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On the computational complexity of the
solution of linear systems with moduli

Anatory V. Lakeyev

A problem of solvability for the system of equations of the form Az = Diz| + § is investigated. This
problem is proved to bhe N P-complete even in the case when the number of equations is equal to the
number of variables, the matrix A is nonsingular, A > D > 0,8 2>0, and it is initially known that
the system has a finite (possibly zero) number of solwions. For an arbitrary system of m equations
of n variables, under additional conditions that the matrix D is nonnegative and its rank is one, &
polynomial-time algorithm (of the order O{(max{m,n})%)) has been found which allows to determine
whether the system is solvable or not and to find one of such solutions in the case of solvability.

O BBEIYMCAUTEABHONM CAOXHOCTH DPeIleHy
AVHEVHBIX CUCTEM C MOAYASMI

A. B. Aaxees

Hayuaercs safiya PaspeliHMOcTH s CeTeMsl ypassenut s Az = Diz) + 6. Morazano, uro
o7a sanana ssanercst N P-HosHoR jake B oaydae, KOUa YHOIO YPABHEHHR PUBHO MHCIY HEPEMEHHBIX,
satpuua A neswipoxaena, A > D > 0, § > 0 u sapanee u3BeCTHO, 4TO CHCTEMA HMEET KOHEUHOE (B0
MIDKHO, PABHOE HYIO) YHCIO pemeHuit. [N NPOMIBONLHOM CHCTEMN T YPABHEHHA OT 7L NEPEMEHHbIX
UPH IONOAHNTEAbROM YoIoBHH, wTo MaTpiua D we otpuumaremsua uw ee panr pased euname, Haiuen
nommoMuabHbpi amoputy (ropsuxa O((max{m, n})3)), wosmsosmonuni suscsirs puspenmvocrs
STOS CHCTEMHE! M, B CIyuaE PAPEIMMOCTH, HAATH OAHO W3 peliieHstl,

1. Introduction
This work deals with the computational complexity of the solution of equations of the form
Az = Dlz|+6 (1)

where A, D are m x n-matrices, §, T are an m-vector and an n-vector respectively, |z| is the
n-vector made up of the moduli of the components of z. The elements of the matrices 4, D
and the components of the vector § are integers.

The interest to investigation of systems of the form (1} is due to the fact that the following
well-known problems of computational and interval mathematics reduce to them:

e the linear complementarity problem (see, for example, Berman and Plemmons [1]);

e the problem of computing vertices of the convex hull of the united solution set for a
regular system of linear interval equations (see Rohn [7] and also Neumaier [6]);

¢ the compatibility problem for systems of linear equations in Kaucher interval arithmetic
under some additional conditions (see Lakeyev [3]).
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Concerning the latter problem, note that Shary [8] and Kupriyanova [4] have proved that
algebraic interval solutions for systems of linear equations in Kaucher interval arithmetic allow
us to obtain maximal interval inner estimates for various sets of solutions of interval linear
algebraic systems (namely, for united, tolerable, controlled, and some other solution sets, see

Shary [8)).

The question we solve in our work is as follows:

Is there a polynomial-time algorithm that finds out whether the system (1) is solvable for given
matrices A, D and vector 6 and, in case of solvability, computes a solution to the system?

The basic concepts and definitions of computational complexity theory (polynomial-time
algorithm, classes P and NP, NP-completeness) can be found in [2].

2. Main results

In [7], a finite algorithm was proposed (sign-accord algorithm) that computes solutions of
the system (1) if m = n, A is nonsingular and the system (1) is solvable for any vector é.
Nonetheless, as shown there, the algorithm may operate in an exponential number of steps.
The fact that the latter result is not accidental may probably be seen from the following
statement.

Theorem 1. The following problem is NP-complete:

Instance. We are given integer n x n-matrices A, D and an integer n-vector 8, such
that

e A is nonsingular;
e A>D>0,68 >0 (the inequality “>" is understood componentwise);
e the number of solutions of the system (1) is finite (possibly zero).

Question. Is there a solution to the system (1)?

