
Reliable Computing 2 (2) (1996), pp. 139-145

Self-correcting polynomial programs
GUEVARA NOUBm and HENRI J. NUSSBAUMER

In this paper, we introduce a new self-correction a lgor i thm that requires less queries than the simple
ma~rity vote. We aim introduce new random ~lf-redudbility fi~rmulas.

At3TOKOppeKT pytoTTme iioA ioM am, i-i ,ie
nporpaMMI,i
F. H~I ' , F. HyCCĝ YM~

Flpeaaaraevc~ ~oma~t aatx~pwrM a~'rtmoppeKltml, rpe6ytotltEt~ MeHblllero Kc~l~iqec'rBa HptmepoK, hem
ilp~xzToe rlptiH~l'r~ie petHeHtt~ ~aI~IIIHI-ICrBOM]])Jl(lCf)l~. BBoam'cz TaKace mmtae ClX~pMy,'IX~ C31yqaftHOfi
aBTOCI~ }aHMOCTH.

1. Introduction
The theory of self-testing/correcting programs by random self-reducibility (RSR) [1, 2, 5] is a
novel and powerful tool to approach the problem of program correction. It allows real-time
testing and correcting of programs. Moreover, it allows the simultaneous checking of the
hardware and software without requiring any knowledge of the implementation of a program.
Basically, a function is random self-reducible of order k if its value at a given point can be
efficiently reconstructed from its evaluation a t k random points. The research conducted in this
domain focuses on two main issues: the enlargement of the set of random self-reducible functions
and the reduction of the complexity of self-correction schemes based on RSR. In this paper,
we are interested in reducing the complexity of the self-correction scheme for mulfi-variate
polynomials. We investigate two methods to achieve the complexity reduction: 1) by reducing
the order of RSR in some special cases (e.g., studying polynomials defined over extension fields
or introducing some determinism in the choice of the queries) and 2) by substituting a new
generic self-correction algorithm to the simple majority vote.

In Section 2, we recall some known results on the RSR of polynomials. In Section 3,
we give a lower bound of RSR of polynomials. In Section 4, we introduce new random
self-reducibility formulas. In Section 5, we introduce a new algorithm for the self-correction of
polynomial programs. The proofs of the theorems can be found in [3].

2. Polynomials random self-reducibility property
The random self-reducibility property allows the reconstruction of the value of a function f by
using its evaluation on a finite number of elements taken from its domain of'definition. The
reconstruction procedure has to be simpler and faster than the direct evaluation of f . In this
section, we recall some general results established in [1, 2].

@ G. Noubir, H. J. Nussbaumer, 1996

140 G. NOUBIRp H. J. NUSSBAUMER

Definition 1. A function f defined over a set D is said to be random self-reducible of order k
i f and only i f there exists a function ~o and a set of probabilistic functions a l , . . . , a~ such that:

VXED, VrED; f (x)=~(r ,x , f (~r l (r ,x)) , . . . , f (~&(r ,x))) . (1)

Functions ai(., x) have a well defined distribution, and functions ~o and ai can be computed
el~lciently.

A large class of mathematical functions have been proven random self-reducible (e.g.,
fast Fourier transform, matrix permanent, trigonometric functions, etc.). In the rest of this
paper, we concentrate on polynomial functions (i.e., functions for computing univariate and
multivariate polynomials). Lipton [2] and Blum et al. [1] have studied polynomial functions and
have shown that polynomials of degree 1 d are random self-reducible of order d + 1. This is
illustrated in the following theorem:

Theorem 1 [Lipton, Blum et al.]. For every set { a l , . . . , ad+l} of pairwise different elements
of a finite field F such that [F[> d + 1, there exists a finite set of elements { e l , . . . , C d + l }

such that for every potynomhl P of degree d, defined over F, the following holds:

d+l
Vx, r e F; P(z) = ~ c~P(x + a~r). (2)

i=l

In this case, the functions ai are defined by ai(r,x) = x + air. If (al , . . . ,ae+l) =
(1, 2 , d + 1), then ci = (-1)~+1C~+1, i = 1 d + 1.

Generic program for self-correcting polynomials. The random self-reducibility property
of functions can be used to improve the reliability of a program that has an error probability
p. Let f be the function computed by a given program such that Prob[f(x) ~ P(x)] > pert-
Blum et al. give an algorithm that reduces the error probability from ~ to any value/3.
We recall this algorithm and we show that it can be generalized to reduce the error probability
from ..V_'(p < 1/2) to [3. Note that all what needs to be known about P is that it is a d+l
polynomial of degree d.

Algorithm 1. Generic self-correction program(t)

N~-241n(1/3)
F o r m = 1 N Do

Choose r Eu F

Result ~ Majority{rm l m : 1 , N}
e n d

Theorem 2 [Blum et al.]. I f t_he program f has a probability of error less than or equal to
1 then the result given by Algorithm (1) has an error probability less than •.

4(d+1) '

T h e o r e m 8. Given a p r o g r a m f with error probability ~ < 1 a+r ~ , the self-correction algo-
2(i-p) 1,, i rithm using the vote will have an error probability of [3 and will make (d + 1) × ~ ,,,

queries.

