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On the computational complexity of the 
solution of linear systems with moduli 
ANATOLY V .  LAKEYEV 

A pr~blem of ~lvabitity fi~r the system ~,f equations of the fiwm Am = Dla: [ + ~; is investigated. This 
problem is proved to be NP<~anplete  even in the case when the number of equations is equal to the 
number of  variables, the matrix A is n~mfingular, A > D > 0, 6 > 0, and it h initially known that 
the system has a finite (po.~ibly zen~) nunlber ¢}f ~flutions. Ft3r an arbitrary system of rn equations 
of n variables, tinder additional conditions that the matrix D is mmnegadve and its rank Ls tree, a 
pcflynomial-time algorithm (of the order O((max{rn, ,  n})3))  has been found which alh,ws u, determine 
whether the system ks ~flvable ~r not and to find one of such m,lutimls in the ca~  of ~lvability, 
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1"I3yqaeTca 3altaqa pa3pemnMCn:Ttt 2t'xH CHCTeMb/ ypaBaemtft BItlla Ax  = Dlxl + ~. I'1¢)ga3aHo, q'ro 
JTa ~utaqa HBJIHeTCH NP-nod]Ho~ Sui;.Ke B ¢.;lyqae, xorna q$lCdlt} yDilBHeH}|IT.I pIBHO qn(-ay IlepeMeHHMX, 
MaTpmta A neBl~),Y,/teHa, A > D > 0, 6 > 0 a 3apaHee 1.13BeCTHO, ttTO CliCTeMa ttMee'r K(~,HeqHOe (BO3- 
M(DKHtL paBH(m Hy,'IK)) qHCBO penmnnf~. 21all IIpOH3BOJII,Ht)JT! cltc'reMm rfl, ypaBxemtCt !rr n IlepeMeHHblX 
Itplt dlono.rlHItTe$lbHOM yCJt¢mtm, tyro MaTpHIla D me OTpttLI~tTeJlI,Ha It ee paHr patter e,~tlmlnle, Hal~l.~teH 
,,,,mm!,Mmv,,-n~fi aa!',,pwrM (rtopmlxa O ( ( m a x { m , n } ) 3 ) ) ,  ,,,,~m,,im,,m,~ I~,IalHCHIITh pa3pcll]l|M(~rla, 
)V(,*'l c.Cre.~u~ n. B cmyuae pa3~elllllM(~Ii, HafiTtl OIIHt) t13 pelIleH||l~L 

1. Introduction 
This work deals with the computational complexity of the solution of equations of the form 

A z  = Dlzl  + 6 (1) 

where A, D are m × n-matrices, 6, x are an m-vector and an n-vector respectively, lxl is the 
n-vector made up of the moduti of the components of x. The elements of the matrices A, D 
and the components of the vector 6 are integers. 

The interest to investigation of systems of the form (1) is due to the fact that the following 
well-known problems of computational and interval mathematics reduce to them: 

• the linear complementarity problem (see, for example, Berman and Plemmons [1]); 

• the problem of computing vertices of the convex hull of the united solution set for a 
regular system of linear interval equations (see Rohn [7] and also Neumaier [6]); 

• the compatibility problem for systems of linear equations in Kaucher interval arithmetic 
under some additional conditions (see Lakeyev [5]). 
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Concerning the latter problem, note that Shary [8] and Kupriyanova [4] have proved that 
algebraic interval solutions for systems of linear equations in Kaucher interval arithmetic allow 
us to obtain maximal interval inner estimates for various sets of solutions of interval linear 
algebraic systems (namely, for united, tolerable, controlled, and some other solution sets, see 
Shary [8]). 

The question we solve in our work is as follows: 

Is there a polynomial-time algorithm that finds out whether the systmn (I) is solvable for given 
matrices A, D and vector 6 and, in case of solvability, computes a solution to the system? 

The basic concepts and definitions of computational complexity theory (polynomial-time 
algorithm, classes P and NP, NP-completeness) can be found in [2]. 

2. Main results 
In [7], a finite algorithm was proposed (sign-accord algorithm) that computes solutions of 
the system (1) if m = n, A is nonsingular and the system (1) is solvable for any vector 6. 
Nonetheless, as shown there, the algorithm may operate in an exponential number of steps. 
The fact that the latter result is not accidental may probably be seen from the tbllowing 
statement. 

