
Rdiahle Computing 2 (2) (1996), pp. 133-138

Software for high radix on-fine arithmetic
THOMAS LYNCH and IVIIcI-~ J. SCHuL'rE

High radix on-line arithmetic provides an effident m e t h ~ fin" pertbrming wlriahte-precision arithmetic.
It can be implemented ~n conventional microprocessors using sequences of three operand instructions.
This paper presents ~}ftware support fi~r high radix on-line arithmetic. This software includes emu-
lation modules fi~r high radix operations, and a precision analysis pr~gram fiw setting the input and
intermediate variable tolerances nece.ssary fiw guaranteed result accuracy ~wer a specified domain.

I porpaMMHOe o6ecrie IeH e AAx
KOMIIbIOTepItOl~ ap qbMeTnXH orIepaT BHOrO
AOCTyIIa C 60AMIIIIM OCI-IOBattlIeM ClICTeMt,I
C~IHCAeHI4>I
T. AHH~, M. IIIyAI, TZ

K()MIIbI()TI~pI.Ia}i }IpIIqbM~T|IIGI OIIepaYIIBHIH'(} ,RllCTylla C .~W}/lblIIHM OCHO~|HHeM CHCTt~Mbl CMHCdI~HHPl Ilpe-

;I(ICI'~|B.'I/4eT 3C~KTHBHbl f l MCTI>JJ, Ilt,IH BblqHCJI~'HHIT! C IIf2I)tSMIg'HHI|I~I pa3p,sumt~'ZThlO. Ee MO~m) pea-
htI3tI, B,"tTb Hit I){~blqHblX MIIKpOllpOlll~CCopilx C IIOMOItlbl() II(~Ie~'UII~ITeJIhHOCrelTI IIHCTpyKII|DTI C TIL~M~I

(mepaHaasm. B pa&~Te npe~tcraBaeHa Hi~n'paMMRa~ noJuaepxr, a ~L~n KOMlII, l()TepFl{ffl RpR(~MeTIIKtl (}IIe-
|.~aTIIBHI{)FO :t(KTyrta c ~I/IblIIHM (~HoBaHIIeM CnCreM~ CqI.IUIeHI.IH. I'It.wIFpaMMHOe eX-~l'leqeHl, lte BK,/|RIM~,IeT

B C.~'~H Mt)Ily;lll 3MyJIHIIHIt /UIH ol lepalDl~ C ¢klJIl~llltlM OCHOBRHIleM CIICTeMbl CqHCJleH|I$I, a TilKgKe llpll-

rpa,',lMy aHa.'llOa paapazmocTt~, c~yxgalttyw} JUIH 3a/hqHlDt /IOIIyCK(~B Ha l.ICXO/lHlge H ltpOMe~yToqHhle
Hepester{ar~e, (x~e¢Ileql|BalOlll|IX r~lpaNTIIpoB}lHHyI(} TOMHOCTb pe3y:lbraxa Ha ~a/laHHOITI ¢~;I;1CTtL

1. Introduction
As presented in [9], high radix on-line arithmetic is an efficient method for performing
variable-precision arithmetic. With high radix on-line arithmetic, a variable-precision floating
point number z is represented as a string of nz + t signed integers (ex, z0, Zy, . . . ,zn=-l) ,
where ex is the exponent and Zi is the / - th significand digit. The value of z is

[n~-i)

• = + - ! E =~.,-' (~)
\ i=0

where r is the radix of the number system. Increasing nx increases the precision of z.
High radix on-line arithmetic can be implemented as sequences of three operand instruc-

tions, where the operands are signed integers. Hence, it is well suited for being implemented
on microprocessors. With on-line arithmetic, operations are performed serially, from most
significant digit to least significant digit [3, 6, 12, 13]. This is possible since the redundant
signed-digit representation limits carry propagation [2, 5, 11]. Thus, high radix on-line arith-
metic can be digit pipelined, since instructions that use the results of previous calculations can
begin execution before the less significant digits of their operands are available.

~) Th. Lynch, M. J. Schulte, 1996

134 TH, LYNCHp M. J. SCHULTE

Even without additional hardware support, high radix on-line arithmetic can be imple-
mented on conventional microprocessors. In this paper, we discuss freely available software
for performing precision analysis and high-radix on-line addition, subtraction and multiplica-
tion. T h e paper presents a compiler-driven approach for generating code that uses high radix
variable-precision floating point numbers. This is a static approach. Other methods are possible,
such as those based on lazy evaluation [4].

e Program parsing and precision analysis
This section describes a method for taking a program and determining the precisions of input.
temporary, and output variables that are sufficient to produce outputs that are accurate to
within a specified error tolerance. The analysis uses four consecutive steps: program parsing,
intermediate code generation, range analysis, and precision analysis. The results from a
successful precision analysis are used as parameters in the constructor calls of a high radix
variable-precision floating point number class that is implemented in C++.

