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Interval methods that are guaranteed to
underestimate (and the resulting new
justification of Kaucher arithmetic)

Viapik Kremwovicn, Vyacuestav M. Nesterov, and Nina A. ZHELUDEVA

One of the main vhijectives of interval computations is, given the function f(z1,...,z,), and n intervals
X1y .y Xp, to compute the range ¥ = f(%;,...,%5). Traditional methods of interval arithmetic
compute an mclosure Y 2 § for the desired interval ¥, an enclosure that is often an overestimation. It
is desirable to know how close this enclosure is to the desired range interval.

For that purpose, we develop a new interval formalism that produces not only the enclosure, but
also the jnner etimate for the desired range ¥, ie., an interval y such that y C §.

The formulas for this new method turn out to be similar to the formulas of Kaucher arithmetic.
Thus. we get a new justification for Kaucher arithmetic,

VIHTepBaAbHBIE METOABI, FapaHTUPYIOLIVe
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OnHOR MX FIABHBIX 3234 B OGHACTH HHTEPBAALHEIX BHMHCACHHR ABTACTCH CICAYIONLLL JAAHA (DYHKIMMS
flzy, ... Zn) u 0 wntepBanos Xi,...,Xn. Tpebyercs smuncwmts muamson ¥ = f(¥%;,...,%,).
TpanuuHOHHEE METOAB HHTEPBAALHOM APHPMETHKH HOBBONAKT BRIMHCINTL actovete Y 2§ #CROMOFO
uHTEPBAIA ¥, HPHUEM 3TO BRAKMEHME ABAACTCH OUEHKOR cBepXy. MHTepecHo BLUACHHTDL, Xak GiM3Ko
3TO BRTOHEHHE HOAXORHT K HCKOMOMY HHTEPBAJIY.

C 3Toft UeBK) NPENIOKEH HOBBIA HHTEPBANLHEIA (DOPMANIIM, NOPOKAAONIII HE TOIBKO BKIKYe-
HHE, HO M o4euxy (Y JUIA MCKOMOTO JHANA30Ha ¥, T. €. MHTepBaA Y Takol, yto y C ¥.

GOpMYIN TPEIATAEMOTO METO/IA OKA3BIBAKITCH CXOAHBIMH € COOTHOMIEHHAMN apycbMernki Kayxe-
pa. Taxum 06pasoM. 3TOT METON AAeT HaM HuBoe obucHosaHue apudmernku Kayxepa.

1. Introduction

One of the main objectives of interval computations is, given the function f(zy,...,z,), and
n intervals X; = [Z],Z]],..., X, = [£5,Z}], to compute the interval §¥ = f(X;,...,%,).

Traditional methods of interval computation compute an enclosure Y 2 ¥ for the desired
interval ¥.

Problem. The main problem with these methods is that this enclosure is sometimes close
to ¥; sometimes it is a gross overestimation. It would be nice to get an idea how close Y is
o Y.

The need for an underestimating method. To solve this problem, it is desirable to
develop a method that would produce an inmer estimate for ¥, ie., an interval y such that
YE¥.
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2. Our idea

Why do interval computations overestimate? Let us consider a textbook example when naive
interval computations overestimate: computing the range f(X) of the function f(z) =z — 7%,
for ¥ = [0,1]. This computation consists of two steps: first, we compute the interval of
possible values of 22 = z * z by multiplying the interval [0,1] with itself: [0,1]* [0,1] = [0, 1].
Then, we find an enclosure for the desired range as a difference between the two intervals
Y =[0,1] - [0,1] = [—1,1]. This is a gross overestimation of the actual range ¥ = [0,0.25].
In this case, the interval X; = X; of possible values of z; = z is [0,1]; the interval
X, = X, = [0,1] of possible values of z; = z? has been computed precisely. However, when
we estimate the range of the difference g(x1, ;) = z1 — Z3, we overestimate, because we are
using the formula of interval computations that is based on the assumption that the set X of
possible pairs (21, zs) coincides with the entire box X; x X,. In our example, z; and zz are
related and therefore, not all the values from this box are possible: X C X, x X3. In general,
if we have the intervals X; for z; computed correctly, we know that this set X satisfies the

following two properties:
1) First, X is a connected set (since it is an image of an interval under a continuous function).

2) Second, since we have intervals for z; and z; correctly, the projection m;(X) of the set
X on the i-th axis is exactly X;.

So, the actual range is equal to g(X) for one of the sets that satisfies the conditions 1) and 2).
If we only know the intervals X; and we do not know which set X we are dealing with, we can
be sure that the desired range contains the intersection of the sets g(X) for all possible set X.