Theorem 1. The following problem is NP-complete: 

Instance. We are given integer n × n-matrices A, D and an integer n-vector 6, such 
that 

• A is nonsingular; 

• A >_ D >_ O, 6 >_ 0 (the inequality ">_" is understood componentwise); 

• the number of solutions of the system (I) is finite (possibly zero). 

Question. Is there a solution to the system (1)? 

To prove the theorem we construct a polynomial reduction of the problem Partition, 
which is known to be NP-complete [8], to that problem. 

The problem Partition implies: 

Instance. Given/.t integer positive numbers d b . . . ,  dr,. 

Question. Does there exist a sequence of signs E b . . . ,  e~ E {--1 1} such that ~ Ei di = O? 
i=l  

The desired reduction is based on the following two lemmas. 

1 1 , Do = 0 be 2 x 2-matrices and a = E Lemma 1. Let Ao = 1 2 2 a2 

Consider the system 

A o x = D o [ x [ + a ,  x =  E (2) 
X2 

Then: 

i) i£ a2 > al then the system (2) has no solution; 
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/ 
i f  then the the solution al  

\ 
ii) t2 2 "~ t21 system (2) has unique ~ 0 ) ; 

iii) i f  a2 < al then the system (2) has exacdy two solutions 

a l - - a 2  ---- 3 a 2 - - a l  " 

For proving this lemma it is sufficient to consider the system (2) separately in the spaces 
z2 > 0 and z2 < O, in which it transforms into an ordinary system of  linear equations. 

Let now some positive integer numbers d l , . . . ,  d ,  be given, and let do = 2 ~ d~, 50 = 
i=1 

0 ~ ~ ' n = 2 ( ~ + 2 ) "  

Consider the following system of  the form (1) composed of  n equations of  n variables: 

x2, tz2,l + ~o, i = 1, t,, (4) 

0 ÷ 

0 0 

X2p,+4 j=l  392J 

L e m m a  2 .  

i) I f  the vector z = (X l , . . . ,  xn) T is a solution o f  the system (4)-(6) then z2t,+l = x2~,+2 = 

i x x2~,+3 = z2~+4 = O, the numbers ei = ~ 2i-I - 1 belong to { - 1 ,  1} for all i = ~, ~, ~ ~id~ = 0 
i=I  

and :c has the form 

x = (2el + 2, 1 - 2E1, . . . ,  2e~, + 2, 1 - 2z~, O, O, O, O) r .  (7) 
tt 

2) Conversely, i f  ei E { - 1 , 1 } ,  i = 11# and E eidi = 0  then the vector x o f  the Form (7) 
i=1 

is a solution of  the system (4)-(6). 

e,-oof. 
1) Let x = ( x l , . . . ,  x,~) r be a solution of  the system (4)-(6). Since (4) for any i = 1, tt 

is a particular case of  ( 2 ) ( f o r  a = 5 0 ) t h e n  from Lemma 1 we have that ( x2,-1 ) E 
~72i 

3 ' . Therefore,  x2i-1 E {0, 4} and consequendy, ei = ~ 2i-1 - -  1 E 

Denote d = ~ d j x 2 j - 1 .  Then  (5), (6) may be represented in the form 
j = l  

A° ( x2tt+1 (s) 

. 
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Sincethesystem(8)  i s a p a r t i c u l a r c a s e o f t h e s y s t e m ( 2 ) ( f o r a = ( d o o d ) )  and ( z2u+l ) 
X2~+2 

is its solution, from I.emma 1 we have 0 _< do - d. Similarly, when considering the system (9), 
we obtain do - d <_ 0, and consequently, do - d = 0. Hence, again due to Lemma 1, we have 
that x2u+1 = x2/~+2 - -  x2,u+3 = x2/~+4 = 0 ,  and furthermore, 

= = }SaJx  -t-z aj  = ( a - d o ) = 0 .  
5=i j=1 = 

Note also that for any solution z of the system (4) the equality z2i-1 + z2i = 3 holds, and 
zzi-1 = 2ei + 2. Thus z.2i = 1 - 2e~, i = 1,/~ and z has the form (7). 

