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Software for high radix on-fine arithmetic 
THOMAS LYNCH and IVIIcI-~ J. SCHuL'rE 

High radix on-line arithmetic provides an effident m e t h ~  fin" pertbrming wlriahte-precision arithmetic. 
It can be implemented ~n conventional microprocessors using sequences of three operand instructions. 
This paper presents ~}ftware support fi~r high radix on-line arithmetic. This software includes emu- 
lation modules fi~r high radix operations, and a precision analysis pr~gram fiw setting the input and 
intermediate variable tolerances nece.ssary fiw guaranteed result accuracy ~wer a specified domain. 
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K()MIIbI()TI~pI.Ia}i }IpIIqbM~T|IIGI OIIepaYIIBHIH'(} ,RllCTylla C .~W}/lblIIHM OCHO~|HHeM CHCTt~Mbl CMHCdI~HHPl Ilpe- 

;I(ICI'~|B.'I/4eT 3C~KTHBHbl f l  MCTI>JJ, Ilt,IH BblqHCJI~'HHIT! C IIf2I)tSMIg'HHI|I~I pa3p,sumt~'ZThlO. Ee MO~m) pea- 
htI3tI, B,"tTb Hit I){~blqHblX MIIKpOllpOlll~CCopilx C IIOMOItlbl() II(~Ie~'UII~ITeJIhHOCrelTI IIHCTpyKII|DTI C TIL~M~I 

(mepaHaasm. B pa&~Te npe~tcraBaeHa Hi~n'paMMRa~ noJuaepxr, a ~L~n KOMlII, l()TepFl{ffl RpR(~MeTIIKtl (}IIe- 
|.~aTIIBHI{)FO :t(KTyrta c ~I/IblIIHM (~HoBaHIIeM CnCreM~ CqI.IUIeHI.IH. I'It.wIFpaMMHOe eX-~l'leqeHl, lte BK,/|RIM~,IeT 

B C.~'~H Mt)Ily;lll 3MyJIHIIHIt /UIH ol lepalDl~ C ¢klJIl~llltlM OCHOBRHIleM CIICTeMbl CqHCJleH|I$I, a TilKgKe llpll- 

rpa,',lMy aHa.'llOa paapazmocTt~, c~yxgalttyw} JUIH 3a/hqHlDt /IOIIyCK(~B Ha l.ICXO/lHlge H ltpOMe~yToqHhle 
Hepester{ar~e, (x~e¢Ileql|BalOlll|IX r~lpaNTIIpoB}lHHyI(} TOMHOCTb pe3y:lbraxa Ha ~a/laHHOITI ¢~;I;1CTtL 

1. Introduction 
As presented in [9], high radix on-line arithmetic is an efficient method for performing 
variable-precision arithmetic. With high radix on-line arithmetic, a variable-precision floating 
point number z is represented as a string of nz + t signed integers (ex, z0, Zy, . . . ,zn=-l ) ,  
where ex is the exponent and Zi is the / - th  significand digit. The value of z is 

[ n~-i ) 

• = + - !  E =~.,-' (~) 
\ i=0 

where r is the radix of the number system. Increasing nx increases the precision of z. 
High radix on-line arithmetic can be implemented as sequences of three operand instruc- 

tions, where the operands are signed integers. Hence, it is well suited for being implemented 
on microprocessors. With on-line arithmetic, operations are performed serially, from most 
significant digit to least significant digit [3, 6, 12, 13]. This is possible since the redundant 
signed-digit representation limits carry propagation [2, 5, 11]. Thus, high radix on-line arith- 
metic can be digit pipelined, since instructions that use the results of previous calculations can 
begin execution before the less significant digits of their operands are available. 

~) Th. Lynch, M. J. Schulte, 1996 
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Even without additional hardware support, high radix on-line arithmetic can be imple- 
mented on conventional microprocessors. In this paper, we discuss freely available software 
for performing precision analysis and high-radix on-line addition, subtraction and multiplica- 
tion. T h e  paper presents a compiler-driven approach for generating code that uses high radix 
variable-precision floating point numbers. This is a static approach. Other methods are possible, 
such as those based on lazy evaluation [4]. 

e Program parsing and precision analysis 
This section describes a method for taking a program and determining the precisions of input. 
temporary, and output variables that are sufficient to produce outputs that are accurate to 
within a specified error tolerance. The analysis uses four consecutive steps: program parsing, 
intermediate code generation, range analysis, and precision analysis. The results from a 
successful precision analysis are used as parameters in the constructor calls of a high radix 
variable-precision floating point number class that is implemented in C++. 

2.1. Program parsing 
The parser is a conventional LEX/YAGC based program that accepts numerical programs, such 
as the one given in Figure 1. The first line of the program gives the program name, followed 
by a list of input variables and a list of output variables. The range is specified for each input. 
For example, a is between 4 and 8. The precision of each output variable is also specified. For 
example, z has a precision of four digits. The accuracy goal defaults to one unit in the last 
place of the specified precision. 