We can follow this idea step-by-step, and on each step of the calculations, we will get
two intervals: the traditional interval Z that contains the actual range Z of the corresponding
intermediate quantity z, and the new interval z that is contamed in Z.
Historical comment. Such pairs were proposed in [2—4] under the name of a twin (for recent
applications of twins, see, eg., [8, 11]). A similar notion of “uncertainty of systematic uncertainty”
has also been proposed in [6] in slightly different terms, but, as shown in Artbauer [1], it is
essentially a twin. A similar idea of describing uncertainty by two intervals was proposed
in [9, 101

Initially, we have X; = x; = X;. When we go to the next computation step, we want to
compute a similar pair. Let us describe this idea formally.

3. Definitions, proposed method, and the main result

In the following text, boldface letters will denote intervals, and z~ and z* will indicate the
lower and upper bounds of an interval x.

Definition 1. By a twin, we mean a pair X = (x.X) of intervals for which x C X. (The
interval X may be empty.)

Comments.

1. In particular, every interval X can be viewed as a twin (x, X).
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2. The expression [a,b] denotes the set {z|a < z < b}. So, if a > b, the expression [a,b]
will denote the empty set.

3. In the original papers [2—4], twins were denoted by square brackets: [x,X]. We decided
to use parentheses instead; the reason for these new notations is that we are using both
twins and intervals, and we want to avoid (as much as possible) any confusion between
twins and intervals.

Definition 2. Let n twins X; = (x;,X;), 1 £ i < n, be given.

o We say that a set X C Xy x -+- x X, Is possible if X Is connected and for each 1, its
projection 7;(X) = {z;|(xy,...,Zi,...,Tn) € X} on the i-th axis satisfies the property
x; C m(X) © Xa

o Let g(xy,...,Z,) be a continuous function. We define g(X,...,A,) as a twin § = (g;, G),
where G = g(X,,...,X,), and g is an intersection of the sets g(X) for all possible sets X .

Main theorem. Let f(zi,...,7,) be the result of a sequence gV, ¢, ..., ¢™) of elementary
operations +, —, *, /, and let intervals %;,...,%, be given. Then, if we start with n twins
X; = (%, %;), and follow the same sequence of operations g1, g, ..., g™ on twins, then, at
the end, we get a twin Y = (y,Y) for whichy C f(X1,...,%,) C Y. '

Proof. Similar to standard interval computations, by induction over the total number of
computation steps. 0

4, Computations

To apply our main idea, we must be able to compute twins corresponding to basic arithmetic
operations. In contrast to naive interval computations, finding g requires minimization over
many sets X, and is, therefore, not very straightforward. We have found the explicit expressions
for arithmetic operations g(z1,Zg). Let us first consider the case when the twins are just
intervals:

Proposition 1.

e When g is increasing in both variables (e.g, if g = +, or if g = * and both arguments
are positive), then

(la7, 211, o7, 551) = [min (9(a7, 28), 9(at, 7)), max (g(e5, 28), o(at. 7).
e When g is increasing in z; and decreasing in z; (eg., for g = —):

gi(ler,77), la7,23]) = [min (97, 77), 9(a7 . 3) ), max (g(a7, 73), 9(xf . 27)).
o When g =%, 0 & [x7,z{], and 0 € [z7, 23], then gi(X1,%z) = [z] * 77, 2] * 27].
o When g =, 0 € x1, and 0 € x2, then gi(x;,%z) = {0}.

Comment. The resulting operations are not new: exactly the same operations appear in Kaucher
arithmetic proposed (for somewhat different reasons) in [5}: Namely, they coincide with operations
between so-called proper and improper intervals in this arithmetic (see also [2—4]). To avoid
misunderstanding, we must point out that Kaucher arithmetic is more general than these
formulas; it describes three possible cases:
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e operations-between proper intervals; these operations are identical with traditional interval
arithmetic;

e operations between improper intervals; these operations are equivalent to operations of
traditional interval arithmetic;

e operations between proper and improper intervals; these operations are radically different
from traditional interval arithmetic.

Similar formulas were later proposed and analyzed by S. Markov (see, e.g., [7]) as “arithmetic
of directed intervals.”