To prove the theorem we construct a polynomial reduction of the problem Partition,
which is known to be NP-complete [8], to that problem.

The problem Partition implies:

Instance. Given p integer positive numbers dj, . . ., d,.

B
Question. Does there exist a sequence of signs £y,...,6,€ {-1,1} such that ¥ &:d;=0?
=1

The desired reduction is based on the following two lemmas.

00

0 2 ) be 2 X 2-matrices and a = ( % ) € R?,

az

Lemmal.LetA():(i ;), Do=(

Consider the system
Aoz = Dozl +a, z= ( 71 ) € R% (2)

Then:

i) if ag > a1 then the system (2) has no solution;
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ii) if ag = a, then the system (2) has the unique solution = ( %1 >;

iii) if az < a1 then the system (2) has exactly two solutions
1 _ a2 2 _ 1 4ﬂl—a2>
¥ __(61"0:2)’ ¥ —3< az—ay )’ (3)

For proving this lemma it is sufficient to consider the system (2) separately in the spaces
z3 2 0 and 12 £ 0, in which it transforms into an ordinary system of linear equations.

u
Let now some positive integer numbers d;,...,d, be given, and let dy =23, d;, & =
i=]

( 8) ER? n=2(u+2).

Consider the following system of the form (1) composed of n equations of n variables:

,
A ( T2i-1 ) =D ( Z2i-1] ) . =17, 4
0 Ty 0 I 2ii + ( )
dj 0 )( Tgj-1 ) ( Lo+l ) ( !3:2;:-{-1! ) ( do )
= + ; 5
ng( 0 0 Taj Tap+2 |Tou2] 0 (5)
(5 ) )azz)-m Bz ()
. 6
\ _,5;;( d; 0 Toj T2p+4 |24} * do (©)
Lemma 2,
1) If the vector = = (xy,...,2,)7 is a solution of the system (4)—(6) then Top+1 = Topgg =

—_—
Top+3 = Tou+s = 0, the numbers €; = %ng_l ~—1 belong to {~1,1} foralli =1,pu, ¥ &:d; =0
i=1

and x has the form

z=(26+2,1-2¢,...,26,+2,1~2¢,,0,0,0,0) . (7)

. g
2) Conversely, if ¢; € {—1,1}, i =1,u and Y €;d; = 0 then the vector = of the form (7)
i=1
is a solution of the system (4)—(6).
Proof.
1) Let £ = (z1,...,24)7 be a solution of the system (4)—(6). Since (4) for any i = T, &

is a particular case of (2) (for ¢ = &) then from Lemma 1 we have that ( zzi'l ) €
2
{( g )?( :11 )} Therefore, Zzi-1 € {0,4} and consequently, &; = 3z ; — 1€ {-1,1}.

Denote d = Z‘ djxa;_1. Then (5), (6) may be represented in the form
J=1
dy—d
A (-’Ez_p-s-l ) =D ( [Z2u41] ) ( 0 )’
0 Top+2 0 |22p+21 + 0 (8)

o o) =2t )+ (a4 ) ®



128 A. V. LAKEYEY

Since the system (8) is a particular case of the system (2) (for a= ( do 0_ d )) and ( ;2",""1 )
2u+2

is its solution, from Lemma 1 we have 0 < dp — d. Similarly, when considering the system (9),
we obtain dy — d < 0, and consequently, dy — d = 0. Hence, again due to Lemma 1, we have
that Topusrl = Tops2 = T3 = Topsq = 0, and furthermore,

idjij Zd ( =Ty ~ )=%(idjzzj~- 22(1) =—d do)
i=1 j=1

Note also that for any solution £ of the system (4) the equality Zoi-) + 2; = 3 holds, and
Toio1 = 26; + 2. Thus zy; = 1~ 2¢;, i = 1, & and z has the form (7).