2) Let us prove the opposite. Let E~ E {-1,  1}, i = 1---~, E zid~ = 0 and the vector 
/~ /,~ ,u /s. 

z be defined by (7). Then d =  Ed jz2 j -~  = E d j ( 2 E j + 2 )  = 2 E d j e j  + 2 ~ d j  = do. 
3=1 j = l  3= I  3=1 

So, (8), (9)hold, and consequendy, (5), (6). Since furthermore, ( : r 2 , _ l ) ( 2 s / + 2 )  
X2i ---~ i - 2~i 6 

{ (  0 ) ( 3  ' --41 ) }  f°r a n y ~ i E { - l ' l } ' i = l ' / z ' t h e n  (4) als°h°lds f ° r a l l i = l ' # '  [] 

Proof of Theorem I. Let us prove that the problem formulated in the condition of Theorem 1 is 
NP-hard. For this purpose, as noted above, it is sufficient to construct the polynomial reduction 
of the problem Partition to it. 

Let us take positive integers d l , . . . , d ,  and form the system (4)-(6) having the form (1). 
The matrix A obtained is nonsingular, since it is a block lower triangular matrix which has 
# + 2 blocks along the diagonal, each of which is equal to the nonsingular 2 x 2-matrix .4o. 
Obviously, the inequalities A > D > 0 and 6 >_ 0 hold. 

By Lemma 2, any solution of the system (4)-(6) can be represented in the form (7), and 
consequently, the number of solutions is finite (not greater than 2"). From Lemma 2 it also 
follows that for given d l , . . . , d  u the problem Partition has a solution if and only if there is a 
solution of the system (4)-(6). Furthermore, it is obvious that the system (4)-(6) is constructed 
from d , , . . . ,  d~, by polynomial-time algorithms. Consequently, the problem under scrutiny is 
NP-hard. Its belongiug to the NP class is obvious. [] 

Therefore, if P # N P  then there is no polynomial-time algorithm revealing the solvability 
of the system (1) even under the additional conditions of Theorem 1. On the other hand, there 
are other practically interesting classes of systems of the form (t), for which polynomial-time 
algorithms have been found. Let rank(D) designate the rank of the matrix D, eorz~nk(A) = 
max{m, n} - rank(A). 

Theorem 2. There exists a polynomial-time algorithm (of  the order O((m~{m,  n})3)) that 

(i) finds out whether the system (1) is solvable for given rational m x n-matrices and a rational 
m-vector b satisfying 

D >_ 0, rank(D) = I 

Oi) computes a solution to (1) in case of  solvability. 

Proof of Theorem 2. Let us give an informal description of the desired algorithm. Since, 
according to the condition, rank(D) = 1 and D > 0, there are vectors a > 0, b > 0, a E R " ,  
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b E R n with rational components such that D - ab T. It is furthermore obvious that the vectors 
a, b may be found from the matrix D by an algorithm of  linear complexity. "l'hen the system 
(t) may be written in the form 

Ax  = (b, Ixl)a + 6 (10) 

where (., .) is the scalar product, which is obviously equivalent to the system 

A x  = ~a+6,  (11) 
(b, txJ) = (12) 

where )~ E R 1 is a new variable. 

Introduce the notation X = {(,k, x) ] A x  = )~a + 6}. Let us find out (say, with the aid 
of the Gaussian algorithm) whether X = 0. If X = 0 then the system (11), and consequently 
the system (10), have no solutions; otherwise we find one of the solutions (A0, x0) E X.  Next, 
consider two cases. 

1 °. ,ko < (b, Ix0[) or there exists a solution of the system (11) for A = 0. 

In this case, if there exists a solution :~ of  the system (11) for ,k = 0 then (since (b, ]xl) :> 0 
due to nonnegativity of b) it is possible to take /k0 = 0, x0 = :~, i.e. in this case, the inequality 
,ko < (b, Ixol) holds. 

Consider the following system of linear equations and inequalities of the variables ~ E R 1, 
u E Rn, v E ]R'~: 

A ( u -  v) = )~a+ 6, 
(b, u + v) < (13) 
u>_O, v_>O. 

Let us find out (using Khatchiyan's polynomial algorithm [3]) whether the system (13) is solvable. 
If it is not solvable, then the system (11), (12) is also unsolvable, since if (,kl, x l )  is the solution 
of (11), (12) then obviously ul = max{x1 ,0} ,  vl = ul - x l ,  )~ = ~1 is the solution of the system 
(13) (max{., .} is understood coordinatewise). 

If the system (13) is solvable, then let us find one of its solutions (,kl, ul ,v l )  (also by 
Khatchiyan's algorithm). 

