
Errors in vector
libavi.a

Reliable Computing 2 (2) (1996), pp. 10~-109

processing and the library

TIARAJ0 A. Dw~o, URsta~ A. FERNANDES, and DALCIDIO M. C ~ I o

In this paper, we describe the r~ults of several tests that check the accuracy of numerical computation
on the Cray sttpercomputer in vector and scalar mod~s. The known tests were mtwlified to identify
the critical ~}int where rtmndings start causing problems. After describing the tests, we present ;in
interval library called libavi.a. It was developed in Fortran 90 on the Cray Y-MP2E supercomputer of
UFRGS-Brazil. This library makes interval mathematics accessible to the Cray supercomputers usens. It
works with real and complex intervals and intervals matrice¢ and vectors. The library allows overloading
of operators and fimctions. It is organized in timr modules: real intervals, interval vectors and matrices,
complex intervals, and linear algebra applic, atitms.

FIorpemt-IOCTl npH
6H6A OTeKa libavi.a

BeKTOpHOI o6pa6OTKe

T. Av~m'vto, Y. (I)EPHAH&EC t A- ~,[.AAYAI40

r lpoBeJleHo TeL'T|ip(Jl~lHtle KatteCTl~q pe3yJlbTaToB HecKt)JIbKI.IX qHC,'IeHHI,IX p a c q e T t m Ha CyllepKoM1lbIO-

Tep~ C~ray B BeKTOpHOM t! cxa,'l~tpHo~Xt pe.,x, CtiMax.]:l, " r ~ ' r a x tlpeItyCMaTpttBaJtttCl, tI3MeHeHIt$I /UlHHbIX C

lleJlblO Ollpe/te/IHTb KptiTttqecKtle TOtlKll, B KOTOpMX OKpyl'JleHtl~l IIpIIIU)AHT. K llpC~JleMaM Ilpt! . p o s e -

ileHHt| BMqJ|C4*IeH[4~I. r][peacraBJleaa t t a r e p ~ . . a , fitt611tlOTeKa llt},[l Ha31GiH~leM lihavbt, pa3lmlf~,Tat.IHaa

na ~pxpaHe-90 na cynepgomnbs)Tepe Cray Y-MP2E B *e~aepa:lbaoM ynnlmpcwreTe Pity-!'pall/lit 2to
Cy:l (Bpa:m.'la~l), [~)'ra 6nr.anoxega ,ae-laeT tmrepmam-.y,~ ap.claMe'r.Ky /It)CT~IIHOITI II(}JIb3OB~vreJIl-IM KOM"
Hbs~Tel.~)B C.nty. OHa no3ao:t~e'r par¢~x'a'rt, c BelIIeCTBeHHL4MH 14 KOMII.'IeKCHMMI! HHTeplGL'laMH, "-1 *I~|K3Ke
IIHTepB;I'IL~HLqMII MaTpHIJ2IMH M B e K T O p a M H . . ~ o u y c g a e ' r c a xaKT/.e COBMeIlleHHe tlJteHTHqbttga'rt)pOB ~byng o

|UtlTi | | 3HaK()B O||epi|lt]~!l~. ~$irJltiOTeKa ei~-rowl" 113 q e T ~ p e x MOIlyJlefi: BelHeCrBeMHble tmTepaaaL4 .

ttHTepBaabHIMe BeKTOpI:,I It MaTpttttl,l, KOMIIJleKCHble tIHTet)BaJtM It llpt!21t))KeHt!~ B dlHHel:lHt)lTt ;l-ii'ei~)e.

1. Introduction
In this paper, we describe the results of the tests that check the accuracy of numerical

computations on a Cray supercomputer in vector and scalar modes. Some of these tests were
originally proposed for other computers in Hammer ' s paper [4]. We made changes in the tests

to identify the critical points where roundings start causing problems.

After describing the results of the test, we present ;in interval l ibrary called l i b a v i , a. It

was developed in For t ran 90 on the Cray Y - M P 2 E supercomputer of the Universidade Federal
do Rio Grande do Sul (UFRGS-Brazi l) .

