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In this paper, we describe the r~ults of several tests that check the accuracy of numerical computation 
on the Cray sttpercomputer in vector and scalar mod~s. The known tests were mtwlified to identify 
the critical ~}int where rtmndings start causing problems. After describing the tests, we present ;in 
interval library called libavi.a. It was developed in Fortran 90 on the Cray Y-MP2E supercomputer of 
UFRGS-Brazil. This library makes interval mathematics accessible to the Cray supercomputers usens. It 
works with real and complex intervals and intervals matrice¢ and vectors. The library allows overloading 
of operators and fimctions. It is organized in timr modules: real intervals, interval vectors and matrices, 
complex intervals, and linear algebra applic, atitms. 
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1. Introduction 
In this paper,  we describe the results of  the tests that check the accuracy of  numerical  

computations on a Cray supercomputer  in vector and scalar modes. Some of  these tests were 
originally proposed for other  computers  in Hammer ' s  paper  [4]. We made changes in the tests 

to identify the critical points where roundings  start  causing problems. 

After  describing the results of  the test, we present  ;in interval l ibrary called l i b a v i ,  a. It 

was developed in For t ran  90 on the Cray Y - M P 2 E  supercomputer  of  the Universidade Federal 
do Rio Grande do Sul (UFRGS-Brazi l ) .  

To  analyze the numerical  accuracy of  the Cray supercomputer  in evaluating expressions, 
numerical  computat ions in scalar and  vector mode were made. We used several expressions 

(found in papers of  colleagues from Karlsruhe), for which some computations fail when they 

are  processed in vector mode. T h e  expressions were (sometimes modified and) processed on 
the Cray Y-MP2E.  We then compare  the results. 
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Situations were identified where the results of scalar mode and vector mode evaluations 
were different. For these expressions, we have tried to quantify the threshold values where 
the rounding errors start to interfere with the results. This study was done to promote the 
development of high accuracy high performance arithmetic on the Cray. A prototype of 
high performance arithmetic (l±bav±. a) was developed on a Cray Y-MP2E. It makes interval 
mathematics accessible to the users of the Cray supercomputer. 

2. Motivation 
This work was motivated by the problems that are encountered when numerical problems are 
solved on computers. The two major problems are: guaranteeing the quality of the result, and 
dealing with the size of the problem (often, an increase in problem size drastically increases the 
memory, and time that are necessary to solve this problem): 

Result quality--i t  refers to the result accuracy: how accurate and how reliable is the 
solution? It depends on how the machine stores and manipulates numerical data (internal 
implementation); on the stability of the numerical problem that we are solving; on error 
control techniques, and on several other factors. 

Problem size--it  refers to the size of data (e.g., number of or parameters) which must be 
stored (space-memory), and to the number of operations that must be run to solve the problem 
(time complexity measure). 

30 Designed tests 
We have designed several tests, and compiled and executed each test on the Cray Y-MP2E 
supercomputer in two modes: in scalar mode and in vector mode. The results obtained in 
scalar processing mode are, in general, different from the results of the vector processing mode. 
These differences do not result from data dependence, but from the floating-point arithmetic 
available on this machine. New test problems were developed [3] and non-stable problems were 
identified, such as long sums, cancelation of elemet2ts with opposite sign, sums of large and 
small values, and the computation of the real scalar product and of the interval scalar product. 

All these situations were studied and the tests applied to determine the errors in the 
result. Several methods of minimizing the errors were tested, including the sorting of elements 
in long sums. (This idea is' not applicable to vector computers: their main idea is to save time 
on computing, e.g., a scalar product albl + . . .  + anb,~ by computing all products aibi in parallel; 
additional sorting would require additional computation time that would eliminate the time 
speed-up gained by using vector computations.) In general, different modes of computation are 
very machine dependent, so the user who wants to improve the accuracy of the results must 
know how exactly elementary operations are implemented in each mode. 