1For multivariate polymmlials, the degree is the maxinmm sum ~ff degrees of variables in the same mom~miaL

SELF,"CORRECTING POLYNOMIAL PROGRAMS 141

3. Lower bound on self-reducibility
Random self-reducibility gives a rigorous method to improve the reliability of programs. Un-
fortunately, for polynomials of large degree, this method requires too many queries to the
defective program since the number of queries is proportional to the degree of the polyno-
mial. To improve the efficiency of this method, two directions can be investigated: 1) the
reduction of the order of random self-reducibility of polynomials, and 2) the improvement of
the self-correction algorithm. In this section, we give a lower bound to the order of random
self-reducibility of polynomials.

To reconstruct the value of a polynomial by random self-reducibility, we need to query
a program on d + 1 points. One may think that, under some conditions, this order (taken
equal to d + 1) can be reduced. These conditions could be that the queries no longer obey a
uniform distribution but are deterministically chosen, or that there exists some restrictions on
the working field. We show that such a reduction is not possible.

Lemma 1. Let F be a finite field such that IF I > d. No functions al,...,crd exist such
that there exists an element xo E F and for every univariate polynomial P of degree d we

have: P (xo)= W(xo, P(crx(xo)) , . . . ,P(aa(Xo))) . The only condition on function ai is that
i %

X - - - - - - t ,

<(zo) # zo.

Lemma 1 proves that even self-reduction over one point x0 and of order less than d + 1
is not possible. This is true regardless of the distribution of the queries and of the working
field.

Theorem 4. The order of self-reduction of univariate polynomial functions of degree d is
exacdy equal to d + 1.

The order of random self-reducibility of multivariate polynomial functions of combined
degree d is exactly equal to d + 1.

The order of self-reducibility o£ multivariate polynomials of degree d for each variable is
equal to d + 1.

4. Other random self-reducibility formulas
The random self-reducibility property of polynomials follows from Lagrange interpolation. In
Section 2, we presented this property as it was first introduced in [1]. In this section, we
introduce three novel formulas to reconstruct a polynomial value at point x from d + 1
uniformly distributed points. These formulas follow from Lagrange interpolation [4].

Consider the set of polynomials of degree d defined over a finite field F, Let w be a root
of unity of order d + 1; w exists if and only if d + 1 divides 2 IF[- 1. Lagrange interpolation
over the roots of unity gives us a new formula for RSR of reduced computation complexity:

1 a
Vx, r E F; P(X) = d + i ~ P(x + rw~)" (3)

i=o

2ff d + 1 &~es n~t divide [FI - J., we may consider the t~iynomials as l~lynomiats of degree a¢; where d' + 1 is
the smallest divi.~r > d + 1 of IF[- 1.

142 G, NOUBIRt H. J. NUSSBAUMER

The other two RSR-formulae are the alternate self-reducibility and the Lagrange interpo-
lation over a sequence of consecutive elements:

- 1 ~ P(u), (4) Vx, r E F; P(x) = d + 1 ,,#~+~,

1 d+l i
VX,~ E -~; e(x) --- ~{ i~'~(-1)i- l~"~+le(x "[" r(k + ~)). (5)

5. Sel f -correct ion w i t h early error de tec t ion

To improve the polynomials self-correction scheme, we showed that, according to Theorem 4,
it is not possible to reduce the order of random self-reducibility. The only remaining possibility
is to find new simple algorithms that are based on random self-reducibility'and are more
efficient than the ones known in the literature. Sudan and Gemell [t5] studied this problem
and found new algorithms that tolerate more errors in the defective program. However, these
algorithms suffer from an increased complexity. We propose a simple algorithm that acts as a
filter. It queries the defective program over a set of points and discards them when it detects
some errors. Otherwise, it reconstructs, by RSR, a value from them to be used during the vote
phase.

Let f be a program that evaluates a polynomial P of degree d, with error probability
a Consider the set {f(xi) I i : 1 . .n}. When xi = w i [5], we are in presence of a
d+l"
Bose-Chaudhuri-Hocquenghem (BCH) code, which can be error-corrected by using a decoding
algorithm of BCH codes. When xi covers all the field F , we have a Reed-Solomon decoding
problem [6]. A major disadvantage of these methods is the complexity of the algorithms.

Let f (x + r) , f (x + 2 r) , . . . , f (x + (d + k + 1)r) be the d + k + 1 values returned by

program f at points x + r x + (d + k + 1)r.

Theorem 5. The system of equations (6) is satislied i f and only i f the number of f (x + ir) that
are wrong is equa/ to 0 or greater than k.

d+l

+ r) = + + 1>),
i=l

: : (6)
d+l
i=1

The satisfaction of (6) can be checked easily since the algorithm needs only to verify that
the values of P(x + i t) are equal, by querying directly the program f and by reconstructing
its value by RSR. This technique allows us to detect k errors from d + k + 1 values of the
polynomial. The detection is very simple given the structure of the control matrix.