To analyze the numerical accuracy of the Cray supercomputer in evaluating expressions,
numerical computat ions in scalar and vector mode were made. We used several expressions

(found in papers of colleagues from Karlsruhe), for which some computations fail when they

are processed in vector mode. T h e expressions were (sometimes modified and) processed on
the Cray Y-MP2E. We then compare the results.

@ T. A. Divert,,, 0. A. Fernandes, D~ M. Gaudio, 1996

104 T. A. DIVERIOj ~ . A. FERNANDESt D. M. CLAUDIO

Situations were identified where the results of scalar mode and vector mode evaluations
were different. For these expressions, we have tried to quantify the threshold values where
the rounding errors start to interfere with the results. This study was done to promote the
development of high accuracy high performance arithmetic on the Cray. A prototype of
high performance arithmetic (l±bav±. a) was developed on a Cray Y-MP2E. It makes interval
mathematics accessible to the users of the Cray supercomputer.

2. Motivation
This work was motivated by the problems that are encountered when numerical problems are
solved on computers. The two major problems are: guaranteeing the quality of the result, and
dealing with the size of the problem (often, an increase in problem size drastically increases the
memory, and time that are necessary to solve this problem):

Result quality--i t refers to the result accuracy: how accurate and how reliable is the
solution? It depends on how the machine stores and manipulates numerical data (internal
implementation); on the stability of the numerical problem that we are solving; on error
control techniques, and on several other factors.

Problem size--it refers to the size of data (e.g., number of or parameters) which must be
stored (space-memory), and to the number of operations that must be run to solve the problem
(time complexity measure).

30 Designed tests
We have designed several tests, and compiled and executed each test on the Cray Y-MP2E
supercomputer in two modes: in scalar mode and in vector mode. The results obtained in
scalar processing mode are, in general, different from the results of the vector processing mode.
These differences do not result from data dependence, but from the floating-point arithmetic
available on this machine. New test problems were developed [3] and non-stable problems were
identified, such as long sums, cancelation of elemet2ts with opposite sign, sums of large and
small values, and the computation of the real scalar product and of the interval scalar product.

All these situations were studied and the tests applied to determine the errors in the
result. Several methods of minimizing the errors were tested, including the sorting of elements
in long sums. (This idea is' not applicable to vector computers: their main idea is to save time
on computing, e.g., a scalar product albl + . . . + anb,~ by computing all products aibi in parallel;
additional sorting would require additional computation time that would eliminate the time
speed-up gained by using vector computations.) In general, different modes of computation are
very machine dependent, so the user who wants to improve the accuracy of the results must
know how exactly elementary operations are implemented in each mode.

If the Proposal for Accurate Floating-Point Vector Arithmetic [1] was correctly implemented
on the computer, we would not have these problems.

3.1. Long sums with cancelation-Si
-N -N

As a first example, consider the sums of the type ~ (1 6 i - 1 6 i) + ~ (1 6 i - 1 6 i) + 1 . This
i = N i=N

sum is equal to 1. In the formula, the term 1 is added at the end, but in general, it can be

ERRORS IN VECTOR PROCESSING AND THE LIBRARY LIBAVI.A 105

added to an arbitrary place in the sum; the index i indicates the term after which the value
I is added. For example, So means that the term "I" is added as a 0-th term (before all other
terms in the sum); in the sum $1, we add 1 after the first term (i.e., after 16N), etc. Without
1, this sum has 4 . (2N + 1) = 8 N + 4 terms, so, i can take 8 N + 5 different values from 0 to
8 N + 4:

So = 1 + 16 N - 16 '~ + 16 N-1 - + . . . + 16 -N - t6 -N

+ t 6 N - 16 ,~ + 16 N-~ _ + , . . + 16 - N - 16 -N,

5'1 = +16 N + 1 - 1 6 N + 1 6 N - ~ - + . . . + 1 6 - N - 1 6 -N

+16 N - 16 N + 16 N-~ _ + . . . + 16 - N - 16 -Iv,

$8N+4 = + 1 6 N - 1 6 N + 16 N-1 _ . + . . . + 16 -N _ 16 -N

+16 N - 16 N + 16 N-1 - + . - . + 16 - N - 16 -N + 1.

