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Maximum entropy and interval computations 
(September notes on  summer  impressions) 
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BBIHHCAeHI4~ 
(CeHTn6pbcKHe 3aMeTKI ,  I O a 'IeTHHX BueqawneHHnX) 
B. K r ~ o B ~ n  

Conference. From July 30 to August 4, 1995, I attended the Fifteenth International Workshop 
on Maximum Entropy Methods in Santa Fe, New Mexico, USA. This is a major international 
annual meeting on maximum entropy methods; the 1995 workshop attracted about 150 people 
from all over the world; the next one will be in South Africa. 

At first glance, maximum entropy and intervals are not related. The most widely used word 
at this workshop was "probability", and very few speakers talked about intervals. At first glance, 
it seems that we and they are miles apart. So why write about them in this journal? 

Because these fidds are dosely related, and since this relation is not yet a common 
knowledge, I would like it to be known to the interval community. Yes, terms that we use are 
different, and mathematical methods are different, but these different methods are used to 
solve the same application problems. In solving these problems, interval and maximum entropy 
methods not only do not compete, they complement each other. In this report, I will try to 
explain how. 

ll The origin of maximum entropy methods: in some 
cases, interval computations are not sufficient 

Case study: indirect measurements.  To explain where maximum entropy methods come from, 
let us consider a typical problem for which interval computations are useful: estimating errors 
of indirect measurements. Suppose that we are interested in the value of a physical quantity 
y, and it is either difficult, or even impossible, to measure y direcdy. For example, in medical 
tomography, we may be interested in the tissue density y at a certain point inside the brain. 
To determine the values of the quantities that we cannot measure directly, wemeasu re  them 
indirectly, i.e.: 

* we measure other, easier-to-measure quantities x : , . . . ,  Xn that are related with y ,  and from 
which y can be reconstruct by means of some known algorithm f ,  as y = f ( x a , . . . , x , , ) ;  
and then, 

(~) V. Kreinovich. 1996 
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• we compute  an estimate ~j for y from the results aS1,...,:L~ of measuring xi, as 9 = 

In the above medical example, we scan the brain in different directions with, say, ultrasound, 
measure the signals xi that have passed through the brain, and find y by solving the cor- 
responding integral equation (in this example,  f is a numerical algorithm for solving this 
equation). 

Since measurements  are never absolutely accurate, the measured values Y;i, generally 
speaking, differ from the actual values xi. Additional uncertainty is caused by the fact that the 
algori thm f often gives only anapproximate solution to the desired equation. However, even if 
f is exact (i.e., if the actual values x l , . . . , x n ,  y satisfy the exact equality y = f ( X l , . . . ,  xn)), 
the errors Axi = a?i - x~ lead to the error  A y  = fl - Y = f (Yq , . . . , x .n )  - f ( x l , . . . , x n )  in 
the result of  data processing. So, the actual value y may differ from the result *) of  indirect 
measurement .  We want to know the possible values of  y. 

In terva l  computations lead to a guaranteed estimate for the problem. Usually, we know the 
bounds Ai that bound measurement  errors Axe; as a result, we know that xi E [x'~,x +] = 
[5 : / -  Ai, Yzi + A i ] .  From these intervals, we must compute the interval of  possible values of  
y = f ( X l , . . . , X n ) .  This is a typical problem in which interval computations are useful: these 
computations lead to a interval [y- ,  y+] that is guaranteed to contain all possible values of  y. 

In  some (ill-posed) problems the guaranteed interval bound is so wide that the results of  
the measurement become meaningless. I f  the guaranteed interval [9-, 9 +] is narrow enough, 
the problem is solved. But what if it is so wide as to be of  no use? For example, what if in 
the above medical situation, when we wanted to find out whether a patient has a b r a i n  tumor,  
we get an interval that  contains both the density values corresponding to the tumor  and the 
density values corresponding to the healthy brain? In this case, we are as unclear about the 
brain as before the measurement,  and therefore, the entire procedure was a waste of  t ime and 

motley. 
I f  the guaranteed  er ror  bound (that always contains the error) is too wide, it is desirable 
(if possible) to produce  a smaller  bound that  almost always contains the error. When the 
guaranteed error  bound leads to too wide intervals, it is desirable to narrow down this interval .  
In some cases, when the interval is wide because of an overestimation (a phenomenon well 
known in interval computations), we can simply select a better method (e.g., use a centered 
form), and get a narrower estimate as a result. In some other cases, however, the exact 
guaranteed interval is still way too wide. These are typical situations in so-called ill-posed 
problems (of which medical tomography is an example), where a small deviation in xi can lead 
to a huge  change in y = f ( x l , . . . , x n ) .  What can we do then? 

The  situation is not so hopeless as it may seem. In real engineering problems, we never 
have a 100% guarantee  of success: an unexpectedly powerful earthquake can destroy even a 
very strong construction; a volcano that has been dorman t  for thousand years can start erupt ing 
and thus vibrating the neighborhood, etc. In mathematical  terms, it means that our  intervals 
for xi may turn out to be incorrect. Since there is always a possibility that our models are 
not precise (i.e., that with some small probability, the actual values xi lie outside the intervals 
[Y:i - Ai, Yzi + AiD, it makes sense not to require that the computations with these models always 
lead to guaranteed results, but to require instead that these computations lead to an interval 
that contains V almost always (i.e., with a tn'obability close to I). 
"Almost always" is easy to interpret if  we know probabil i t ies of  different errors. We 
formulated this idea informally (we used such informal terms as "almost' ,  "close to", etc). This 
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idea can be easily formulated if we know the probabilities of  different values of  x~. In this 
case, we can calculate the probability of  different values of  y = f ( x l , . . . ,  xn), and select the 
narrowest interval that contains y with a probability ~ 1 - P 0  for some a prior~ chosen value 

p o < < l .  

