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This paper presents hardware d~igns, arithmetic algorithms, and numerical applicmions for variable- 
precision, interv:il arithmetk coproces.~rs. These copr~mes.,~ms give the programmer the ability to ~ the 
initial precision of the comptttation, determine the accuracy of the results, and recomput¢ inaccttrate 
r~ults with higher precision. Variable-precision, interval arithmetic algorithms are used to reduce the 
execution times of numeric,'al applications. Three hardware designs with data "paths of 16, 3, 9, and 64 bits 
are examined. These designs are compared based tm their estimated chip area, cycle time, and executi~m 
times for various numerical appliGltinns. ~lch copl'~es.~r call be inlp[elnentorl on a single chip with a 
cycle time th:~t is comparable to IEEE double-precision floating point coprocessors. For certain numerical 
appficatkms, the copr~:es.,~rs ;ire two to |i~tlr orders of magnitude faster than *1 collventiotla] .,~)ftwar¢ 
package fi~r variable-precision, interval arithmetic. 

JAHTepBaAt I-II Ie apt@MeTtl iecKI/ie 
conpoIIeccopbI riepeMeHHOfi pa3p AHOCT  
M. FI. I~YAbTE t E. E. I~APLIAAI-L&EP, MA. 

rlpe;lcTaBaem,t gOHcTpygRtta almapaTyphL tlCIIO:lb3yeMble apttqbxterHqecgtte a:wopt~rMbt }t HpttJm~Ke- 
HtlH K pelueHlllo ql|CJIeHHNIX 3~t;'laq JlflH ltHTepl~l'IbHblX aptil~bMeTllqeCKttX Ct~|Ip~lleC.CoIX~B ltepeMeHHof! 

pa3pmmtw:rtt, [')vn cotlpoileccopm IIt)3Bt).'IHR)T IIpol'paMMItCTy yCT;IHaBdlIIIGITb t~atta.'~f, Hys~ pa3pHltHocrb 

Bt~Iq|I(Z'IeHIII~f, ()llp~/tCdlHTb TOqHOCTb pe3ydlbT~rroB tt 31tHOIR) Bl~'4ItG1~rrb FleToqHbl~ pe'3y,'Ib~tTbI C ~)dlb|l|~(! 

pa3p/.121ttOCTl,lo. ;~'l~I yMeHblIIeHtlH BpeMeHH BIMIIOJIHCHIIH B qllC'leHHhtX IlplL'lo)KeHtt.qX llCll{Plb3ylo'rC/-I 

IIHTepBIIdlbHO-aptICI~MeTItqecKHe ;I)IFOp~ITM,-I llepeMeHHOt~ pa3p~aHOCTIt. PaCCMOTpeHbt TpJI allll;lpaTHl, le 

CXeMI,I C tllllm)~t naHHlaX IttttpttHO~ 16, 3 9 I4 64 6ItTa. 2-)Tit CxeMla cpaBHHBag~TC~I llo wpe6yeMofi 

Itaolita.3.tl Kp}tcra.'Idla, ltp~/tOdlt~HTe.'IbUOCTtI pafxmero IIHK,|;I lt! i~MCTpOJ|elTICTB||R) B pa3altqHMx qtic'leH- 

HblX IIp|I:tOIKeHIII4X. Ka.q3KMf! IE~ ~TIIX C(}IIpOIIeccoI~t~B Mt}gKeT 6MTb |)e;Lqlti3oB~lH Wd OjtHt)M gptiCT~l$1.'lt~ 

C pa&~qefl H,'tCTOTOlTI, CpRBH~IMOft C COIIpoIleCcopaMH Hdlill~ll¢)IIIel4 TOt~KH "tBOfIHO~ TOtlH(~Ttl craHaap'ra 

IEEE. B HegoTOpblX qltC.'IeHHbIX ]IpHJIOTK¢~HH.o2X HalllI! COilpOt[eccopM Ha 2[B~t-qeTMpe IlOp.'4/lga 6McTpee, 

qeM pacrtt~c'rpaf~eHnbm IlpOl'paMMHbl¢ ItaKeThI, pe~l'lIl3yl(Hlllie ;lHTepBaJlbHy~ aptl010Me'rttKy llepeMeHHo/'t 

pa3p~anoc'rtt. 

