 
2(i-p) 1,, i rithm using the vote will have an error probability of [3 and will make (d + 1) × ~ ,,, 

queries. 

1For multivariate polymmlials, the degree is the maxinmm sum ~ff degrees of variables in the same mom~miaL 
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3. Lower bound on self-reducibility 
Random self-reducibility gives a rigorous method to improve the reliability of programs. Un- 
fortunately, for polynomials of large degree, this method requires too many queries to the 
defective program since the number of queries is proportional to the degree of the polyno- 
mial. To improve the efficiency of this method, two directions can be investigated: 1) the 
reduction of the order of random self-reducibility of polynomials, and 2) the improvement of 
the self-correction algorithm. In this section, we give a lower bound to the order of random 
self-reducibility of polynomials. 

To reconstruct the value of a polynomial by random self-reducibility, we need to query 
a program on d + 1 points. One may think that, under some conditions, this order (taken 
equal to d + 1) can be reduced. These conditions could be that the queries no longer obey a 
uniform distribution but are deterministically chosen, or that there exists some restrictions on 
the working field. We show that such a reduction is not possible. 

Lemma 1. Let F be a finite field such that IF I > d. No functions al,...,crd exist such 
that there exists an element xo E F and for every univariate polynomial P of degree d we 

have: P (xo )=  W(xo, P(crx(xo)) , . . . ,P(aa(Xo))) .  The only condition on function ai is that 
i %  

X - - - - - - t ,  

<(zo) # zo. 

Lemma 1 proves that even self-reduction over one point x0 and of order less than d + 1 
is not possible. This is true regardless of the distribution of the queries and of the working 
field. 

Theorem 4. The order of self-reduction of univariate polynomial functions of degree d is 
exacdy equal to d + 1. 

The order of random self-reducibility of multivariate polynomial functions of combined 
degree d is exactly equal to d + 1. 

The order of self-reducibility o£ multivariate polynomials of degree d for each variable is 
equal to d + 1. 

4. Other random self-reducibility formulas 
The random self-reducibility property of polynomials follows from Lagrange interpolation. In 
Section 2, we presented this property as it was first introduced in [1]. In this section, we 
introduce three novel formulas to reconstruct a polynomial value at point x from d + 1 
uniformly distributed points. These formulas follow from Lagrange interpolation [4]. 

Consider the set of polynomials of degree d defined over a finite field F,  Let w be a root 
of unity of order d + 1; w exists if and only if d + 1 divides 2 IF[ - 1. Lagrange interpolation 
over the roots of unity gives us a new formula for RSR of reduced computation complexity: 

1 a 
Vx, r E F; P(X) = d + i ~ P(x  + rw~)" (3) 

i=o 

2ff d + 1 &~es n~t divide [FI - J., we may consider the t~iynomials as l~lynomiats of degree a¢; where d' + 1 is 
the smallest divi.~r > d + 1 of IF[ - 1. 
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The other two RSR-formulae are the alternate self-reducibility and the Lagrange interpo- 
lation over a sequence of consecutive elements: 

- 1  ~ P(u), (4) Vx, r E F; P(x)  = d + 1 ,,#~+~, 

1 d+l i 
VX,~ E -~; e(x) --- ~{ i~'~(-1)i- l~"~+le(x "[" r(k + ~)). (5) 

5. Sel f -correct ion w i t h  early error de tec t ion  

To improve the polynomials self-correction scheme, we showed that, according to Theorem 4, 
it is not possible to reduce the order of random self-reducibility. The only remaining possibility 
is to find new simple algorithms that are based on random self-reducibility'and are more 
efficient than the ones known in the literature. Sudan and Gemell [t5] studied this problem 
and found new algorithms that tolerate more errors in the defective program. However, these 
algorithms suffer from an increased complexity. We propose a simple algorithm that acts as a 
filter. It queries the defective program over a set of points and discards them when it detects 
some errors. Otherwise, it reconstructs, by RSR, a value from them to be used during the vote 
phase. 

Let f be a program that evaluates a polynomial P of degree d, with error probability 
_a_ Consider the set {f(xi) I i : 1 . .n}. When xi = w i [5], we are in presence of a 
d+l" 
Bose-Chaudhuri-Hocquenghem (BCH) code, which can be error-corrected by using a decoding 
algorithm of BCH codes. When xi covers all the field F ,  we have a Reed-Solomon decoding 
problem [6]. A major disadvantage of these methods is the complexity of the algorithms. 