In  many real-life situations, we do not know probabilities. How do we then interpret 
"almost  always"? Simplest case: f inite number  of alternatives. In many real-life situations, 
however, we do not know these probabilities: we either only know the intervals for x~, or we 
may have some partial information about the probabilities. Can we interpret "almost always" in 
this case? 

Such an interpretation is given by maximum entropy (Maxent) methods. During the workshop, 
the foundations of Maxent were presented in a tutorial by Imre  Csisz,4r (Hungary). I will try to 
reformulate the main ideas of  his description for the  interval community (for technical details, 
see, e.g., [3]). 

20 The idea of Maxent 
Let us first consider the simplest case when: 

• we have no information about the probabilities, and we only know the set A of possible 
states of an object; and 

• this set A is finite. 

Let us denote the number  of  elements in a set A by n, and i-th element by ai; in these 
denotations, we wilt have A = { a l , . . . ,  a~}. 

We want to formalize the notion of "almost all" cases. If  there is only one object with 
this uncertainty, the notion of  "almost all" cases makes no sense. Therefore,  we must consider 
the situation in which there are several objects described by the  same set A. Let us denote the 
number  of  such objects by N.  Then,  each of  these N objects is in one of the states a C A. T o  
describe the set of all N objects, we thus need the N-dimensional vector (a (~) . . . . .  a (N)) with 
a (k) E A. We will call such a vector a world view. Since each object can be in one of  n states, 
there are N )~ possible world views; 

Now, a natural idea is to consider all world views equally probable, and thus consider a 
property to be true in "almost all" cases if this proper ty  is true for almost all world views. 

Let us describe this idea in mathematical  terms. Our  problem started with the fact that 
we do not know the probability p(a) for different values a E A. So, let us see what we can say 
about these probabilities now. Since we only have finitely many (N) objects, we cannot really 
talk about the probability, we can only talk about the frequencies f(a) of different values a E A; 
then, if there is a probability distribution, in the limit N ~ oo, these frequencies will turn into 
probabilities. 

Let us fix a set of.frequencies f -  ( f(a,) , . . . , f (a,~))  ( ~ f ( a i ) =  1), and count the 

number  N(f )  of world views with these very frequencies. Frequency f(al) means that a~ 
occurs N- f (a i )  times. Therefore ,  we have a well-known combinatorial problem: we have N 
objects and n boxes, and we are interested in knowing the number  of ways in which we can 
distribute these objects between these boxes so that i-th box gets Ni = N.  f(ai) objects. Let us 
recall the solution: 
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* Fi~t, we must select N1 objects out of N that go into the first box. The number of such 
assignments is known to be equal to 

N} 

N~!. (N - N~)!" 

* For each of these assignments, we must select N2 objects that go into the second box out 
of the remaining N - N1 objects. This number of such assignments is equal to 

(N - N1)! 

N 2 ! .  (N - N ~  - Nu)!" 

The total number of assignments to the two boxes can be computed as a product of the 
two numbers: 

N~ ( N  - Nd!  N~ 

N ~ .  ( N  - N~)! N2!.  ( N  - N~ - N:)~ N , ! .  N ~ .  (N  - Nx - N ~ ) !  

* Similarly, if we have assigned elements to boxes 1 and 2, we must assign _~ of the 
remaining N - N1 - N2 elements to the third box, which leads to 

N~ (N - N,  - N~)~ 

N~!. g~.!, (N - g~! - N2)! " N3!. (N - g~ - N2 - g3)! 

N! 

= N~! .  N2!-  N3!-  ( N  - N~ - N2 - N.~)! 

assignments, etc. 

Finally, for att boxes, this number is equal to 

N! N! 
= × . . .  × = × . . .  × ( N .  

For large N, we can apply Sfirling's formula NI "~ (N/e) N, The product is easier to handle 
after we go to logarithms; as a result, we get In(N!) ,-~ N ( l n N  - 1), and 

i = 1  

S}nce in (Nf(ai)) = l n N  4-In (f(ai)), and ~ f(ai) = t, we get In (N(f ) )  ~ N - S ( f ) ,  where 

we denoted n 

S(f)  = - ~-~f(ai) ln (f(a,)) 
i = I  

this expression S(f)  is called an entropy of the frequency distribution f .  Therefore, N ( f ) / N  = 
exp (NS( f ) ) .  Hence, if we have two distributions f and ff  for which S(f)  > S(ff) ,  then for 

large N, we get N(f ) /N( f f )  ~ co. So, for large N, almost all world views correspond to the 
frequencies for which S(f)  is either equal to the maximum possible value S ( f ) ,  or close to 
S(f).  Our arguments are not exacdy proving it, because we are using approximate formulas 
that are only asymptotically correct, but one can show (see, e.g., [3]) that indeed, for every, 
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(5 > 0 and e > 0, there exists an No such that for  all N _> No, the fraction of world views for 
which the frequencies are not 6-c lose  to the frequencies with S ( f )  ---* max, is < ¢. 

tn other words, "almost all" world views correspond to the frequency distribution f(a~) that 
has the largest possible entropy S ( f ) .  In the limit N ---) o0, frequencies tend to probabilities, 
so, we can conclude that for almost all world views, the probabilities correspond to the maximum possible 
entropy.,. 