1. Introduction 
R o u n d o f f  e r r o r  a n d  ca tas t rophic  cancela t ion  in scientific computa t ions  can  lead  to resuhs  

that  a re  complete ly  inaccura te  [5, 26]. On  most  c o m p u t e r  systems, however ,  there  is no 

efficient me thod  to increase the  precis ion of  the c o m p u t a t i o n  or  de t e rmine  the  accuracy o f  
results. Consequently,  p r o g r a m m e r s  a re  of ten forced to spend  ex t r a  t ime deve lop ing  and  test ing 

appl icat ions  to ensure  that  they p roduce  accura te  a n d  re l iable  results. 

T o  improve  the accuracy a n d  rel iabil i ty of  numer ica l  computa t ions ,  several  sof tware  tools 
have been developed.  Sof tware  packages ,  such as [4, 6, 35], s u p p o r t  va r i ab te -p reds ion  a r i thmet ic ,  

which gives the p r o g r a m m e r  the  abili ty to specify the precis ion o f  the compu ta t ion  based on the  
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problem to be solved and the desired accuracy of the results. Interval arithmetic libraries [16, 20] 
provide software support for fixed-precision interval arithmetic [1, 25]. Scientific programming 
languages [32] provide special instructions and data types for intelwal arithmetic and exact 
dot products [22]. Recently, techniques for variable-precision arithmetic and interval arithmetic 
have been combined in the extended scientific programming languages PASCAL-XSC [17], C -  
XSC [18], ACRITH-XSC [33], and VPI [12]. These languages provide data types and special 
instructions for variable-precision numbers, intervals, complex numbers, vectors, and matrices. 
When traditional numerical tools are inadequate, computer algebra systems provide symbolic 
or exact solutions [9, 34]. 

The main disadvantage of software tools for accurate and reliable arithmetic is their 
speed. Since the arithmetic operations are simulated in software, tremendous overhead occurs 
due to function calls, memorv management, error and range checking, expression manipulation, 
changing rounding modes, and exception handling. The interval arithmetic routines discussed 
in [27] are approximately 40 times slower than their single-precision floating point equivalents. 
Routines that support variable-precision, interval arithmetic (up to 56 decimal digits) are more 
than 1,200 times slower than the corresponding single-precision routines. Arithmetic operations 
in the arbitrary precision library discussed in [31] are 50 to 100 times slower than equivalent 
floating point operations in hardware, even when no additional precision is required. Certain 
application programs that  use computer algebra systems are approximately 3,000 times slower 
than equivalent numerical programs written in C [7]. 

To overcome the speed limitation of existing software tools, direct hardware support is 
required. To improve the accuracy and performance of vector and matrix operations, processors 
that support exact dot products have been designed [2, 13, 19]. To facilitate the use of interval 
arithmetic, these processors provide the four rounding modes specified by the IEEE 754 floating 
point standard [15]. Other processors, including CADAC [11], DRAFT [10], and Cascade [8], 
have been designed m provide hardware support for variable-precision arithmetic. Although 
these processors improve the speed of variable-predsion computations, they do not provide 
special instructions for inte~wat arithmetic or vector and matrix operations. 

This paper presents hardware designs, arithmetic algorithms, and numerical applications 
for variable-precision, interval arithmetic coprocessors (VPIACs). Section 2 gives an overview 
of" the number representation and hardware design of the coprocessors. Section 3 presents 
the algorithms used to perform variable-precision, interval arithmetic. In Section 4,  area and 
delay estimates are given for VPIACs with data paths of 16, 32, and 64 bits. Cycle counts for 
arithmetic and interval operations are reported in Section 5, along with execution times for 
dot product computation, polynomial evaluation, and interval Newton methods. Conclusions 
are given in Section 6. A software interface to the VPL~Cs is presented in [29]. This paper is 
an extension of the research presented in [30]. 

Hardware design 
This section gives an overview of the number representation and hardware design for the 
VPIACs. The hardware is designed to handle the common case quickly, while still providing 
correct results and acceptable performance when extremely high precision is required. Each 
VPIAC functions as a tightly-coupled coprocessor that receives input data and instructions from 
the main processor. Standard floating point arithmetic is performed by the main processor, and 
the VPIAC handles all variable-precision, interval computations. The hardware supports the 
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Figure 1. Variable-precision floating point format 

four rounding modes specified in the IEEE 754 floating point standard [15]. In the following 
discussion, the data path size (i.e., the number of bits per woi'd in the significand (mantissa) of 
the variable-precision number) is denoted by m, and a VPIAC with a data path of m bits is 
referred to as a m-bit VPIAC. 