Up to N = 11, all the values computed in scalar mode are equal to 1. For N = 12, the
result is only equal to 1 from Ss2 on, for N = 13 from $58, for N = 14 from S~ , and for
N = 15 from $70. These results can be explained by the mantissa size o f the Cray, because
when values of such differeut magnitudes are added, the smaller term is lost. The results start
to be equal to 1 starting from some Sk (where in the example of the above table k is 154),
because in this case, the value 1 is added to reasonably small values and is, therefore, not lost.

To demonstrate how the order iu which the values are added influences the result, we
have developed a test where positive and negative values are grouped in blocks in each of the
Si sums; for example, So was re-grouped into the following sum:

So = 1 + 16 N + 16 u-1 + . . . + 16 -N

_ 1 6 N _ t6N-1 16 -iv

+ 16 N + 16 N-I + . . . + 16-N

_ 1 6 N _ 1 6 N - 1 16 -N.

For N = 29, if we apply the scalar mode to thus regrouped sum, we get So =
-0 .314824E + 21, whereas in the previous tests (without re-grouping), we get So = 0 in
the scalar mode and So = 0.2951E + 21 in the vector mode (see Table 1).

Sum Scalar mode Vector mode
SO 0.000000E+00 0.295t479E+21

523 0.000000E+00 0.1152922E+19
$1t9 0.000000E+00 0.0000000E+00
$122 0.000000E+00 -0 .2951479E+21
$153 0.000000E+00 0,1000000E+01
$154 0.100000E+01 0.I000000E+01
$236 0.100000E+01 0.2951479E+21

Table 1. Results for N = 29

106 T. A. DIVERIO t O. A. FERNANDESt D. M. CLAUDIO

4~ Library of interval routines-libavi.a
The library of interval routines called l i b a v i , a was developed in Fortran 90. The name of
this library means: 15.b~library and, a v i ~ i n t e r v a l vector arithmetic; the ending .a is the
library standard. It made interval mathematics accessible to the Cray Y-MP2E supercomputer
users. It works with real and complex intervals and with interval matrices and vectors. It
was designed to make possible the application of interval mathematics in supercomputers..2989
routines were developed in Fortran 90 (approximately 4900 lines of code).

The library allows the overloading of operators and functions. Functions such as sum,
subtraction, multiplication, division and the relational symbols are overloaded, thus making
programming easier.

The library libavi.a consists of four modules: BASIC module~real intervals; MVI

module--interval vectors and matrices; CI module--complex intervals; APLIC module--linear
algebra applications. The modules are described below.

BASIC module---real intervals (52 routines). Transformation functions (functions that
transform two reals into an interval, and that make it possible to access the bounds of
intervals), relational operations, operauons with sets (namely, the union and intersection of
intervals), arithmetic operations, basic functions, and input/output routines.

CI modu le~complex intervals (58 routines). Transformation functions, relational oper-
ations, operations with sets, arithmetic operations, elementary functions for complex intervals,
and input/output routines.

lnterval vectors

routines with real
interval vectors

CI mtMute

ai

, Complex Interval

Real btterval
inter.inc

routines with real interval

BASIC module

Routines of
different kinds of
data with interval

matrices/vect.r.~
MV.I module

Interval ratttrices
routines with real interval
matrices

APLIC module Basic interval linear algebraic subroutine

i i
libavLa

htten~al method.~

f .r
Linear Systents

Figure 1. Hierarchy

libselint.a

ERRORS IN VECTOR PROCESSING AND THE LIBRARY LIBAVt.A 107

MVI module---interval vectors and matrices (150 routines). Operations with real interval
matrices, real interval vectors, and real interval matrices/vectors. Transformation functions,
relational operations, operations with sets, elementary basic functions, predefined functions, and
input/output routines. Operations with different types of data. Operations in which one
of the operands is a real number, and the second operand is an interval; operations with
real and interval vectors, operations with real and interval matrices, operations with intervals
and interval vectors, and operations with intervals and interval matrices• For data of varying
type, the scalar product is implemented using controlled rounding in the addition and in the
subtraction (these controlled roundings are implemented in the basic module).