We justified this conclusion in the case when we have no information about the proba- 
bilities. It turns out that the same conclusion can be made if we have srnne information about 
probabilities: namely ,  if this information restricts us to a certain set 7:' of possible probability 
distributions on the set A, we can conclude that for almost all world views (i.e., less formally, in 
almost all cases) the actual probability distribution p is the one for which S'(p) ~ max  under  
the condition that p E P .  

General  case: possibly infinite number  of  alternatives.  In real-life situations, the set of  
possible states is infinite: e.g., usually, we know that the value of  a certain parameter  z belongs 
to an interval [z - ,  z+]; in this case, every real number  f rom this interval describes a possible 
state; hence, there are infinitely many  states. 

To  handle this situation, we can take into consideration that in reality, we cannot know 
z precisely. In the most distant and technologically advanced future, we will still be able 
to measure x only with some accuracy 6 > 0. If  in two measurements with this accuracy, 
we get two different values Yza and Y:2 for which I~1 .-  x21 < 26, then, it could be that the 
corresponding actual values z l  and z2 coincide (and are equal to (1/2)-(ff : l  + if:2)), and the 
difference between xi and Y:i is caused by the measurement  inaccuracy. Therefbre,  we will have 
finite(x" many distinguishable outcomes, that correspond to the values z , x + 26, a:- + 4¢~;..., a; +. 

I f  we apply the above-justified max imum interval idea to these outputs, we can conclude 

that the probabilities p([x-  + 2kb, x -  + 2(k + 1)6]) of  z being in each of these interval satisfy 

the condition S(p) ---* max. In the limit 3 ~ 0, the sum in S(p) tends to an integral 

S(p) = - f p ( z ) I n  (p(x)) dx, where by p, we denoted the probability density. Therefore,  we can 
also conclude that in almost all cases, the actual probability density is the one far which the entropy. 
S(p) is the largest possible. (As in the finite case, we only gave a heuristic justification, but this 
justification can be made  rigorous.) 

The  use of this nmximum entropy (Maxent) distribution is called Maximum entropy method, or 
Maxent, for short. 

A brief  history of max imum entropy methods.  The  methodology of max imum entropy 
originated from statistical physics (this is where the notion of an entropy came from). The  first 
person to notice that these methods can be used in general data processing was E. T. Jaynes [8]. 
Different areas of physics still form the main area of Maxent applications. Suffice it to say 
that proceedings of  the annual Maxent workshops are published by Kluwer as a part  of  the 
~Fundamental Theories of  Physics" book series (for a reasonably current survey, see, e.g., [6]). 

31 Maxent really works 
For indirect measurements, Maxent really helps to make the resulting interval narrower.  
For a measuring instrument for which we only know the interval I - A ,  A] of  possible values 
of  error,  Maxent requires that we consider the probability density p : [ - A ,  A] --~ R + for which 

S(p) = - f  p(a:)ln (p ( z ) )dz  --~ m a x  under  the normalizing condition f p ( z )dz  = 1. This  
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problem is easily solvable: it leads to the uniform ddaribution with the density" p(a:) = 1/(2A). 
For several measurements  with interval uncertainty, similar formulation leads to the conclusion 
that each error  is uniformly distributed, and the corresponding distributions are statistically 
independent.  The  independent  uniform distributions are therefore recommended for usage (in 
the case described above) by the guidelines of  the Western European Calibration Cooperation 
(WECC) [24] and the Comit6 International des Poids et Mesures (CIPM) ([20, 21]; see also [1]). 

Let us show that the use of  this distribution really decreases the interval, on the example  
of  a simple function y = xl  + " .  + an. Let us assume that each value xi is measured with an 
accuracy A. If, as a result of  n measurements,  we get n values :~i, this means that the actual 
values of  each xi belong to the interval [Y:i - A,  xi + A]. Let us describe the results of  applying 
interval computations and Maxent to this problem. 

• Intev'val comtnaations. T h e  resulting interval of  possible values of Y is [ ~ -  nA,  :~ + n A ] ,  
where we denoted Y: = :~t + " '"  + 5:,,. T h e  width of this interval is 2nA.  

• Maxent. I f  we use-Maxent,  then the resulting error  A v = Y - V  is the sum of  n independent  
random variables Axi = 5:i - .zi with 0 average, each of which is uniformly distributed on 
the interval [ _A ,  A]. For large n. due to the central limit theorem (see, e.g., [24]), the 
resulting distribution of A v will be close to Gaussian, with the mathematical expectation 
equal to the sum of  averages of  component  distribution (i.e., to 0), and the second central 
moment  (square o .2 of  the staiadard deviation o.) equal to the sum of  the corresponding 
moments.  Hence, 0.:2 = C, n A  2 for some constant C,  and hence, o. = x / ~ v ~ A .  For a 
Gaussian distribution, almost all values are located within kcz from the average (for k = 2, 
we get ~ 90%; for k = 3, we get m 99.9%, etc). Substituting the above expressions for 
the average and for  ~r, we can conclude that almost all values of  Y belong to the inte~wal 

kv v a]. 
The  width of  this interval grows as v/n  as opposed to n for  interval arithmetic, so, for  large 
n, the resulting "Maxent" interval is indeed drastically smaller. 