ECALC (a[4, 8] b[l, 3.99] c[-2000, -I000] d[l, I00]) (x:4 y:6) { 
x = (a - b)*(c + a); 
y=x-d; 

} 

Figure 1. Initial numerical program 

2.2. Intermediate code generation 
Figure 2 shows how ECALC is parsed into three operand instructions. Temporary variables are 
added where needed. The information from the parsed program is stored in two tables; one 
that has information for each of the variables, and another which has information for each 
instruction. The variable table entries contain the variable's name, type, range, and precision. 
The variable's type is either input, temporary, or output. Initially, all non-input variables have a 
range of [0, 0] and all non-output variables have a precision of 0. The instruction table entries 
contain the instruction being performed, and indices into the variable table for the source and 
destination operands, as shown in Figure 3. 
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ECALC (a[4, 8] b [ l ,  3.99] c[-2000, -I000] d [ l ,  I00]) (x:4 y:6) { 
t l  = a - b; 
t 2  = c + a ;  

x = t l * z 2 ;  

y = x - d ;  

} 

Figure 2. Parsed numerical program 

InstructionTable 

operation (sub) 

destination index (tl) 

source A index (a) 

source B index (b) 

Variable Table 

name (a) 

type (input) 

range ([4, 8]) 

precision (0) 

f 

Figure 3. Instruction and variable tables 

2.3. Range analysis 
The range analysis program uses the ranges of the input variables to determine the ranges 
of all temporary and output variables. For each instruction, interval arithmetic is used to 
determine the range of the destination operand based on the ranges of the source operands 
[1, 7, 10]. Instructions are analyzed in program order (i.e., from the first instruction to the 

last instruction) to ensure that each operand's range is determined, before it is used as a source 
operand. The PROFIIdBIAS software package [8] is used to perform interval arithmetic during 
range analysis. 

The range analysis for ECALC is shown in Figure 4. If an  interval that contains zero 
is generated during the range analysis, an error is issued. An interval that contains zero 
indicates that the accuracy in one of the destination operands cannot be guaranteed, regardless 
of the precision of its source operands. Intervals that cross zero can occur due to undetected 
correlations between variables. 

2.4. Precision analysis 
The precision analysis uses the range information along with the variable tables to determine 
the precision required in input, temporary, and output variables to obtain the specified output 
accuracy constraint (currently this ignores approximation error). For each instruction, the 
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: ~  = ~ - b [o.ol, 7] = [4,s]-  [1,~.99] [ 
1:2 - c + a [ -1996,  -992]  = [ -2000,  -1000]  + [4, 8] ! 
x = I:1 * ~c2 [ -13972,-9 .92]  = [0.01, 7] * [ -1996, -992]  It 
y = x - d [ -14072, .10.92]  = [ - 1 3 9 7 2 , - 9 . 9 2 ] -  [1,100] t 

¢ 

Figure 4. Range analysis 

precisions of the source operands are determined from the precision of the destination operand, 
based on formulas that were derived from the range expansion formulas given in [9]. The 
precision equations for addition, subtraction, multiplication and division are: 

P~ = Pu =Pz'y + 1, (4) 

P= = Pu = P ' / u  + 1. (5) 

Here, x and y are the source operands, and r is the radix of the number system. For 
addition and subtraction, interval arithmetic is used to determine the maximum values of (2) 
and (3). For multiplication and division, the required precision of the source operands is equal 
to the precision of the destination operand plus one. 

The precision analysis for ECALC is shown in Figure 5, for r = 10. The instructions are 
analyzed from last to first to ensure that the precision of the destination operand is set before 
it is used. If a variable is used more than once as a source operand, it could be assigned one 
of multiple precisions. In this case, the largest precision is used. For example, a is assigned a 
precision of 15.1 rather than 10.1, since 15.1 is larger. 

y = x - d  

x = t l  * t 2  

t 2 = C  +at  

~l--a-b 

p ~ = p y + l o g . ( [  = [ ) + 1 ~ 1 0 . 2  

Ptl = p x + l  ~ t l . 2  
p~2 = p z  + 1 ~ 11.2 
P c = P t 2 + l o g T (  l ~ c  D + 1 ~ 1 2 . 5  

po = p,~ + logT(! ~ t) + 1 .~ 10.1 

P~ = Ptl + log¢([ ~ ~ [) + 1 ..,~ 15.1 

p~ = p ~  + 1og~(t ~_~ I) + 1 = 14.s 

Figure 5. Precision analysis 

3. H i g h  r a d i x  v a r i a b l e - p r e c i s i o n  n u m b e r  c lass  

The high radix variable-precision number class is based on the high radix on-line classes 
add, mul, and word. The add and mul classes implement the high radix on-line adder and 
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main { 
vp a(16),  b(15),  c(13),  d(8) ,  t1 (12) ,  Z2(12), x(11), y(6) ;  
cin >> a; cin >> b; cin >> c; cin >> d; 

sub_vp(a, b, t l ) ;  
add_vp(a, c, I;2); 
mul_vp(tl, 1;2, x);  
sub_vp(x, d, y) ;  
cou1; << x; tout << y; 

Figure 6. Variable-precision program 

multiplier, respectively, while the word class provides support for the internal state of the 
multiplier. These operator classes are described in more detail in [9]. 

The vp class provides software support for high radix variable-precision floating point 
numbers. Figure 6 shows how the vp class is used to implement the EC.~LC program. The 
first line of the program initializes variables to the precisions produced by the precision analysis 
program. Here, the precisions computed in Figure 5 are rounded upward to the next larger 
integer. In the next line, the values of the input variables are read from standard input. After 
this, the values of temporary and output values are computed. Last of all, the output variables 
are written to standard output. 

4. Conclusions 
High radix on-line arithmetic provides an efficient method for performing variable-precision 
arithmetic. Software support has been developed to facilitate the use of high radix on-line 
arithmetic. This software provides a method for performing precision analysis and using a 
high radix variable-precision floating point number dass. The software described in this paper 
and further information on high radix on-line arithmetic can be obtained from the Internet 
site: 

http://devil.ece.uZexas.edu/'lynch 
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