The format for variable-precision numbers is shown in Figure 1. Intervals are represented 
by two variable-precision numbers, which correspond to the interval endpoints. Each variable- 
precision number consists of a 16-bit exponent field (E), a sign bit (S), a 2-bit type field (T), a 
5-bit significand length field (L), and a significand (F) that consists of L + 1 significand words 
(F[0] to F[L]). The exponent is represented with a bias of 32,768. The sign bit is zero if the 
number is positive and one if it is negative. The type field indicates if a number is infinite, 
zero, or not-a-number. The length field specifies the number of m-bit words in the significand. 
The words of the significand are stored from most significant F[0] to least significant F[L]. 
The significand is normalized between 1 and 2. The value of a variable-precision floating point 
number V P  is 

V P  = ( -1 )  s x F x 2 ~-a2srs. 

Variable-precision numbers have a maximum precision of 32m bits and their range is approx- 
imately 

[2-32,r68,232,7601 ,~ [10 -9,8~', 109,~']. 

In comparison, IEEE double-precision floating point numbers have a maximum precision of 53 
bits and their range is approximately 

[2-1,022, 21, o24] ~ [10 -3°7, 103°8]. 

A block diagram of the hardware unit that performs variable-precision, interval arithmetic 
is shown in Figure 2. Control signals are shown as dashed lines. The significand and exponent 
data paths are depicted as bold and plain lines, respectively. The main components of the 
hardware unit are the register file, a m-bit by m-bit multiplier, a 2m-bit adder, a 4 word by 
2m-bit selector, a long accumulator consisting of 64 2m-bit segments, a 2m-bit shifter, and a 
16-bit exponent adder and data path control unit. 

The register file consists of two memory units: a 64-word by 82-bit header memory, and 
a 256-word by m-bit significand memory. Each header word contains the exponent, sign, type, 
and length of the variable-precision number, along with an index that points to the most 
significant word of the corresponding significand. When operations are performed on variable- 
precision numbers, the header words are first read. In the following cycles, the significand 
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Figure 2. Arithmetic coprocessor hardware design 

words are accessed based on the operation and the value of the index fields. The header and 
significand memories have two read ports and one write port. This allows two operand words 
to be read and one operand word to be written each cycle. 

Significand words that are read from the register file go into the multiplier, the selector, 
or the long accumulator. The selector performs comparison operations and determines Which 
values go into the adder and  the shifter. The multiplier takes two m-bit significand words as 
inputs and computes the 2ra-bit product. The adder takes two 2m-bit numbers as inputs and 
produces a 2ra-bit sum and a carry-out bit. The shifter takes a 2m-bit number and shifts it by 
up to 2ra bits. 

The long accumulator stores intermediate variable-precision results. It functions as an 
extremely long fixed point register and is useful for performing variable-precision arithmetic 
operations without roundoff error or overflow. The implementation of the long accumulator is 
similar to the one presented in [2, 19]. The long accumulator consists of a 64 word by 2ra-bit 
dual-port-RAM, carry resolution logic, and rounding and normalization control. Temporary 
variable-precision values are stored in the dual-port-RAM, that contains one write port and one 
read/write port. Values are written to the RAM from either the adder or the register file. 
Values read from the RAM either go directly into the register file, or are fed back into the 
adder. 

When adding a number to the long accumulator, it is possible for the carry to propagate 
over several segments, resulting in a large number of additions. To prevent this, each segment 
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Figure 3. Adding a number to the long accumulator 

of the long accumulator has a 2-bit flag associated with it that tells if the bits in the segment 
contain all ones, all zeros, or neither [2, 19]. A carry propagating into a segment that contains all 
ones wilt cause the flag to signal all zeros. Similarly, a borrow into a segment that contains all 
zeros will cause the flag to signal all ones. If a carry or a borrow comes into a segment that is 
neither all ones nor all zeros, the carry or borrow will not be propagated beyond that segment. 
The  2-bit flags' and carry resolution logic determine the segment to which the carry is added. 
When a value is read from a segment of  the tong accumulator, the corresponding 2-bit flag is 
checked. If the flag indicates all ones or all zero, a constant is read back. Otherwise the value 
is read from the accumulator RAM. 

Figure 3 demonstrates the accumulation process using five bit segments, when the addend 
is also five bits. The  addend is added to two of the segments in the long accumulator. The  
exponent of the addend determines the segments accessed in the long accumulator and the 
amount that the addend is shifted. If a carry, occurs after the second addition, it is added 
to the first segment that does not contain all ones. The  flags for segments between the carry 
generation and carry resolution that indicated all ones are toggled to indicate a/l zeros, however 
the bits in these segments remain unchanged. A similar situation occurs for subtraction and 
borrow propagation. 