Maxent  is not a magic  bullet. It is important  to emphasize that Maxent is not a magic bullet: all 
we can say about the resulting narrower interval is that in "almost all" cases (in some reasonable 
sense) y belongs to this interval. We cannot claim that V ahvays belongs to this interval, because 
we can have Axi = A for all i; then A y  ---- nA.  So, the guaranteed interval is still wide. 
However, for  practical applications, it is nice to know, in addition to the wider guaranteed 
interval, a narrower  interval that  contains y in almost all cases. This is what Maxent  does. 

4~ Applications of Maxent 
According to the above description, Maxent methods make sense if the guaranteed intervals are 
too wide to be meaningful,  and if it is very difficult or even impossible to get any additional 

information. If: 

• an object of  our  study is reasonably simple in the sense that it can be characterized by the 
values of  a few physical quandties, and if 

we can easily measure  these quantities, 

then it is reasonable to measure these quantities and thus get the desired information. 
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But this is often not possible, so, Maxent is needed. In this section, we will describe all 
such situations, and illustrate them by applications presented at the workshop. 

Many objects are complex; so many independent factors influence the behavior of an object 
that it is practically impossible to measure enough of them. Such complex objects include: 

• systems described by statistical physics; this is the area where Maxent originated, and from 
which it spread to other fields [8]; during the workshop: 

- an application to hydrodynamics was presented by D. Montgomery. (USA); 

- applications to the description of multi-electron atoms, magnetic substances, etc, were 
presented by H. Akhlaghpur, M. Jarrell, H. Panf, and R. N. Silver (USA); 

- a typical real-life example of a complex system is weather: even with the nowadays 
ability to measure millions of values per second, it is still practically impossible to get 
guaranteed weather predictions; applications of Maxent to weather prediction were 
presented by M. Berliner (USA); 

• biolo~cal systems, including living organisms and ecosystems; during the workshop: 

- g e n e r a l  applications to the analysis of biological data were presented by 
I. Tchoumatchenko and J. G. Ganascia (France); there were also two specific ap- 
plications: 

- to the analysis cY cell,dar structure, by N. Rivier, B. Dubertet (France) and G. Schliecker 
(Germany); and 

- to predicting fish density, by S. Lizamore, M. Vignaux, and G. A. Vignaux (New Zealand); 

• financial and economic systems (world markets, stock prices, etc, are influenced by too many 
factors to be easily predictable); during the workshop: 

- applications to tn'edicting prices on financial markets were presented by G. j.  Daniell (UK), 
and by R. J. Hawkins and M. Rubinstein (USA); 

• experts, when we try to make a computer simulate the way they make decisions (i.e., 
to design an expert system); expert's reasoning is definitely a very complicated object, 
difficult to describe; the idea of applying Maxent to expert systems was first proposed by 
Cheeseman [2]; see also [11, 16-19]; during the workshop: 

- applications to expert systems and intelligent control were presented by V. Kreinovich, 
H. T. Nguyen, and E. A. Walker (USA); 

- applications to speech recognition by R. Laboissiere (France); and 

- applications to natural langTzage processing by J. D. Lafferty and B. Suhm (USA). 

Another case when Maxent is useful is when the object is simple (in the sense that it can 
be described by a few parameters), but due to some fundamental reasons, there is no way that 
we can measure all of them. 

• One such case is quantum mechanics, where due to Heisenberg's inequality, measuring one 
of the characteristics (e.g., location) changes the systems so drastically that the information 
about the values of other characteristics is lost. During the workshop, the applications to 
quantum mechanics were described by S. Youssef (USA). 
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In some cases, the system is simple, and it is in principle possible to measure the values of 
its parameters, but at the current technological level, we do not know how to measure them: 
the signal is too small, and the noise is too high. Examples include: 

• astr0phys/cs, where signal are weak, either 

- in pass/re observation, because they come from very distant sources (see, e.g., [10]), or 

- in actiz~e, radar astronomy, because over interplanetary distances, the reflected radar 
signal becomes extremely weak (see, e.g., [5, 15]); 

during the workshop, applications to imaging in astrophysics were presented by 
D. D. Dixon, W. N. Johnson, J. D. Kurfess, R. C. Peutter, R. K. Pina, W. R. Purcell, 
O. T. Tumer, W. A. Wheaton, and A. D. Zych (USA); 

• lu'gh-energy physics, where experiments are extremely cosdy; 

- applications of Maxent to high-energy ph~cs were presented by G. S. Cunningham and 
K, M. Hanson (USA), and also 

- to nuclear fusion by V. Dose, A. Garrett, W. yon der Linden (Germany). 

