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Interval methods that are guaranteed to 
underestimate (and the resulting new 
justification of Kaucher arithmetic) 
VLADIK KREINOVICH, VYACHESLAV M .  NESrEROV, and  NINA A .  ZHELUDEVA 

One of the main objectives of interval computations is. given the function f(zx . . . .  , a:n). and n intervals 
x l , . . . , x n ,  to compute the range ~ --- f ( x l , . . . , x n ) .  Traditional methods of interval arithmetic 
compute an mM, a'ure Y _D # fi~r the desired interval :9, an end(tsure that is often an overestimatilm. It 
is desirable to know how dose this enck~sure is to the desired range interval. 

For that purlx)~, we develop a new interval formalism that produces not only the encltxsur¢, but 
alm~ the imu~r ~,¢dnuae for the desired range ~', i.e., an interval y such that y C ~r 

The fi~rmulas fi)r this new meth,~ turn out to be .similar to the tbrmuhLs of Kaucher arithmetic. 
Thus. we get a new justification for KaUcher arithmetic. 

FIHTepBaABHBIe MeTOAbI, rapaHT~pyiom~e 
oIIeHKy CHII3y, ~ HOBOe 060CHOBaHIIe 
ap IqbMeTHKrl Kayxepa 
B. KPFm-~oBve-b B. M. HECTEPOS, H. A. >K~ya~^ 

()LIHOITI IIX I','IaBHblX 3il/laq 16 IkC)JlaCTII ttHTCpBa.,'ibHblX Bla/tI||CdlCHIIITI ~ll~'l,tleTO.! CJiP.~tylolllall." ~li|l-la q~yHKtlll,~! 

f (Zl  . . . . .  zn) ~i n mlTepBaa(m :~I . . . . .  Xn. T|~ztyexca ma~acanrb namm3o, ~ = f ( ~ l , . . . , ~ c n ) .  
Tp,-umunoamae MeT(nthl aa'replaaahaofl apHcl~Me'rnga HOZVa~2ta~)T Bht'~t~mTh mc.t~mmtlte Y ~ y ncgomoro 
nm-epBa,~a ~, ITpttqeM :)TO BgJlloqerttte ,qt~'l~eTc~l oHet-lgo~ cBepxy. HHxepecno BbI~ICHIITb, gag 6JIlI3Kt} 

3TD BKaR)tIeHHe Ill),~IXO/IItT K HCKOMOMy HHTepP.;IIly. 

(2 3TOI7"I I.le,'lbR) npea:~o~ea HOBblI~I HHTepBa.'lhHblf.I ~ )pMaal l3M,  IRII.X)XKJ|aR)IlliI~ He TO,,'IbKO BKalOqe- 

Fltte, Ho H tJt~f~lg~cy, I:tgY.sy BJIJt HCK¢)MOn;~ /ltfaIla3t}Ha y ,  T, e, a n r e p m l a  y 1-agofi, ,iro y C :~. 
~pMya~ npe2t,aaraeMoro MeTOIIa OKaaMBaR1TCI.I CX(I~FIblMH C COOTHOIIIeFI~fYIMR apstqbMera~a Kayxe- 

pa. Tag.ltM (~pa3oM, 3T/t,T MeTt>II a a e r  HaM HOtU~ (h-¢~ml.tolsal.tl.le apt.lCl~MeT~lgl, t Kayxepa. 

1. Introduction 
One of the main objectives of interval computations is, given the function f (xl , . . . ,  z,,), and 
r~ intervals  x l  = [~:i-, : ~ ' ] , - . . ,  x,* = [zr,, z,~ ], to c o m p u t e  t he  interval  ~ = f ( x l ,  . . . .  : in).  

T r a d i t i o n a l  m e t h o d s  o f  i n t e r v a l  c o m p u t a t i o n  c o m p u t e  an enclosure Y D ~ for  the  des i red  
interval  ~. 

P rob lem.  T h e  main  p rob lem with these me thods  is that  this enclosure  is somet imes  close 

to ~'; somet imes  it is a gross overes t imat ion .  It  would  be  nice to ge t  an  idea  how close Y is 
to y.  