If the Proposal for Accurate Floating-Point Vector Arithmetic [1] was correctly implemented 
on the computer, we would not have these problems. 

3.1. Long sums with cancelation-Si 
-N -N 

As a first example, consider the sums of the type ~ ( 1 6  i - 1 6  i ) +  ~ ( 1 6  i - 1 6  i ) + 1 .  This 
i = N  i=N 

sum is equal to 1. In the formula, the term 1 is added at the end, but in general, it can be 
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added to an arbitrary place in the sum; the index i indicates the term after which the value 
I is added. For example, So means that the term "I" is added as a 0-th term (before all other 
terms in the sum); in the sum $1, we add 1 after the first term (i.e., after 16N), etc. Without 
1, this sum has 4 .  (2N + 1) = 8 N  + 4 terms, so, i can take 8 N  + 5 different values from 0 to 
8 N  + 4: 

So = 1 + 16 N - 16 '~ + 16 N-1 - + . . .  + 16 -N - t6  -N 

+ t 6  N -  16 ,~ + 16 N-~ _ + , . .  + 16 - N -  16 -N,  

5'1 = +16  N + 1 - 1 6  N + 1 6  N - ~ - + . . . + 1 6  - N - 1 6  -N 

+16  N -  16 N + 16 N-~ _ + . . . +  16 - N -  16 -Iv, 

$8N+4 = + 1 6  N - 1 6  N + 16 N-1 _ . + . . .  + 16 -N _ 16 -N 

+16  N - 16 N + 16 N-1 - + . - .  + 16 - N -  16 -N + 1. 

Up to N = 11, all the values computed in scalar mode are equal to 1. For N = 12, the 
result is only equal to 1 from Ss2 on, for N = 13 from $58, for N = 14 from S~ ,  and for 
N = 15 from $70. These results can be explained by the mantissa size o f  the Cray, because 
when values of  such differeut magnitudes are added, the smaller term is lost. The  results start 
to be equal to 1 starting from some Sk (where in the example of the above table k is 154), 
because in this case, the value 1 is added to reasonably small values and is, therefore, not lost. 

To  demonstrate how the order  iu which the values are added influences the result, we 
have developed a test where positive and negative values are grouped in blocks in each of  the 
Si sums; for example, So was re-grouped into the following sum: 

So = 1 +  16 N + 16 u-1  + . . . +  16 -N 

_ 1 6  N _ t6N-1 . . . . .  16 -iv 

+ 16 N + 16 N-I  + . . .  + 16-N 

_ 1 6  N _ 1 6 N - 1  . . . . .  16 -N. 

For N = 29, if we apply the scalar mode to thus regrouped sum, we get So = 
-0 .314824E + 21, whereas in the previous tests (without re-grouping), we get So = 0 in 
the scalar mode and So = 0.2951E + 21 in the vector mode (see Table 1). 

Sum Scalar mode Vector mode 
SO 0.000000E+00 0.295t479E+21 

523 0.000000E+00 0.1152922E+19 
$1t9 0.000000E+00 0.0000000E+00 
$122 0.000000E+00 -0 .2951479E+21 
$153 0.000000E+00 0,1000000E+01 
$154 0.100000E+01 0.I000000E+01 
$236 0.100000E+01 0.2951479E+21 

Table 1. Results for N = 29 
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4~ Library of interval routines-libavi.a 
The library of interval routines called l i b a v i ,  a was developed in Fortran 90. The name of 
this library means: 15.b~library and, a v i ~ i n t e r v a l  vector arithmetic; the ending .a  is the 
library standard. It made interval mathematics accessible to the Cray Y-MP2E supercomputer 
users. It works with real and complex intervals and with interval matrices and vectors. It 
was designed to make possible the application of interval mathematics in supercomputers..2989 
routines were developed in Fortran 90 (approximately 4900 lines of code). 

The library allows the overloading of operators and functions. Functions such as sum, 
subtraction, multiplication, division and the relational symbols are overloaded, thus making 
programming easier. 