2) Let us prove the opposite. Let g; € {-1,1}, i = 1,1, i &;d; = 0 and the vector
=1
“
z be defined by (7). Then d = 3 g = 3 ds(2; +2) = 25 die; +2 5 d; = do.
i=1 i=1 J=1 3=1

So, (8), (9) hold, and consequently, (5), (6). Since furthermore, ( ;Zi'l ) = ( fsi -’2-62 ) €
2 - 2¢;
{< g ), ( _:11 )} for any ¢; € {=1,1}, 4 = 1, 11, then (4) also holds for all i =T, 1. O

Proof of Theorem 1. Let us prove that the problem formulated in the condition of Theorem 1 is
NP-hard. For this purpose, as noted above, it is sufficient to construct the polynomial reduction
of the problem Partition to it.

Let us take positive integers d, ..., d, and form the system (4)—(6) having the form (1).
The matrix A obtained is nonsingular, since it is a block lower triangular matrix which has
© + 2 blocks along the diagonal, each of which is equal to the nonsingular 2 x 2-matrix Ag.
Obviously, the inequalities A > D > 0 and 6 > 0 hold.

By Lemma 2, any solution of the system (4)—(6) can be represented in the form (7), and
consequently, the number of solutions is finite (not greater than 2*). From Lemma 2 it also
follows that for given di,....d, the problem Partition has a solution if and only if there is a
solution of the system (4)—(6). Furthermore, it is obvious that the system (4)—(6) is constructed
from d,,....d, by polynomial-time algorithms. Consequently, the problem under scrutiny is
NP-hard. Its belonging to the NP class is obvious. O

Therefore, if P # NP then there is no polynomial-time algorithm revealing the solvability
of the system (1) even under the additional conditions of Theorem 1. On the other hand, there
are other practically interesting classes of systems of the form (1), for which polynomial-time
algorithms have been found. Let rank(D) designate the rank of the matrix D, corank(4) =
max{m,n} — rank(A).

Theorem 2. There exists a polynomial-time algorithm (of the order O{(max{m,n})*)) that

(i) finds out whether the system (1) is solvable for given rational m X n-matrices and a rational

m-vector b satisfying
D >0, rank(D) =1

(i) computes a solution to (1) in case of solvability.

Proof of Theorem 2. Let us give an informal description of the desired algorithm. Since,
according to the condition, rank(D) =1 and D > 0, there are vectors a 2 0, b>0,aeR™,
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b € R™ with rational components such that D = ab”. It is furthermore obvious that the vectors
a, b may be found from the matrix D by an algorithm of linear complexity. Then the system
(1) may be written in the form

Az = (b, |z])a+ 6 (10)

where (-, ) is the scalar product, which is obviously equivalent to the system
Az = da + 6, (11)
(b ) = A (12)

where A € R! is a new variable.

Introduce the notation X = {(A\,z) | Az = Aa + 6}. Let us find out (say, with the aid
of the Gaussian algorithm) whether X = 0. If X = 0 then the system (11), and consequently
the system (10), have no solutions; otherwise we find one of the solutions (A, zp) € X. Next,
consider two cases.

19 Ap < (b, lmp]) or there exists a solution of the system (11) for A = 0.

In this case, if there exists a solution Z of the system (11) for A = 0 then (since (b, |Z]) > 0
due to nonnegativity of b) it is possible to take Ag = 0, 2o = Z, i.e. in this case, the inequality
)\g S (b. IIEQI) holds.

Consider the following system of linear equations and inequalities of the variables A € R!,
ve R veR™

(byu+v) < A (13)

A(u —v) = da+§6,
u>0, v>0

Let us find out (using Khatchiyan's polynomial algorithm [3]) whether the system (13) is solvable.
If it is not solvable, then the system (11), (12) is also unsolvable, since if (A;, z;) is the solution
of (11), (12) then obviously u; = max{z;,0}, v1 = uy —z;, A = Xy is the solution of the system
(13) (max{.,.} is understood coordinatewise).

If the system (13) is solvable, then let us find one of its solutions (Ay,u1,v;) (also by
Khatchiyan’s algorithm).

Let us prove that in the present case the system (11), (12) is also solvable.