T h e  n e e d  f o r  an  u n d e r e s t i m a t i n g  m e t h o d .  T o  solve this problem,  it is desirable to 

deve lop  a m e t h o d  that  would  p r o d u c e  an inner estimate for  ~', i.e., an  interval  y such tha t  
yc_,Z 
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2. Our idea 
V. KREINOVICH, V.  M .  NESTF..ROV t N .  A.  ZHELUDEVA 

Why do interval computations overestimate? Let us consider a textbook example when naive 
interval computations overestimate: computing the range f(:~) of  the function f ( z )  = a: - z 2, 
for ~ = [0, 1]. .This computation consists of two steps: first, we compute the interval of  
possible values of  z 2 = a: * z by multiplying the interval [0, 1] with itself: [0, 1] * [0, 1] = [0, 1]. 
Then,  we find an enclosure for the desired range as a difference between the two intervals 
Y = [0, 1] - [0, 1] = [ -1 ,  1]. This is a gross overestimation of  the actual range ~ = [0, 0.25]. 

In this case, the interval X l  = ~:1 of  possible values of  z l  = z is [0, 1]; the interval 
X2 = :~2 = [0, 1] of possible values of a:2 = z 2 has been computed precisely. However, when 
we estimate the range of  the difference 9 ( z l , z 2 )  = z l  - z 2 ,  we overestimate, because we are 
using the formula of interval computations that is based on the assumption that the set S of  
possible pairs ( z l , z2 )  coincides with the entire box Xl  x X2. In our example, ah and z2 are 
related and therefore, not all the values from this box are possible: X C X1 x X2. In general, 
if we have the intervals :~i for zi computed correcdy, we know that this set X satisfies the 
following two properties: 

1) First, X is a connected set (since it is an image of an interval under a continuous function). 

2) Second, since we have intervals for z l  and z2 correctly, the projection ~'i(X) of the set 
X on the i-th axis is exactly 5el. 

So, the actual range is equal to 9 ( X )  for one of the sets that satisfies the conditions 1) and 2). 
If we only know the intervals 5¢/ and we do not know which set X we are dealing with, we can 
be sure that the desired range  contains the intersection of  the sets 9 ( X )  for all possible set X.  

We can follow this idea step-by-step, and on each step of  the calculations, we will get 
two intervals: the traditional interval Z l:hat contains the actual range ~ of  the corresponding 
intermediate quantity z, and the flew interval z that is contained in :~. 

Historical comment. Such pairs were proposed in [2-4]  under the name of  a twin (for recent 
applications of  twins, see, e.g., [8, 11]). A similar notion of  "uncertainty of  systematic uncertainty" 
has also been proposed in [6] in slightly different terms, but, as shown in Artbauer [t], it is 
essentially a twin. A similar idea of  describing uncertainty by two intervals was proposed 
in [9, 10]. 

Initially, we have Xi  = xi = ~i. When we go to the next computation step, we want to 
compute a similar pair. Let us describe this idea formally. 

3. Definitions, proposed method, and the main result 
In the following text, boldface letters will denote intervals, and z -  and z + will indicate the 
lower and upper bounds of  an interval x. 

Definit ion 1. By a twin, we mean a pair X = ( x , X )  of  intervals for which x C_ X .  (The 

interval x may be empty.) 

Cmnments. 

1. In particular, every interval x can be viewed as a twin (x, x) .  
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2. The expression is, b] denotes the set {x l a  < z < b}. So, if a > b, the expression is, b] 
will denote the empty set. 

3. In the original papers [2-4], twins were denoted by square brackets: ix, X]. We decided 
to use parentheses instead; the reason for these new notations is that we are using both 
twins and intervals, and we want to avoid (as much as possible) any confusion between 
twins and intervals. 

Definition 2. Let n twins Xi = (xi, Xi), 1 < i < n, be given. 

* We say that a set X C_ X l  x . . .  x Xn is possible i f  X is connected and for each i, its 
projection ~ri(X) = {z, [ ( x l , . . . , z i , . . . , z n )  E X }  on the i-th axis satisfies the property 
x, c_ ~ri(X) c_ Xi. 

, Let y(:cl , . . . ,  z,~) be a continuous function. We define g ( X h . . . ,  X , )  as a twin # = (gt, G),  
where G = 9(Xl,  . . . .  Xn), and gt is an intersection of the sets 9(X)  for all possible sets X .  