APLIC module--Basic interval linear algebraic applications (29 routines). The routines
of the APLIC module are interval versions of standard linear algebra operations with vectors
and matrices.

Some of these routines are:
Svsaxpy--Sum of a scalar multiple of an interval vector and of another interval vector.

Sgemv and sdgemv--These routines implement the interval residual calculus in single and
double precision, using the BLAS routines with the values rounded up and down to generate
the lower and the upper bound of the resulting interval.

Sgemm and sdgemm--These routines compute the restflt of the interval matrix operation
D = s C + t A B in single and double precision, using the BLAS routines.

Svdol: and svddolz~These routines are the interval versions of the scalar product available
in the].£bav£. a• They use the BLAS routines for both bounds of the interval. They were
compared to the routines of the mv/ module to the interval scalar product.

Svmul t~This routine has the best accuracy, because it has a built-in way to control the
rounding error•

Other routines available in the APLIC module include routines for computing vector and
matrix norms and condition numbers, interval Hitbert matrices, and inverse matrices.

The APLIC module was developed to show how interval computations can be used for
linear algebra. The routines comprising this module help the users in solving their application
problems. At present, further interval applications routines are being developed, including the
routines for solving systems of linear equations and for numerical integration.

5@ Condusions and future work
Computation inaccuracy results from: the order in which the values are processed; the way
operations with floating-point real numbers are implemented on the Cray; and on the represen-
tation of the data. To make Cray's numerical results more accurate (and thus, more reliable),
we designed and implemented an interval library.

The first phase of this project consisted of the implementation of the basic interval
arithmetic, which was composed of the four modules described in this paper.

The planned project has three further phases for the implementation of high accuracy and
high performance arithmetic on the Cray Y-MP2E supercomputer; these phases are currently
under development at the Computational Mathematics Group of UFRGS. They are:

Incorporation of high-precision arithmetic into the library l i b a v i . a , On the Cray,
the floating-point numbers are not represented according to the IEEE Standard for Binary
Floating-Point Arithmetic (IEEE 754); therefore, we had to simulate directed rounding by

108 T.A. DIVERIO, 0. A. FERNANDES, D. M. CLAUDIO

using special Fortran 90 functions which compute the downward and upward n e a r e s t nun'tbers.
This implementation does not exactly follow the definition of directed rounding (because it
sometimes introduces an additional error), but it guarantees that the result is in the resulting
interval.

The second part of this phase is computing the scalar product with high precision. We
implemented and compared five routines that produce an interval containing the desired scalar
product. The first two routines, svdol: and sddot; are implemented using the BLAS routines
to compute the scalar product in single and double precision, respectively; direct roundings are
then used to convert the results of these routines into intervals that contain the exact value.
Routines svmul~c and svdmult compute an interval that contains the scalar product of two real
vectors bv multiplying their components, which are then accumulated; after these computations,
the downward and upward directed roundings are applied. The fifth routine computes the
scalar product of two interval vectors,

The two routines that used the BIAS library produced the worst resuhs; this was expected,
because in the multiplication and addition operations, the rounding errors were not controlled.

To incorporate these high precision routines into the library libavi.a, wemust incor-
porate the following operations in software: downward and upward directed rounding, the
basic four arithmetic operations with maximum accuracy, mad the dot product with only one
rounding.

Optimization, veetorization and performance analysis. The available Fortran compiler
had its limitations of optimization and vectorization. Only now the l i b a v i . a routines are
being optimized and the vectorizable characteristics of the operations with vectors and matrices
of intervals have been explored. We are currently trying to find the adequate performance
measures and benchmark problems, so that we will be able to make meaningful comparisons
of different algorithms and implementations. This activity constitutes the third phase of our
project.