Finally, for some simple systems it is possible to measure all their characteristics, but we 
do not want to do it, because these measurements may endanger or even ruin the system itself; 
such cases include: 

• medical applications, e.g., in tomography, where we want to learn about the state of the internal 
organs without performing a surgery; such applications were presented by M. P. Anderson, 
R. Bajcsy, D. G. Brown, J. C. Gee, G. Gindi, K. M. Hanson, D. R. Haynor, K. j.  Meyers, 
A. Rangarajan, and R. F. Wagner (USA); 

• engineering, where we want to learn about the inside of a system without destroying it; 
such methods are called non-destructive testing; corresponding applications of Maxent were 
presented by G. Le Besnerais, S. Gautier, B. Lavayssie~re, and A. Mohammad-Djafari 
(France); 

In addition to talks that described specific applications, several talks describe the applica- 
tions of Maxent to general data processing techniques: 

• to signal processing (G. L. Bretthorst, A. Ramaswami, USA); 

• to dynamic signal processing (L. Borland, USA); 

• to general inverse problems (A. Mohammad-Djafari, France; V. Dose, R. Fischer, W. yon der 
Linden, Germany); 

• to image processing (P. Boulanger, M. Rioux, Canada; J. Skilling, S. Sibisi, UK; J. Besag, 

USA); 

-- to pattern recognition (R. Snapp, USA); and 

- to improa~ing comp~aational algo,~hms (specifically, so-called genetic algorithms; A. Priigel- 
Bennett, Denmark; M. Rattray, J. L. Shapiro, UK). 

We only enumerated the basic applications. Many interesting applications were also pre- 
sented in the posters, and mentioned in major talks. For details, one can see the abstracts [12, 
13], and the forthcoming Proceedings [14]. 
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5. Maxent and intervals 

71 

5.1. Intervals return 

When we use Maxent, we replace intervals (or any other information) with a probability 
distribution (namely, the one with the maximum entropy among all distributions that are 
consistent with the given information). If, in addition to the interval, we know some probabilities, 
we simply add these probabilities to the set of conditions that restrict the desired probability 
distribution. At first glance, as soon as we say "MaxenC, intervals disappear and statistics takes 
the stage. Well, intervals do not completely disappear. 

We will now describe two problems that combine Maxent and intervals. These problems 
stem from the fact that the a priori known probabilities that we have just mentioned are often 
determined from the experiments, and therefore, instead of their precise values, we only know 
inte~zls of their possible values. 

5.2. The first problem: interval-valued probabilities 

In the first problem, we almost know probabilities, i.e., we have n alternatives a l , .  •., an, and we 
know the approximate values of each of the probabilities pi. In mathematical terms, for each 
i, we know the interval ~7 ,  P~-] such that the (unknown) probabilities Pl belongs to this interval. 
The question is: what is the corresponding Maxent distribution? To describe this distribution, 
let us first formulate the problem in precise mathematical terms: 

Definition 1. Let a finite set A = {a~ , . . . ,  a,~} be given. 

• By an t~'obability distri&aion p on the set A, we mean a tuple (Pl . . . .  , p,~), where ~ pi = 1. 

• By an inter~al probability distribution p on the set A, we mean a tuple (Pl . . . . .  p,~), where 
= [pT, c_ [0,1] is an interval 

• We say that a probability distribution p is consistent with an interval probability distribution 

p is Pi E Pi for all i. 

• We  say that an interval probability distribution p is consistent i f  it is consistent with some 
probability distribution p. 

• By a Maxcnt distribution corresponding to a consistent interval probability distribution p, 
we mean a vector p = (Pl, . . . ,P,~) for which S(p)  = - ~ p i l o g p i  -~ max among all 
distributions p consistent with p. 

To compute the Maxent distribution, we will need the following auxiliary results: 

Proposition 1. An interval probability distribution p is consistent i f f  ~ p7 <_ 1 ~_ ~ p~-. 

Proposition 2. I f  p is a Maxent distribution corresponding to p,  then there exists a number  

too E [0, 1] such that for  all i = 1 . . . .  , n: 

• I f  p+ <_ Po, then Pi = P+. 

• I f  PO ~-- P~, then pi = p.~. 

< + • I f p 7  ~ _ p o _ p i ,  then P i=Po .  
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Using this result, we can formulate the following theorem: 

Theorem 1. There exists a quadratic-time algorithm that, given an interval probability distri- 
bution p, returns the Maxent distribution corresponding to p. 

The proofs of Propositions and of Theorem 1 (including the description of the corre- 
sponding algorithm and the proof of correctness of this algorithm) are given in the Appendix. 
This algorithm can be parallelized: 

Theorem ~,. There exists an algorithm that, given an interval probability distribution p, returns 
the Maxent distribution corresponding to p in time O(logn) on O(n 2) processors. 

5.3. The second problem: interval-valued probabilities in expert 
systems 

A typical expert ~stem consists of n logically independent statements El . . . .  , En, with their 
ptobabitities Pi (or, intervals of probabilities). Let us give exact definitions: 

Definition 2, Let E1 . . . . .  E,~ be statements On a certain language). 

• By a world, we mean an expression of  the type E ~ & . . . & E ~ G  where ¢i E { + , - } ,  
E + = E,  and E -  means ~E.  Worlds will be denoted by W, W~,. . .  and the set of  all the 
worlds will be denoted by ~V. I f  a world W contains E +, we say that Ei is trwa in W ,  
and denote it by W ~- Ei. 

• We say that the statements E 1 , . . . , E n  are log@ally independent i f  all 2 n worlds W are 
consistent. 

• By a probability distribution, we mean a probability distribution {p(W)} on the set W of all 
worlds, i.e.. a set of  non-negative values p ( W )  for which ~ p ( W )  = 1. 