Main theorem. Let f ( : r l , . . . ,z ,~)  be the result of  a sequence y(1),y(2) . . . . .  g(N) of elementary 
operations +, --, *, / ,  and let intervals xl , . . . ,Yen be given. Then, i f  we start with n twins 
Xi = (xi, xi), and follow the same sequence of operations 9 (1), g(2) . . . .  , y(N) on twins, then, at 
the end, we get a twin y = (y, Y)  for which y G f ( ~ h . . . ,  f¢,,) G Y .  

Proof. Similar to standard interval computations, by induction over the total number of 
computation steps. [] 

4. Computations 
To apply our main idea, we must be able to compute twins corresponding to basic arithmetic 
operations. In contrast to naive interval computations, finding gt requires minimization over 
many sets X, and is, therefore, not very straightforward. We have found the explicit expressions 
for arithmetic operations 9(zbz~) .  Let us first consider the case when the twins are just 
intervals: 

Proposition 1. 

* When 9 is increasing in both variables (e.g., i f  9 = +, or i f  y = * and both arguments 
are positive), then 

gt([zi-, zr] ,  [z;, z+]) = [min (y(z?,  z f ) ,  9(z~, z~)) ,  max (g(z?, z ; ) ,  9(z +, z ; ) ) ] .  

. When y is increasing in z l  and decreasing in a:2 (e.g., for g = -): 

g,([zr, z~- ], [z ; ,z+])  : [min ( g ( z r , z [ ) , g ( z : , z ~ ) ) , m a x  ( g ( z r , z . ; ) , g ( z ; , z ~ ) ) ] .  

. When g = *, 0 ~ [xi-, z+], and 0 6 [x~-,z~-], then gt(x, ,x2) = [z i- *:r 2 , z  1 * z~']. 

. When g = *, 0 ~ x l ,  and 0 E x2, then gt(xl, x2) = {0}. 

Comment. The resulting operations are not new: exactly the same operations appear in Kaucher 
arithmetic proposed (for somewhat different reasons) in [5]: Namely, they coincide with operations 
between so-called proper and improper intervals in this arithmetic (see also [2-4]). To avoid 
misunderstanding, we must point out that Kaucher arithmetic is more general than these 
formulas; it describes three possible cases: 
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* operations-between proper  intervals; these operations are identical with traditional interval 
arithmetic; 

* operations between imprope r  intervals; these operations are equivalent to operations of  
traditional interval arithmetic; 

* operations between proper  and  improper  intervals; these operations are radically different 
f rom traditional interval arithmetic. 

Similar formulas were later proposed and analyzed by S. Markov (see, e.g., [7]) as "arithmetic 
of  directed intervals." 

In this paper,  we propose a new justification for the new (radically different) formulas of  
Kaucher arithmetic. From the viewpoint of  the above-formulated problem, both Kaucher  and 
Markov proposed heuristic methods t h a t  "underestimate" the desired interval but do not prove 
that the resulting estimates are  the best that we can get. Proposition 1 gives a mathematical  
proof  of  these estimates being the best; this proof  is not so easy as the proofs of  many algebraic 
results about interval ari thmetic because we have to consider all possible connected sets. 

Proof Let us first consider the case when 9 is increasing in both variables. W.l.o.g., we 
can assume that 9(x'[,x +) 4_ g(x~,x~). We will first prove that if X is possible, then 
g(X) D [g(x~,x~),g(x+,x~)]. Indeed, since X is possible, and the twin is an interval, 
7h(X)  = [z~-,x+]; hence, there exists a point x E X for which 7rl(x) = x~'. In other  words, 
(z~' ,x2) E X for some z2 E [x~,z~]. Hence, 9(x'{, x2) E 9(X). But 9 is increasing, so, 
9(X) 9 9(x?, x:)  _< 9(x~, x~). Similarly, for some x~, 9(x~, x~) <_ g(x-~, x~) 6 g(X). Since X 
is connected and 9 is continuous, the set g(X) is also connected. Therefore,  9(X) contains the 

entire interval [9(x?, z~'), 9(x'{, x; ) ] .  