The library libavi.a consists of four modules: BASIC module~real  intervals; MVI 

module--interval vectors and matrices; CI module--complex intervals; APLIC module--linear 
algebra applications. The modules are described below. 

BASIC module---real intervals (52 routines). Transformation functions (functions that 
transform two reals into an interval, and that make it possible to access the bounds of 
intervals), relational operations, operauons with sets (namely, the union and intersection of 
intervals), arithmetic operations, basic functions, and input/output routines. 

CI modu le~complex  intervals (58 routines). Transformation functions, relational oper- 
ations, operations with sets, arithmetic operations, elementary functions for complex intervals, 
and input/output routines. 

lnterval vectors 

routines with real 
interval vectors 

CI mtMute 

ai 

, Complex Interval 

Real btterval 
inter.inc 

routines with real interval 

BASIC module 

Routines of 
different kinds of 
data with interval 

matrices/vect.r.~ 
MV.I module 

Interval ratttrices 
routines with real interval 
matrices 

APLIC module Basic interval linear algebraic subroutine 

i i 
libavLa 

htten~al method.~ 

f .r  
Linear Systents 

Figure 1. Hierarchy 

libselint.a 
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MVI module---interval vectors and matrices (150 routines). Operations with real interval 
matrices, real interval vectors, and real interval matrices/vectors. Transformation functions, 
relational operations, operations with sets, elementary basic functions, predefined functions, and 
input/output routines. Operations with different types of data. Operations in which one 
of the operands is a real number, and the second operand is an interval; operations with 
real and interval vectors, operations with real and interval matrices, operations with intervals 
and interval vectors, and operations with intervals and interval matrices• For data of varying 
type, the scalar product is implemented using controlled rounding in the addition and in the 
subtraction (these controlled roundings are implemented in the basic module). 

APLIC module--Basic interval linear algebraic applications (29 routines). The routines 
of the APLIC module are interval versions of standard linear algebra operations with vectors 
and matrices. 

Some of these routines are: 
Svsaxpy--Sum of a scalar multiple of an interval vector and of another interval vector. 

Sgemv and sdgemv--These routines implement the interval residual calculus in single and 
double precision, using the BLAS routines with the values rounded up and down to generate 
the lower and the upper bound of the resulting interval. 

Sgemm and sdgemm--These routines compute the restflt of the interval matrix operation 
D = s C  + t A B  in single and double precision, using the BLAS routines. 

Svdol: and svddolz~These routines are the interval versions of the scalar product available 
in the ].£bav£. a• They use the BLAS routines for both bounds of the interval. They were 
compared to the routines of the mv/ module to the interval scalar product. 

Svmul t~This  routine has the best accuracy, because it has a built-in way to control the 
rounding error• 

Other routines available in the APLIC module include routines for computing vector and 
matrix norms and condition numbers, interval Hitbert matrices, and inverse matrices. 

The APLIC module was developed to show how interval computations can be used for 
linear algebra. The routines comprising this module help the users in solving their application 
problems. At present, further interval applications routines are being developed, including the 
routines for solving systems of linear equations and for numerical integration. 

5@ Condusions and future work 
Computation inaccuracy results from: the order in which the values are processed; the way 
operations with floating-point real numbers are implemented on the Cray; and on the represen- 
tation of the data. To make Cray's numerical results more accurate (and thus, more reliable), 
we designed and implemented an interval library. 

The first phase of this project consisted of the implementation of the basic interval 
arithmetic, which was composed of the four modules described in this paper. 