Development of applied interval libraries. One of the objectives of the design of the
APLtC module was to enable the users to get guaranteed (interval) estimates for computations
from linear algebra. To enable the users to solve more complicated applied problems, we
are currently working on interval routines for solving algebraic equations, systems of linear
equations, for numerical integration, and for several other numerical problems. (The resulting
routines will automatically verify the results.) This activity corresponds to the fourth phase of
our project.

All these three activities are being developed now. Several characteristics of the library
l i b a v i , a make our work easier:

Accuracy. In l ' i bav i , a, many routines are implemented using double precision; several
BIAS routines (known to be of good accuracy) are also used.

Efficiency. The results of l i b a v i , a are not only computed with guaranteed accuracy,
but they are also computed with a reasonable speed.

Easy to use. Function identifiers and operator overloading enable the programmers to
use standard mathematical notation (e.g., + to describe the sum of matrices, vectors, intervals,
etc.). The description of interval matrices and interval vectors is based on dynamical arrays, so,
a programmer can easily change the size of the matrix (vector) in the course of computations,
without defining a new matrix. This feature is useful for linear algebra and thus, simplifies
the use of the library l i b a v i , a .

Optimized and veetorized routines. The routines from the library are written in such a

ERRORS IN VECTOR PROCESSING AND THE LIBRARY LIBAVI,A 109

way that the compiler is able to automatically optimize and vectorize not only these routines,
but also the programs that use these routines.

Modularity. The library consists of several reasonably independent modules. Each module
contains operations with data of a certain interval data type.

Our ultimate goal is to combine Interval Arithmetic (as implemented in l i bav i . a) with
High Performance Computing (i.e., methods that use parallelism to speed up computations); we
call the desired combination High Performance Arithmetic. In particular, to achieve this goal,
we are currently working on the best way to implement the optimal scalar product [1].

The l±bav±, a library was designed to produce resuTts comparable in quality with Pascal-
XSC [5, 6]; with this objective in mind, we compared the results of our library with the results
obtained by using Pascal-XSC.

Additional information about the l ibav£, a library can be found in the library manuals,
in T. A. Diverio's PKD. Thesis [2], and in the references therein.

References
[1] Bohlender, G., Cordes, D., Knrfel, A., Kulisch, U., Lohner, R., and Walter, W. V. Proposal

for accurate floating-point vector arithmetic. In: Adams, E. and Kulisch, U. (eds) "Scientific
Computing with Automatic Result Verification", Academic Press, Orlando, 1992, pp. 87-
102.

[2] Diverio, T. A. Uso efetivo da matemdtica intervalar em supercomputadores vetoriais. Ph.D. thesis,
Porto Alegre: CPGCC-UFRGS, 1995.

[3] Fernandes, U. A. L. and Diverio, T. A. FaUas en los calculos utilizando procesamiento vetorial. In:
"CITA 95, Assuncion, 7- t l , August I995".

[4] Hammer, R. How reliable is the arithmetic of vector computers? In: Ullrich, Ch. (ed.) ~Contribu-
tions to Computei" Arithmetic and Self-Validating Numerical Methods", IMACS Annals on
Computing and Applied Mathematics 7, J.C. Baltzer, 1990, pp. 467-482.

[5] Hammer, R., Hocks, M., Kulisch, U., and Ratz, D. Numerical toolbox for verified computing h
basic numerical problems. Springer-Verlag, Berlin, 1992.

[6] Klatte, R., Kulisch, U., Neaga, M., Ratz, D., and Ullrich, Ch. Pascal-XSC. language reference
~dth examples. Berlin, Springer-Verlag, 1992.

Received: October 26, 1995 Universidade Federal do Rio Grande do Sut
Revised version: January 10, 1996 Instituto de Inform~itica

P.O. BOX 15064, 91501-970, Porto Alegre-RS
Brasil

E-mail: {diverio, ursula, dalcidio}@inf.ufrgs.br