• For a given probability distribution, by a ]n-obabili~ p(Ei) of  Ei we mean the value 

p ( E i ) =  ~ p(W) .  

Definition 3. 

• By a knowledge base, we mean a finite set of  pairs (Ei, pi), where Ei is a statement, and 

v, [0,11 
• We say that a probability distribution {p(W)} is consistent with the knowledge base i f  for 

all i. p(Ei) = p~. 

• By a Maxent distribution corresponding to a given knowledge base, we mean a probability 
distribution {p(W)} for which the entropy is the largest 

S ( { p ( W ) } )  = - ~ p ( W ) l o g p ( W )  ~ max 

among all probability distributions consistent with the given knowledge base. 

For logically independent knowledge bases, it is well known how to describe the Maxent 
distribution: 
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Proposition 8. I f  the statements from the knowledge base are logically independent, then the 
Maxent distribution has the form p (W)  = p~ x . . .  x p~", where we denoted p+ = p and 
p -  = 1 - p .  For this distribution, 

i = l  

In real life, we only know intervals Pl of possible values of  the probability. In this case, we 
arrive at the following definition: 

Definit ion 4. 

• By an interval-valued knowledge base, we mean a finite set o f  pairs ( E ,  Pi), where Ei is a 
statement, and Pi C_ [0, 1] is an interval 

• We say that a probability distribution {p(W)} is consistent with the knowledge base i f  for 
all i, p(Ei) E Pi. 

• By a Maxent distribution corresponding to a given knowledge base, we mean a probability 
distribution {p(W)} for  which the entropy is the largest 

S ( { p ( W ) } )  = - E p ( W ) l o g  p (W)  -~ max 

among all probability distributions consistent with the given knowledge base. 

The  description of Maxent distribution is given by the following theorem: 

Theorem 3. For every interval-valued knowledge base (Ei, Pi)i with logically independent 
statements El, the corresponding Maxent distribution is the one that corresponds to the 
knowledge base (Ei,pi),  where for i = 1 , . . . ,  n: 

• l fp~<_0.5 ,  t h e n p i = p  +. 

• I f  0.5 _< p~', then p~ = p~'. 

• I fp~  < 0.5 < p+,  then Pi = 0.5. 

Comment. According to this theorem, if we are unsure about probabilities, i.e., if instead of the 
actual probabilities Pi, we know their 5-approximat ions/~i  (for some small 5 > 0), t hen  it is 
best: 

• to overestimate small probabilities (i.e., to assume that Pi = /5i + 5) i f / ~  is small (i.e., if 
/~i _< 0.5 - 5); and 

• to underestimate small probabilities (i.e., to assume that Pi =/5i  - 5) if/5i is large (i.e., if 
f~ _> 0.5 + (5). 

It is interesting to mention that this is exactly what we human do if we are not 100% sure 
about the probabilities. This phenomenon was experimentally discovered in [22]. Thus, Maxent 
provides a fundamental theoretical explanation for this phenomenon. 
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Back to the workshop: We also had some fun 
The city of Santa Fe. The city of Santa Fe was founded by the Spaniards more than 300 
years ago; its name literally means Saint Faith. For several centuries, it was a quiet provincial 
town. There was little construction here, and, as a result, the city still has many old and 
beautiful buildings that make it a major tourist attraction. Not only tourists come here: artists, 
sculptors, musicians, craftsmen flock to the city, to be inspired by its ancient beauty; as results, 
there are lots of unusually dressed artists everywhere. 

St.John's College. The conference itself was held in St.John's College, an interesting educational 
institution where everything is taught from the original sources: 

• students of mathemut/cs start with Euclid in Greek; 

• students of physics start with Newton in Latin, and 

• students of interval computations start with Moore in English. 

About Moore, it is a joke (some day they may start to learn it, however), but Greek and Latin 
they do study, and many students even study Russian to read the original Russian-language 
sources, Dostoevsky for one (that's where I borrowed the subtitle; times are faster now, so I 
cannot wait until winter to describe my travel impressions as he did). 

Sponsors. The workshop was sponsored by Santa Fe Institute and by Los Alamos National Laboratory, 
so we had three banquets for three days in a row: at the College and at each of the sponsoring 
organizations. 

• Santa Fe Institute is a world-renown multi-disciplinary center where physicists, computer 
scientists, mathematicians, philosophers, and others get together to study complexity. The 
small charming Institute is overcrowded with famous people (for example, Murray GeU- 
Mann, who discovered quarks, is working there). 

• Los Alamos is the place where the first atomic bombs were made. In the local museum, we 
could see how the physicists who made it lived, and take photos of each other in front of 
the exact copies of the first atomic bombs. My family and I were probably the participants 
of the conference who got interested in one of the most unusual Santa Fe attractions 
called Spymaster tour: to see the bars where the Soviet spies would try to get the atomic 
secrets from the scientists, and the places where the atomic secrets were actually passed to 

Stalin's agents. 

A less exotic attraction that we visited is located in a few miles from Los Alamos: an ancient 
Indian city made of numerous caves carved in the mountain; this city was never conquered or 
destroyed: about a thousand years ago, it was suddenly and mysteriously abandoned. 