Let f ( x  + r ) , f ( x  + 2 r ) , . . . , f ( x  + (d + k + 1)r) be the d + k + 1 values returned by 

program f at points x + r . . . . .  x + (d + k + 1)r. 

Theorem 5. The system of equations (6) is satislied i f  and only i f  the number of f ( x  + ir) that 
are wrong is equa/ to 0 or greater than k. 

d+l 

+ r) = + + 1>), 
i=l  

: : (6) 
d+l 
i=1 

The satisfaction of (6) can be checked easily since the algorithm needs only to verify that 
the values of P(x  + i t )  are equal, by querying directly the program f and by reconstructing 
its value by RSR. This technique allows us to detect k errors from d + k + 1 values of the 
polynomial. The detection is very simple given the structure of the control matrix. 

5.1. A self-correction algorithm based on early error detection 

We first study the characteristics of Algorithm (2) and then compare them with the algorithm 
based on a simple vote. The comparison is carried out by considering the number of queries 
necessitated by the algorithm to reach a given failure rate, and the error probability of the 
defective program that the algorithm tolerates. 
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Algorithm 2. Early error-detecting, self-correcting program(t) 

r ~ random element from F 
d + l  . , 

While P(x + r) ¢ E ( -1 ) '+ lC~+l / (x  + (i + 1)r) do: 

r ~- random element from F 
d-t-1 . , 

result *- E (-1)*+IC~+I/(x -6 ir) 
i = 1  

end 
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5.2. Characterizing the early detection algorithm 
The probability that the final result is correct at round n is equal to Pstop * Pcorrect, where Pstop 
is the probability that the algorithm stops after round n and Pcorrect is the probability that the 
final result is correct. 

1. The algorithm stops before round n with probability: 

Wop = E(1-v)d+2(1-(1-pY+2) ', 
i---O 

= 1 - (1  - ( 1  - (7) 

2. The probability that the final result is correct is computed as follows: 

Pcorrect 
Probability that all f(x +/r) are correct 

Prob that 0 or more than 2 values are wrong from (d+2) f (x  -6 it) ' 
(1 - p)d+2 

Pcorr~ = 1 -- ( d +  2)p(1 - p)a+l" (8) 

5.3. Comparison with the simple voting algorithm 
Both algorithms (1) and (2), allow the self-correction of programs that evaluate polynomials of 
degree d. The degree of the polynomial to be corrected is the only prerequisite needed by 
these algorithms. We compare them on the basis of two criteria: 1) the initial error probability 
of the program to be corrected that can be tolerated by the algorithms, 2) the number of 
queries necessary to reach a given error probability. 

Gain in tolerated error probability: To apply the stir-correction algorithm (1) based on vote, 
it is necessary that the values reconstructed by RSR have an error probability less than 1/2. 
Since one value value is reconstructed by querying the defective program on d-6 1 points, the 

1 . error probability of the defective program has to verify: 1 - (I - p ) a + l  < ½ or p < 2(e-'~'~" 
Self-correction with early detection of errors is less restricting (see Figure 1). 

Gain in the number of queries to achieve the same error probability In Section 2, we have 
shown that the majority vote has an error probability/3, with an initial error probability 

and with (d + ~ j ~  queries. For the same initial error probability p = c'+'~l, we compare 

the number of queries (i.e., ( d + 2 ) * n )  necessary for Algorithm (2) to reach an error probability 
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Figure 1. The curves represent the gain in tolerance 

d=l 0 

Figure 2. Number of queries necessary for the two algorithms to reach the same error 
probability. The parameters are the initial error probability p of the defective program and 
the number n of rounds of the early detection algorithm 

--PcortCC~ *Psto of 1 - Pcorr~-t * Pstop and the number of queries (i.e., " " .2(1-p')]n ~ _ ~ ( a + l )  .... (p,_1/~)2 P) necessary for 

Algorithm (1) to reach the same error probability. 

The early detection algorithm self-corrects programs With an error probability greater 
than the error probability accepted by the algorithm based on the majority vote (see Figure 1). 
Furthermore, our algorithm is much simpler than the ones based on codeword error correction 
since it only performs random self-redudbility computations and comparisons. Finally, the major 
advantage of our algorithm is that it requires significantly less queries than the algorithm based 
on the majority vote (Figure 2). 

6. Conclusion 
In this paper, we gave a lower bound on the order of RSR of polynomials and introduced 
new RSR formulas. Furthermore, we have presented an efficient algorithm for self-correcting 
polynomials. 
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