The planned project has three further phases for the implementation of high accuracy and 
high performance arithmetic on the Cray Y-MP2E supercomputer; these phases are currently 
under development at the Computational Mathematics Group of UFRGS. They are: 

Incorporation of high-precision arithmetic into the library l i b a v i . a ,  On the Cray, 
the floating-point numbers are not represented according to the IEEE Standard for Binary 
Floating-Point Arithmetic (IEEE 754); therefore, we had to simulate directed rounding by 
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using special Fortran 90 functions which compute the downward and upward n e a r e s t  nun'tbers. 
This implementation does not exactly follow the definition of directed rounding (because it 
sometimes introduces an additional error), but it guarantees that the result is in the resulting 
interval. 

The second part of this phase is computing the scalar product with high precision. We 
implemented and compared five routines that produce an interval containing the desired scalar 
product. The first two routines, svdol: and sddot; are implemented using the BLAS routines 
to compute the scalar product in single and double precision, respectively; direct roundings are 
then used to convert the results of these routines into intervals that contain the exact value. 
Routines svmul~c and svdmult compute an interval that contains the scalar product of two real 
vectors bv multiplying their components, which are then accumulated; after these computations, 
the downward and upward directed roundings are applied. The fifth routine computes the 
scalar product of two interval vectors, 

The two routines that used the BIAS library produced the worst resuhs; this was expected, 
because in the multiplication and addition operations, the rounding errors were not controlled. 

To incorporate these high precision routines into the library libavi.a, wemust  incor- 
porate the following operations in software: downward and upward directed rounding, the 
basic four arithmetic operations with maximum accuracy, mad the dot product with only one 
rounding. 

Optimization, veetorization and performance analysis. The available Fortran compiler 
had its limitations of optimization and vectorization. Only now the l i b a v i . a  routines are 
being optimized and the vectorizable characteristics of the operations with vectors and matrices 
of intervals have been explored. We are currently trying to find the adequate performance 
measures and benchmark problems, so that we will be able to make meaningful comparisons 
of different algorithms and implementations. This activity constitutes the third phase of our 
project. 

Development of applied interval libraries. One of the objectives of the design of the 
APLtC module was to enable the users to get guaranteed (interval) estimates for computations 
from linear algebra. To enable the users to solve more complicated applied problems, we 
are currently working on interval routines for solving algebraic equations, systems of linear 
equations, for numerical integration, and for several other numerical problems. (The resulting 
routines will automatically verify the results.) This activity corresponds to the fourth phase of 
our project. 

All these three activities are being developed now. Several characteristics of the library 
l i b a v i ,  a make our work easier: 

Accuracy. In l ' i bav i ,  a, many routines are implemented using double precision; several 
BIAS routines (known to be of good accuracy) are also used. 

Efficiency. The results of l i b a v i ,  a are not only computed with guaranteed accuracy, 
but they are also computed with a reasonable speed. 

Easy to use. Function identifiers and operator overloading enable the programmers to 
use standard mathematical notation (e.g., + to describe the sum of matrices, vectors, intervals, 
etc.). The description of interval matrices and interval vectors is based on dynamical arrays, so, 
a programmer can easily change the size of the matrix (vector) in the course of computations, 
without defining a new matrix. This feature is useful for linear algebra and thus, simplifies 
the use of the library l i b a v i , a .  

Optimized and veetorized routines. The routines from the library are written in such a 
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way that the compiler is able to automatically optimize and vectorize not only these routines, 
but also the programs that use these routines. 

Modularity. The library consists of several reasonably independent modules. Each module 
contains operations with data of a certain interval data type. 

Our ultimate goal is to combine Interval Arithmetic (as implemented in l i bav i . a )  with 
High Performance Computing (i.e., methods that use parallelism to speed up computations); we 
call the desired combination High Performance Arithmetic. In particular, to achieve this goal, 
we are currently working on the best way to implement the optimal scalar product [1]. 

The l±bav±, a library was designed to produce resuTts comparable in quality with Pascal- 
XSC [5, 6]; with this objective in mind, we compared the results of our library with the results 
obtained by using Pascal-XSC. 

Additional information about the l ibav£,  a library can be found in the library manuals, 
in T. A. Diverio's PKD. Thesis [2], and in the references therein. 
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