Let us prove that in the present case the system (11), (12) is also solvable. 

Denote Xl = ul - vl. Then  Axl  = A(ul  - vl) = ~la  + 6 and (b, ]xl]) = (b, ]ul - vii) _< 
(b, u~ + v~) _< ,~1. 

Consider a segment in R n+l connecting the points (A0,x0) and (Al,Xl), i.e. take x ,  -- 
xo+r(x l  - x0 ) ,  Ar = .k0+7-(,kl-X0) for r E [0, 1]. It is fur thermore obvious that Axr  = ,kra+6, 
and the function qo(r) = (b, tx~-I) - A~- = (b, Ix0 + r ( x l  - x0)l) - r(,kl - )~0) - ),0 satisfies the 
i~equalities ~(0) > 0, ~(1) < 0. 

Consequently, [here may be found ~'0 E [0, 1] such that ~(~-0) -- 0. But then (~ro, xro) is 
a solution of the system (11), (12), and consequently, X~.o is a solution of the system (10). Note 
that in order to find this solution it is sufficient to solve the scalar equation (2:0, Xl, )~o, ~1 are 
known) 

r~ 

i-,---1 

The  solution of this equation can easily be found if one considers the decomposition of  
the real line ~ into intervals by roots of  the equations x~ + ~'(x~i - x0~) = 0, i = ~ (for 
i such that xli ¢ x0~), since the number  of these intervals is not greater than n + 1, and on 
each of these intervals, (14) transforms into a linear equation. 
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2 °. (b, txol) < Ao and there is no solution of the system (1t) for ,X = 0. 

Note, in this case, if (A,x) E X then A =  A0. Indeed, if there exists (AI , x l )  E X such 
that ~x ~ ,X0 then for :~ = ~ (,klX0-A0xx) we obtain A~ = 6. The latter is in contradiction 
with the fact of unsolvability of the system (11) for A = 0. 

Consider now the set X0 = {x E R '~ I A x  = 0}. Let n - rank(A) = k. Then (for example, 
again with the use of the Gaussian algorithm) it is possible to find the n × k-matrix C (with 
rational elements) such that X0 = {Cy [ Y E ]~k}. Note, in this case X = {(,\0, x0 + Cy) t Y E 
Rk}. Let cl . . . .  , ~ E R k be the vectors formed by rows of the matrix C. and ci = (c~x,..., cik). 
Let us show that in this case there is a solution of the system (10) if and only ff i E 1, n, 
j E 1, k may be found such that bicq ~ 0. 

Indeed, if for all i = 1, n, j = 1, k, it is true that bicij = 0, then obviously for any y E R k 
n 

(b, Ix0 + Cyl) = E bdxoi + (c~, Y)I = Z bdx0d = (b, Ix01) < A0 holds and consequently, there 
i = 1  i = 1  

are no solutions of the system (11), (12). 

Let i0, J0 be such that biociojo ~ 0. Let X 1 = ( C l i o , . . . ,  Cnjo) T be the jo-th column of the 
matrix C. Then it is easy to prove that the function qp(7.) = (b, lXo + 7.Xlt) - Ao is not upper 
bounded for 7" E [0, 00). And since qa(0) = (b, Ix01) - Ao < 0, it is possible to find 7"0 E [0, oo) 
such that ~(7"o) = 0. Consequently, (b, [Xo + 7"0x11) = Ao, and x0 + 7"0xi is a solution of the 
system (10). 

For finding r0 we need to solve the equation 9~(r) = 0, which is similar to (14). 

Note also that in order to construct this algorithm we used only the Gaussian algorithm 
for solving systems of linear equations A x  = Aa + 6. A x  = ~, Az = 0 and Khatchiyan's 
algorithm for solving the system (13). So, in general the complete algorithm has the order 
indicated in Theorem 2. [] 

Let us also formulate (without proving) the following (in some sense more general) theorem. 

Theorem 3. Let k be a fixed natural number. There is a polynomial algorithm (of  the order 
O((max{m, n})k*5)) that  

(i) finds out whether the system (i) is solvable for given rational m x n-matrices A ,  D and a 
rational m-vector b satisfying 

rank(D) + corank(A) < k 

Oi) computes a solution to (1) in case o f  solvability. 

Note, for comparison, that we do not know if the sign-accord algorithm mentioned above 
will complete its operation in a polynomial number of steps even under the conditions of 
Theorem 2. 
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