T o  show that the" intersection of  all 9(X) is exactly [9(x'{,x~),g(xt, x;) ], we produce a 

possible set X for which 9(X) is exactly this interval: X = 9-1([9(x'[,x~),9(x+,x~)]). T h a t  

this set is connected follows f rom the fact that 9(xl, x2) is continuous and monotonic in both 
variables. (For 9 = + and 9 = *, this conclusion can be also obtained in a" very straightforward 

manner.) 

The  proof  for the case when 9 is increasing in xt  and decreasing in x2 is similar. 

Let us now consider the case when 9 = *, 0 ~ x l ,  and 0 E x2. In this case, for 
X = (x~- × x2) U (x l  × {0}), 9(X) is exactly the desired interval. Vice versa, if X is 
possible, then, due to 7r2(X) = x2, we have (xl ,  z +) 6 X for some z l  6 Ix[ ,  z+]. Hence, 
g(X) 9 xl * x~ > x'~ * x'~. Similarly, for some z] ,  we have 9(X) B z~ * x~ <_ x-{ * x~. Since 
the set 9(X) is connected, it thus contains the desired interval [x~- * x 2 , z 1 * x~-]. 

Finally, let us show that  when g = *~ 0 E x l ,  and 0 E x2, then gt = {0}. Indeed,  if we 
take as X all points f rom the box xa × xu for  which z l  * x2 _> 0, we get a possible set with 
g(X) C. [0, oo). T h e  set X '  o f  all points f rom this box for which z l  * x2 _< 0 is also possible, 
and g ( X )  C_ ( - o o ,  0]. T h e  intersection 
all such sets g ( X ) ) i s  contained in {0}. 
0 6 9 (X)  for all possible sets X .  Indeed,  
z2, hence, 0 = 0 * Xu E 9(X). 
Example.  For x - x 2, we have ,%'i = X2 
O, 1 - I)] = {0}. So, 3) = ({0}, [-1, 1]). 

of these two sets is {0}, so, gl (the intersection of 
To  complete the proof, it is sufficient to show that 
since rq (X)  = x l  B 0, we have (0, x2) 6 X for some 

[] 

= [0, 1] and hence, ~ -- [min(O - O, 1 - 1), m a x ( O -  

Genera l  case: idea behind  the computations. T h e  general case easily follows f rom the case 
when twins are intervals, if  we take into consideration that X is possible for n twins (xi, Xi)  iff 
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X is possible for some intervals :~ for which x~ _C ~ C  Xi. Therefore, to find the intersection 
g~ of images 9(X) for all possible X, it issufficient to find such intersections (i.e., to find 
gI((:<l, z21),...)) for all ~ ,  and then, t o  take the intersection of the resulting intersections. For 
the cases when we know the explicit expressions for gt(X1,.. .) for interval Xi, we can thus 
get explicit expressions for the general case: 

Proposition 2. 

• When 9 is increasing in both variables (e.g., i f  9 = +, or i f  9 = * and both arguments 
are positive), then 

gl(X1, X2)=  [min ( 9 ( x ~ , X ~ ) , g ( X ~ , x ~ ) ) , m a x ( g ( X ~ , x - ~ ) , g ( x + , X ~ ) ) ] .  

• When 9 is increasing in Xl and decreasing in x2 (e.g., for 9 = -):  

g,(X1, X2)=  [ m i n ( 9 ( x r , X ~ ) , g ( X ~ , x ' ~ ) ) , m a x ( 9 ( X r , x ; ) , g ( x ~ , X ~ ) ) ] .  

Comments. 

1. A (reasonably clumsy) explicit expression can also be written for * for the case when 
intervals are not necessarily all positive or all negative (so that * is not monotonic). 

2. The reader should be cautioned that the resulting operations are, in general, diffn'ent from 
the operations of twin arithmetic proposed (on purely algebraic grounds) in [2-4]. This 
difference is in line with the fact (mentioned after Proposition 1) that when twins are 
intervals, our formulas coincide with only a particular case of Kaucher arithmetic. 

Recommendations. Our numerical experiments have shown that this method gives the best 
(= closest to ~') underestimates y when one of the input intervals xi is much wider than the 
others (i.e., e.g., if one of the measurements that lead to 2i was much less accurate than the 
others). 
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