5.1. A self-correction algorithm based on early error detection

We first study the characteristics of Algorithm (2) and then compare them with the algorithm
based on a simple vote. The comparison is carried out by considering the number of queries
necessitated by the algorithm to reach a given failure rate, and the error probability of the
defective program that the algorithm tolerates.

S E L F - C O R R E C T I N G P O L Y N O M I A L P R O G R A M S

Algorithm 2. Early error-detecting, self-correcting program(t)

r ~ random element from F
d + l . ,

While P(x + r) ¢ E (-1) '+ lC~+l / (x + (i + 1)r) do:

r ~- random element from F
d-t-1 . ,

result *- E (-1)*+IC~+I/(x -6 ir)
i = 1

end

143

5.2. Characterizing the early detection algorithm
The probability that the final result is correct at round n is equal to Pstop * Pcorrect, where Pstop
is the probability that the algorithm stops after round n and Pcorrect is the probability that the
final result is correct.

1. The algorithm stops before round n with probability:

Wop = E(1-v)d+2(1-(1-pY+2) ',
i---O

= 1 - (1 - (1 - (7)

2. The probability that the final result is correct is computed as follows:

Pcorrect
Probability that all f(x +/r) are correct

Prob that 0 or more than 2 values are wrong from (d+2) f (x -6 it) '
(1 - p)d+2

Pcorr~ = 1 -- (d + 2)p(1 - p)a+l" (8)

5.3. Comparison with the simple voting algorithm
Both algorithms (1) and (2), allow the self-correction of programs that evaluate polynomials of
degree d. The degree of the polynomial to be corrected is the only prerequisite needed by
these algorithms. We compare them on the basis of two criteria: 1) the initial error probability
of the program to be corrected that can be tolerated by the algorithms, 2) the number of
queries necessary to reach a given error probability.

Gain in tolerated error probability: To apply the stir-correction algorithm (1) based on vote,
it is necessary that the values reconstructed by RSR have an error probability less than 1/2.
Since one value value is reconstructed by querying the defective program on d-6 1 points, the

1 . error probability of the defective program has to verify: 1 - (I - p) a + l < ½ or p < 2(e-'~'~"
Self-correction with early detection of errors is less restricting (see Figure 1).

Gain in the number of queries to achieve the same error probability In Section 2, we have
shown that the majority vote has an error probability/3, with an initial error probability

and with (d + ~ j ~ queries. For the same initial error probability p = c'+'~l, we compare

the number of queries (i.e., (d + 2) * n) necessary for Algorithm (2) to reach an error probability

144

d=20

G . NOUBIR t H . J. F~USSBALrMER

d=lO0

..,I

o ao2 o ~o4 ~ oo~ po oan ~ o~ o o~2 a o14

Figure 1. The curves represent the gain in tolerance

d=l 0

Figure 2. Number of queries necessary for the two algorithms to reach the same error
probability. The parameters are the initial error probability p of the defective program and
the number n of rounds of the early detection algorithm

--PcortCC~ *Psto of 1 - Pcorr~-t * Pstop and the number of queries (i.e., " " .2(1-p')]n ~ _ ~ (a + l) (p,_1/~)2 P) necessary for

Algorithm (1) to reach the same error probability.

The early detection algorithm self-corrects programs With an error probability greater
than the error probability accepted by the algorithm based on the majority vote (see Figure 1).
Furthermore, our algorithm is much simpler than the ones based on codeword error correction
since it only performs random self-redudbility computations and comparisons. Finally, the major
advantage of our algorithm is that it requires significantly less queries than the algorithm based
on the majority vote (Figure 2).

6. Conclusion
In this paper, we gave a lower bound on the order of RSR of polynomials and introduced
new RSR formulas. Furthermore, we have presented an efficient algorithm for self-correcting
polynomials.

SELF-CORRECTING POLYNOMIAL PROGRAMS

References

145

[1] Blum, M. et at. Se~testing and self-correcting programs, with applications to numerical programs. In:
"Proceedings of the 22th ACM STOC'90".

[2] Lipton, R. j. New directions in testing. In: "Distributed Computing and Cryptography", volume 2
of DIMACS, ACM AMS, 1991.

[3] Noubir, G. and Nussbaumer, H. J. Self-correcting polynomials. Swiss Federal Insitute of Tech-
nology in Lausanne, CS-TR-95/151.

[4] Nussbaumer, H. J. Fast Fourier transform and convolution algorithms. Springer Series in Informa-
tion Science, Springer-Verlag, t982.

[5] Rubinfeld, R. et al. Self-testing~correcting for polynomials and for approxi~nate functions. In: "Pro-
ceedings of the 23rd ACM STOC'91".

[6] Sudan, M. Effwient checking of polynomials and proofs and the hardness of approximation problems.
Ph.D. Thesis, University of California at Berkeley, 1992,

Received: October 16, 1995 Swiss Federal Institute of Technology in Lausanne
Revised version: November 27, t995 (EPFL)

Computer Science Department
CH-1015

Switzerland
E-mail: noubir©li tsun, ep f l . ch