Denote z; = u; — v;. Then Az; = A(uy — 1) = Ma+6 and (b, |z1]) = (b, ] — v1]) €
(b, Uy + Ul) < )\1.

Consider a segment in R™! connecting the points (X, Zo) and (A, zy), ie. take z, =
To+7(x1—20), Ar = Ag+7(A = Ag) for 7 € [0,1]. It is furthermore obvious that Az, = A.a+$,
and the function ¢(7) = (b, |z/|) = Ar = (b, |Zo + T{z1 — o)) — (A = o) — Ap satisfies the
inequalities ©(0) > 0, ©(1) < 0.

Consequently, there may be found 7 € [0,1] such that p(75) = 0. But then (A, Zn) is
a solution of the system (11), (12), and consequently, Z, is a solution of the system (10). Note

that in order to find this solution it is sufficient to solve the scalar equation (zg, 1, Ao, A; are
known)

n .
Zb,—l:cg,- + (1 — zos)] = 7(A = X)) + Ao (14)
i=]
The solution of this equation can easily be found if one considers the decomposition of
the real line R! into intervals by roots of the equations zo; + 7(z1; — 2g;) = 0, i = 1,1 (for

t such that zj; # Zp;), since the number of these intervals is not greater than n + 1, and on
each of these intervals, (14) transforms into a linear equation.
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2°. (b, |zol} < Ao and there is no solution of the system (11) for A = 0.

Note, in this case, if (A, z) € X then A = ). Indeed, if there exists (A;,z;) € X such
that Ay # Ag then for £ = -;;{j\-‘; {Axo— Aoz} we obtain AZ = §. The latter is in contradiction
with the fact of unsolvability of the system (11) for A = 0.

Consider now the set Xy = {z € R® | Az = 0}. Let n —rank(A) = k. Then (for example,
again with the use of the Gaussian algorithm) it is possible to find the n x k-matrix C (with
rational elements) such that Xp = {Cy | y € R*}. Note, in this case X = {(No, 20+ Cy) | y €
R*}. Let ¢1,. .., c, € R* be the vectors formed by rows of the matrix C, and ¢; = (¢i1, . . ., Cig).
Let us show that in this case there is a solution of the system (10) if and only if ¢ € 1,7,
JE 1k may be found such that bic;; # 0.

Indeed, if for all i =T, 7m, 7 = 1, %, it is true that bic;; = 0, then obviously for any y € R¥
n n

(b, |20 + Cy)) = . bilzoi + (¢, ¥)| = T bilzoi| = (b, |2o]) < Xo bolds and consequently, there
i=1 =1

are no solutions of the system (11), (lé).

Let i, jo be such that b cigjo # 0. Let z1 = (Cijp, -+ .,cnjD)T be the jp-th column of the
matrix C. Then it is easy to prove that the function (7) = (b, |zo + 721]) — Ag is not upper
bounded for 7 € [0,00). And since @(0) = (b, |zo|) — Xo < 0, it is possible to find 75 € [0, 0)
such that ¢(7y) = 0. Consequently, (b, |zo + 70Z1]) = Ao, and zp + 7oz is a solution of the
system (10).

For finding 7 we need to solve the equation w(7) = 0, which is similar to (14).

Note also that in order to construct this algorithm we used only the Gaussian algorithm
for solving systems of linear equations Az = Xa + 6, Arx = §, Az = 0 and Khatchiyan’s
algorithm for solving the system (13). So, in general the complete algorithm has the order
indicated in Theorem 2. 0

Let us also formulate (without proving) the following (in some sense more general) theorem.

Theorem 3. Let k be a fixed natural number. There is a polynomial algorithm (of the order
O((max{m, n})**5)) that

(i) finds out whether the system (1) is solvable for given rational m x n-matrices A, D and a
rational m-vector b satisfying

rank{ D)} + corank{A) < k

(ii) computes a solution to (1) in case of solvability.

Note, for comparison, that we do not know if the sign-accord algorithm mentioned above
will complete its operation in a polynomial number of steps even under the conditions of
Theorem 2.
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