2.1. Program parsing
The parser is a conventional LEX/YAGC based program that accepts numerical programs, such
as the one given in Figure 1. The first line of the program gives the program name, followed
by a list of input variables and a list of output variables. The range is specified for each input.
For example, a is between 4 and 8. The precision of each output variable is also specified. For
example, z has a precision of four digits. The accuracy goal defaults to one unit in the last
place of the specified precision.

ECALC (a[4, 8] b[l, 3.99] c[-2000, -I000] d[l, I00]) (x:4 y:6) {
x = (a - b)*(c + a);
y=x-d;

}

Figure 1. Initial numerical program

2.2. Intermediate code generation
Figure 2 shows how ECALC is parsed into three operand instructions. Temporary variables are
added where needed. The information from the parsed program is stored in two tables; one
that has information for each of the variables, and another which has information for each
instruction. The variable table entries contain the variable's name, type, range, and precision.
The variable's type is either input, temporary, or output. Initially, all non-input variables have a
range of [0, 0] and all non-output variables have a precision of 0. The instruction table entries
contain the instruction being performed, and indices into the variable table for the source and
destination operands, as shown in Figure 3.

SOFTWARE FOR HIGH RADIX ON-LINE ARITHMETIC 135

ECALC (a[4, 8] b [l , 3.99] c[-2000, -I000] d [l , I00]) (x:4 y:6) {
t l = a - b;
t 2 = c + a ;

x = t l * z 2 ;

y = x - d ;

}

Figure 2. Parsed numerical program

InstructionTable

operation (sub)

destination index (tl)

source A index (a)

source B index (b)

Variable Table

name (a)

type (input)

range ([4, 8])

precision (0)

f

Figure 3. Instruction and variable tables

2.3. Range analysis
The range analysis program uses the ranges of the input variables to determine the ranges
of all temporary and output variables. For each instruction, interval arithmetic is used to
determine the range of the destination operand based on the ranges of the source operands
[1, 7, 10]. Instructions are analyzed in program order (i.e., from the first instruction to the

last instruction) to ensure that each operand's range is determined, before it is used as a source
operand. The PROFIIdBIAS software package [8] is used to perform interval arithmetic during
range analysis.

The range analysis for ECALC is shown in Figure 4. If an interval that contains zero
is generated during the range analysis, an error is issued. An interval that contains zero
indicates that the accuracy in one of the destination operands cannot be guaranteed, regardless
of the precision of its source operands. Intervals that cross zero can occur due to undetected
correlations between variables.

2.4. Precision analysis
The precision analysis uses the range information along with the variable tables to determine
the precision required in input, temporary, and output variables to obtain the specified output
accuracy constraint (currently this ignores approximation error). For each instruction, the

136 TH. LYNCHt M, J, $CHULTE

: ~ = ~ - b [o.ol, 7] = [4,s]- [1,~.99] [
1:2 - c + a [-1996, -992] = [-2000, -1000] + [4, 8] !
x = I:1 * ~c2 [-13972,-9 .92] = [0.01, 7] * [-1996, -992] It
y = x - d [-14072, .10.92] = [- 1 3 9 7 2 , - 9 . 9 2] - [1,100] t

¢

Figure 4. Range analysis

precisions of the source operands are determined from the precision of the destination operand,
based on formulas that were derived from the range expansion formulas given in [9]. The
precision equations for addition, subtraction, multiplication and division are:

P~ = Pu =Pz'y + 1, (4)

P= = Pu = P ' / u + 1. (5)

Here, x and y are the source operands, and r is the radix of the number system. For
addition and subtraction, interval arithmetic is used to determine the maximum values of (2)
and (3). For multiplication and division, the required precision of the source operands is equal
to the precision of the destination operand plus one.

The precision analysis for ECALC is shown in Figure 5, for r = 10. The instructions are
analyzed from last to first to ensure that the precision of the destination operand is set before
it is used. If a variable is used more than once as a source operand, it could be assigned one
of multiple precisions. In this case, the largest precision is used. For example, a is assigned a
precision of 15.1 rather than 10.1, since 15.1 is larger.

y = x - d

x = t l * t 2

t 2 = C +at

~l--a-b

p ~ = p y + l o g . ([= [) + 1 ~ 1 0 . 2

Ptl = p x + l ~ t l . 2
p~2 = p z + 1 ~ 11.2
P c = P t 2 + l o g T (l ~ c D + 1 ~ 1 2 . 5

po = p,~ + logT(! ~ t) + 1 .~ 10.1

P~ = Ptl + log¢([~ ~ [) + 1 ..,~ 15.1

p~ = p ~ + 1og~(t ~_~ I) + 1 = 14.s

Figure 5. Precision analysis

3. H i g h r a d i x v a r i a b l e - p r e c i s i o n n u m b e r c lass

The high radix variable-precision number class is based on the high radix on-line classes
add, mul, and word. The add and mul classes implement the high radix on-line adder and