Stairway to Heaven. In the middle of downtown Santa Fe stands an old Loretto chapel, 
with a stairway inside that has no railings, no support, just goes straight from Earth to 
Heaven. No one knows how this engineering wonder became possible. The legend says that 
a saint descended from Heaven and built this stairway. Who knows, maybe he used interval 
computations to guarantee its 300 years of stability? Or maybe, since this stairway looks so 
light, he used maximum entropy methods to guarantee that it is almost always stable? 
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Appendix:  proofs  

Proof of Proposition I is straightforward. 

Proof of Proposition 2. 

i °. First, let us show that it is impossible to have Pk < Pt, Pk < P~, and Pl > Pt- for some k 
and I. 

Indeed, in this case, by changing Pk and Pl to p~ = Pk + A and p~ = at - A for some 
small A > 0 and leaving all other  values Pi unchanged, we get a new vector p~ for which: 

•E~=Ep~=I; 
- + 

• p~ E [Pi ,Pi ], if A is small enough (to be more  precise, if  A <_ min(p  + --PJ:,Pt-P/')); and 

• since S(p)  = - ~ p l  tnpi  is a smooth function, with 

we have 

S(P') = S(P) + ( O~p k 

OS 
Opi = - In pi - I 

a + o(a) = s(p)+ (l .p,- ln, )a + o(a) 

since Pt > P~:, and In is an increasing function, we have S(p') > S(p)  for small A 

This conclusion contradicts to our assumption that p is a Maxent distribution. So, the case 
described in the formulation of this point is indeed impossible. 

2 °. From 1 °, in particular, we can conclude that two different values Pk # Pg cannot be both 
inner points of  the corresponding intervals Pk and p,.  So, there is no more than one such 
point. 

If  such a point exists, let us denote it by P0. 

3 °. If  Po exists, i.e., if Po = Pt E (p'[,p+) for  some 1, then, we can prove the conclusion of the 
theorem by considering three possible cases: 

• I f  p+ <_ P0 = P~, then, f rom the fact that  p~- < Pt, and from 1 °, it follows that we cannot 
have Pi < P+. Since Pi 6 [p~-, p+], we. must have Pi < P+, and therefore, Pi = P+. 

* Similarly, if p~" _> P0 = Pt, then, due to p~ < p~- and 1 °, we cannot have Pi > P~, so, 
p~ = p~-. 

. Finally, if p~- < P0 = Pt -< P+, then due to 1 °, we cannot have Pi < Pz and we cannot 
have Pz < Pi, so the only remaining possibility is p~ = pt = P0. 

4 °. If  no such Po exists, i.e., if  for every i, either Pi = P'~, or Pi = P+, then from 1 °, we can 
conclude that all the values pi with Pi = P~- are smaller than each of the values pj for which 
pj = iv+, so, as P0, we can take any separating point. []  

Proof of Theorem 1. T h e  corresponding algorithm is as follows: 

1 ° . First, we order 2n + 2 values 0, 1, p'$, 1 < i < n, and p+, 1 < i < n, into a sequence 

ul <_ u2 <_ . - -  < u~,~+2. 
Ordering requires O(n i n n )  computational  steps (see, e.g., [4]). 
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2 °. For each element uk from this sequence, let us denote by u~ the first next element that 
is different from uk (it is not necessarily uk+l, because some of  the  bounds p~ may coincide). 
Thus, the entire interval [0.1] is divided into several sub-intervals that intersect only in their 
boundary points. The  critical value P0 (whose existence is described in Theorem 1) must belong 
to one of these subintervals. Let us show that as soon as we know the subinterval to which to 
which Po belongs, we can uniquely determine Pi. Then,  we will compute entropy for the vectors 
p that correspond to different subintervals, and choose the vector with the largest entropy as 
the desired Maxent distribution. 

So, let us fix a subinterval [uk, u~], and describe the probabilities that correspond to the 

case P0 E lute, u~.]: 

• For all i for which p+ _< uk, we take pi = p+. 

• For all i for which p~" > u~., we take pi = p~'. 

Then,  we have two possible cases: 

* If all i = 1 , . . . ,  n are covered by one of  the two formulas, then we have defined Pl for  
all i. Then,  we check whether E P i  = 1, and, if yes, compute S(p).  We will denote the 
computed SO9) by S (k). 

e Let us now consider the case when not all i are covered by these formulas. In this case, 
since p~" ~ uk, we have p+ > uk. But since p+ is one of the values uj, it is therefore > 
that the next value to uk, i.e., that u~. From p+ > u~ and u~ >_ P0, we conclude that 
P0 <- P+- Similarly, from the fact that i is not covered by one of the above two cases, we 
can conclude that p[" < Po. Hence, p;- < P0 < P+, so, according to Theorem 1, for all 
uncovered i, pi have the same value P0. This value P0 can be thus determined from the 

condition ~ P i  = 1, as 
(Pi I i is not covered} 

Po = # { i l i is not covered) 

If the resulting P0 is outside the interval [Uk, u~], this case is impossible. If P0 is in this 
interval, then we compute SO9) for the resulting probability distribution p. We will also 
denote the resulting SO9) by S (k). 

3 °. Now, we can take the largest of  the values S (k), and, as a Maxent distribution, take the 
probability distribution that correspond to this largest ,.q(k). 