In this paper, we propose a new justification for the new (radically different) formulas of

Kaucher arithmetic. From the viewpoint of the above-formulated problem, both Kaucher and
Markov proposed heuristic methods that “underestimate” the desired interval but do not prove
that the resulting estimates are the best that we can get. Proposition 1 gives a mathematical
proof of these estimates being the best; this proof is not so easy as the proofs of many algebraic
results about interval arithmetic because we have to consider all possible connected sets.
Proof. Let us first consider the case when g is increasing in both variables. Wlog., we
can assume that g(z7,z5) < g(z¥,z7). We will first prove that if X is possible, then
g(X) 2 [g(z7,zF), g(z7,27)]. Indeed, since X is possible, and the twin is an interval,
mi(X) = [27,27]; hence, there exists a point z € X for which 71(z) = z7. In other words,
(z7,22) € X for some z2 € [z;,z5]. Hence, g(z7,72) € g(X). But g is increasing, so,
g(X) 3 g(z7, z2) € glz7, 7). Similarly, for some x5, g(zi,z7) < g(z7, z5) € g(X). Since X
is connected and g is continuous, the set g(X) is also connected. Therefore, g(X) contains the
entire interval [g(z7,z7), 9(z7, z7)].

To show that the intersection of all g(X) is exactly [g(z7,27), g(zF,25)], we produce a
possible set X for which g{X) is exactly this interval: X = g‘l({g(:«:l',z:;‘ ) g(zF, 27 )]) That
this set is connected follows from the fact that g(z;,x3) is continuous and monotonic in both
variables. (For g = + and g = *, this conclusion can be also obtained in a very straightforward
manner.)

The proof for the case when g is increasing in z; and decreasing in Z is similar.

Let us now consider the case when ¢ = *, 0 ¢ x;, and 0 € x3. In this case, for
X = (27 x X2) U (x; x {0}), g(X) is exactly the desired interval. Vice versa, if X is
possible, then, due to ma(X) = X, we have (z1,23) € X for some 1) € [z7,z]]. Hence,
g(X) 3 2y xx§ > z7 * 3. Similarly, for some 7}, we have g(X) 3 z} * 2z < zT * ;. Since
the set g(X) is connected, it thus contains the desired interval [z7 % 27,27 * 73 ].

Finally, let us show that when g = *; 0 € X3, and 0 € X3, then g = {0}. Indeed, if we
take as X all points from the box X; X X for which z; *x zz > 0, we get a possible set with
g(X) € [0,00). The set X’ of all points from this box for which z; *z3 < 0 is also possible,
and g(X) € (—00,0]. The intersection of these two sets is {0}, so, g (the intersection of
all such sets g(X)) is contained in {0}. To complete the proof, it is sufficient to show that
0 € g(X) for all possible sets X. Indeed, since m(X) = x; 3 0, we have (0,x3) € X for some
Zg, hence, 0 = 0%z, € g(X). 0
Example. For z — z?, we have X; = X = [0,1] and hence, g; = [min(0 — 0,1 — 1), max(0 —
0,1-1)] = {0}. So, ¥ = ({0}, [-1,1}).

General case: idea behind the computations. The general case easily follows from the case
when twins are intervals, if we take into consideration that X is possible for n twins (xi, X;) iff
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X is possible for some intervals X; for which x; C x; C X;. Therefore, to find the intersection
g of images g(X) for all possible X, it is sufficient to find such intersections (i, to find
gi{{X1,%1),...)) for all X;, and then, to take the intersection of the resulting intersections. For
the cases when we know the explicit expressions for g(&),...) for interval &;, we can thus
get explicit expressions for the general case:

Proposition 2.

e When g is increasing in both variables (e.g., if g = +, or if g = * and both arguments
are positive), then

8(%, %) = [min (97, X$), 9(X{, 27) ), max (9(X7, 2§), 9(aF, X7))].
o When g is increasing in T, and decreasing in x5 (e.g., for g = —):
&%, %) = [min (9(a7, X7), (X7, 25)), max (9(X7,77), g(af, X))
Comments.

1. A (reasonably clumsy) explicit expression can also be written for x for the case when
intervals are not necessarily all positive or all negative (so that * is not monotonic).

2. The reader should be cautioned that the resulting operations are, in general, different from
the operations of twin arithmetic proposed (on purely algebraic grounds) in [2-4]. This
difference is in line with the fact (mentioned after Proposition 1) that when twins are
intervals, our formulas coincide with only a particular case of Kaucher arithmetic.

Recommendations. Our numerical experiments have shown that this method gives the best
(= closest to ¥) underestimates y when one of the input intervals X; is much wider than the
others (e, eg., if one of the measurements that lead to X; was much less accurate than the
others).
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