SOFTWARE FOR HIGH RADIX ON-LINE ARITHMETIC 137

main {
vp a(16), b(15), c(13), d(8) , t1 (12) , Z2(12), x(11), y(6) ;
cin >> a; cin >> b; cin >> c; cin >> d;

sub_vp(a, b, t l) ;
add_vp(a, c, I;2);
mul_vp(tl, 1;2, x);
sub_vp(x, d, y) ;
cou1; << x; tout << y;

Figure 6. Variable-precision program

multiplier, respectively, while the word class provides support for the internal state of the
multiplier. These operator classes are described in more detail in [9].

The vp class provides software support for high radix variable-precision floating point
numbers. Figure 6 shows how the vp class is used to implement the EC.~LC program. The
first line of the program initializes variables to the precisions produced by the precision analysis
program. Here, the precisions computed in Figure 5 are rounded upward to the next larger
integer. In the next line, the values of the input variables are read from standard input. After
this, the values of temporary and output values are computed. Last of all, the output variables
are written to standard output.

4. Conclusions
High radix on-line arithmetic provides an efficient method for performing variable-precision
arithmetic. Software support has been developed to facilitate the use of high radix on-line
arithmetic. This software provides a method for performing precision analysis and using a
high radix variable-precision floating point number dass. The software described in this paper
and further information on high radix on-line arithmetic can be obtained from the Internet
site:

http://devil.ece.uZexas.edu/'lynch

References
[1] Alefeld, G. and Herzberger, J. Introduction to inten~ computations. Academic Press, 1983.

[2] Avizienis, A. Signed.digit number representations for fast parallel arithmetic. IRE Transactions on
Electronic Computers 10 (1961), pp. 389-400.

[3] Bajard, J. C., Guyot, A., Muller, J.-M., and Skaf, A. Design of a VI.SI circuit for on-line
evaluation of several elementary functions using their Taylor expansions. In: "Proceedings of the
1993 International Conference on Application Specific Array Processors", 1993, pp. 526-
535.

138 TH. LYNCH, M. J. SCHULTE

[4] Benouamer, M. O., Jailon, P., Michelucci, D., and Moreau, J.-M. A lazy exact arithmetic. In:
"Proceedings of the l hh Symposium on Computer Arithmetic", IEEE Computer Society
Press, 1998, pp. 242-249.

[5] Ercegovac, M. D. and Lang, T. Fast multiplication ~hout carry-propagate addition. IEEE Trans-
actions on Computers C-89 (1990), pp. 1385-1390.

[6] Ercegovac, M. D. and Lang, T. On-line arithmetic: a design methodology and applications to digital
signal processing. IEEE Press, 1988, pp. 252-263.

[7] Herzberger, J. Basic definitions and properties of interval arithmetic. In: Herzberger, J. (ed.) "Topics
in Validated Computations. Proceedings of IMACS-GAMM International Workshop on
Validated Numerics", North Holland, 1994, pp. 1-6.

[8] Kn/ippel, O. PROFIL/BIAS--a fast intert~ libra U. Computing 58 (1994), pp. 277-288.

[9] Lynch, T. and Schulte, M. J. A high radix on-line arithmetic for credible and accurate com]naing.
Journal of Universal Computer Science 1 (7) (1995), pp. 435-449.

[10] Moore, R. E. lnten~ analys/s. Prentice Hall, 1966.

[11] Phatak, D. S. and Koren, I. Hybrid signed-digit number systems: a unified fi'amework for redundant
number representations ~ h bounded carry propagation chains. IEEE Transactions on Computers
C-43 (8) (1994), pp. 880-891.

[i2] Trivedi, K. S. and Ercegovac, M. D. On-line algm~thms far di~ffsion and multiplication. IEEE
Transactions on Computers C-26 (7) (1977), pp. 681-687.

[13] Watanuki, O. and Ercegovac, M. D. ETa'or analysis of certain floating-point on-line algorithms.
IEEE Transactions on Computers £i-32 (4) (t983), pp. 352-358.

November I, 1995
December i5, 1995

Received:
Revised version:

T. LYNCH
Advanced Architecture Development

Advanced Micro Devices
MS 615, 5204 East Ben White Blvd

Austin, TX 78741
USA

E-mail: Tom. L3mch~amd. corn

M. J. SCm~TE
Department of Electrical and Computer Engineering

University of Texas at Austin
Austin, TX 78712

USA
E-mail: schulte~pine, ece. utexas, edu