4 °. The re  are 2n + 2 subintervals, and computations that correspond to each of  them take 
<_ Cn computation steps. So, totally, we need < Cn(2n + 2) = O(n 2) steps. Together  with 

sorting (O(n  in n ) ) ,  we still need quadratic time. [] 

Example.  Let n = 3, Vl = [0, 1/3], P2 = [1/3, 2/3], and P3 = [2/3, 1]. In this case, out of  
2n + 2 = 8 values, oniy 4 are different: 0, 1/3, 2/3,  and 1. So, we must consider three 

subintervals [uk, u~]: [0, 1/3], [1/3, 2/3], and [2/3, 1]. 

1) For the first subinterval [uk, u~] = [0, 1/3], we have u~ < p~" = 1/3 and u~ < p~ = 2/3; 
therefore, according to the described algorithm, we take P2 = P2 = 1/3 and P3 = 2/3. 
The  only uncovered value is i = 1, so we define Pl = 1 - P 2  - P 3  = 1 - (1/3)  - (2/3)  = 0. 
This value belongs to the interval [uk, u~] - [0, 1/3], therefore, we can compute the 

corresponding value of  SO9). 

2) For the second subinterval [uk, u~] = [1/3, 2/31, we have p+ = 1/3 _< uk and u~ _< p~" = 
2/3;  therefore, according to the described algorithm, we take Pl = P~" = 1 /3  and P3 = 2/3.  
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The  only uncovered value is i = 2, so we define P2 = 1 - P t  - P ~  = 1 - (1/3) - (2/3) = 0. 
This value, however, does not belongs to the interval [uk, u~] = [1/3, 2/31, therefore, we 
discard this subinterval. 

3) For the third subinterval [uk, 7,~.] = [2/3, 1], we have p~" = 1/3 < 'uk and p~- = 2 /3  < uk; 
therefore, according to the described algorithm, we take Pl = P~- = 1/3 and p~ = 2/3.  
The  only uncovered vahle is i 3 ,  so we define p.~ = 1 - P l  - P 2  = 1 - (1/3) - (2/3) = 0. 
This value, however, does not belong to the interval [uk, u~] = [2/3.1], therefore, we 
discard this subinterval. 

So, we have only one value S ~k), and hence, as a Maxent distribution, we take the values pi 
that correspond to this S (~), i.e., Pl = 0, P2 = 1/3, and p:~ = 2/3. 

P r o o f  of Theorem 2. First. we need to sort 2n + 2 values. Sorting can be done in O( logn)  
time (see, e.g.. [7], Section 4.3). Then,  we can take 2n + 1 groups of n processors (totally, 
O(n2)), and target group # k  ~ r  computing the probability distribution that corresponds to 

For each k, i-th processor from each group checks whether this i is covered by one of 
the two conditions from the proof of T h e o r e m  1, and if it does, computes the value Pi. This is 
done in finitelv many (O(1)) steps. If not all .i are thus covered, we compute P0 by computing 
two sums; this is done in O( logn)  steps ([7], Section 1.3). 

Computing S(p) consists of computing the values -p~ lnp~ for all i (O(1) steps on each 
of n processors), and adding up the resulting n, values. 

After that, we need to compare n values S (k) to select the maximum. This is also done 
in O(Iogn)  steps on n processors ([7], Section 1.3). Totally, we thus need O( logn)  steps on 
O('n") processors. [] 

Proof  of  Theorem 8. For each probability distribution p = {p(W)} that is consistent with 
the interval-valued knowledge base {(Ei, pi)}, there exist probabilities p(Ei) E Pi. Therefore,  
according to Definition 3, this probability distribution is consistent with the knowledge base 

{(Ei.p(Ei))} for some p(E{)E p{. On the other hand, i r a  probability distribution {p(W)} is 

consistent with a knowledge base {(E~,p/)} for some Pl 6 Pi, then, due to Definitions 3 and 4, 
it is consistent with the given interval-valued knowledge base. 

So, a probability distribution is consistent with the interval-valued knowledge base {(Ei, p~)} 
iff it is consistent with a knowledge base {(Ei,  pi)} for some p{ E p{. Therefore,  to find the 
desired probability distribution PMaxent with the largest entropy among all distributions consistent 
with {(E,,  Pi)}, it is sufficient to compare the Maxent distributions Pm~,xent(P-'), i f =  (Pl . . . . .  !on) 
that correspond to {(E{,p{)} tbr different Pi E p{, and find the one with the largest entropy 

According to Proposition 3, S(P,,mxent(P')) = ~ [ -  (p, logpi + (1 - p,:)tog(1 - pi))] .  

Therefore,  we must maximize this sum under  the conditions that pi E [p~', p+]. This sum is the 
largest iff each of  the terms in the sum is the largest, i.e., if we choose Pi from the condition 

that - ( p ,  logp, + (1 - p,) log(1 - p,))  -~ max. The  function - ( p  logp + (1 - p ) l o g ( 1  - p))  is 
monotonicallv increasing for p < 0.5, and decreasing afterwards. Therefore: 

• if [p.':[,p'~] C [0,0.5] (i.e., i f p  + < 0.5), then we take Pi =P~-; 

• if [p~-,p?] C [0.5, 1] (i.e., if 0.5 < p~-), then we take Pi = P~-; 

- + _ _ p~ ), then we take p~ 0.5. [] • finally, if 0.5 E [p~ ,p~] (i.e., ifp~- < 0 . 5 <  + = 
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