Once the final result is computed, it  is normalized and rounded to a variable-precision 
floating point number. The  all zeros and all ones flags simplify normalizing and rounding the 
result, since they indicate the first non-zero segment of the long accumulator and help to 
determine the sticky bit [19]. 

3 e  Variable-precision, interval arithmetic algorithms 
This section describes hardware algorithms for variable-precision, interval arithmetic. All inter- 
vals are stored in the register file using consecutive register words, with the lower endpoint  
stored first. For the variable-precision arithmetic operations, the two operands are denoted 
by A and B ,  with significands FA and ~wB and exponents E a  and EB, respectively. For 
variable-precision, interval arithmetic operations, the intervals are X = [a, b] and ]I  = [c, d]. 
The  symbols ~ and ~ denote round-toward-minus-infinity and round-toward-positive-infinity, 
respectively. For simplicity, all operands are assumed to have an n word (nra bit) significand 
(i.e., L = n - 1). 
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To perform variable-precision, floating point addition EA and EB are compared to deter- 
mine the greater exponent. The operand with the larger exponent has its significand words 
written into the long accumulator. If the two operands have the same exponent, FB is written 
into the long accumulator, If we assume that EB _> EA, FB is written into the long accumu- 
lator. In the subsequent cycles, FA is added to the long accumulator, using a series of 2m-bit 
additions, in which the carry-out of the i-th addition is the carry-in of the (i + 1)-th addition. 
The difference between EA and EB is used to select the appropriate words from the long 
accumulator and determine the number of bits that each word of FA is shifted. 

If addition is pertbrmed on operands with different signs, or subtraction is performed 
on operands with the same sign, the number with the smaller magnitude is subtracted from 
the number with the larger magnitude and the sign of the result is set to the sign of the 
number with the larger magnitude. After the final result is computed the long accumulator is 
normalized and rounded to a specified precision. The final result is then stored back into the 
register file. 

Interval addition and subtraction are defined as [25] 

x + r  = [ v ( a + c ) , A ( b + d ) ] ,  
X - Y  = [ V ( a - d ) , A ( b - c ) ] .  

Thus, interval addition (subtraction) requires two variable-precision additions (subtractions). The 
lower endpoint is computed and rounded toward negative infinity. The upper endpoint is 
computed and rounded towards positive infinity. 

For floating point multiplication, the significands of the two operands are multiplied and 
the exponents are added. The sign of the result is zero if the signs of the multiplier and the 
multiplicand are the same, and one if they are different. Since the significand of the product is 
between 1 and 4, it may be necessary to shift the significand right one position and increment 
the exponent. 

Variable-precision multiplication is performed by using the multiplier, adder, and long 
accumulator to generate and accumulate 2m-bit partial products. In the first cycle, the expo- 
nents are read from the header memory and added to compute the exponent of the product. 
Each subsequent cycle, m-bits of the multiplier are multiplied by m-bits of the multiplicand to 
produce a 2m-bit partial product that is added to the previously accumulated partial products. 
The sum of the partial products is stored in the long accumulator. To avoid excessive carry 
propagation, the less significant partial products are generated first, as shown in Figure 4. 
After the product is computed, it is rounded and stored back into the register file. To multiply 
two n word variable precision numbers n 2 partial products are generated and accumulated. 
A similar algorithm is used for computing the square of a number. However, due to the 
symmetry in the partial products of the square only (n 2 + n)/2 partial products are generated 
and accumulated. 

Interval multiplication is defined as [25] 

X x Y =  [v(min(ae, ad, bc, bd)),A(max(ac, ad, bc, bd))]. 

Rather than computing all four products and then comparing the results, the endpoints to 
be multiplied to form the upper and lower enctpoints of the product are determined by 
examining the sign bits of a, b, c, and d [14]. With this technique, only two variable-precision 
multiplications are required to perform interval multiplication, unless 

a < 0 < b  AND c < 0 < d .  
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Figure 4. Variable-precision multiplication (4 words by 4 words) 

Interval squaring is defined as 

x ~ = [ d ,  b ~] (a > o),  
x ~ = [b '~, a 2] (t, < 0), 
X ? = [O, m a x ( a , b )  2] (a < 0 < b). 

For variable-precision multiplication and squaring, a method similar to the one proposed in [21] 
is used to guarantee correct rounding and reduce the number of partial products that are 
required. 

For floating point division the significands of the two operands are divided and the 
exponents are subtracted. The sign of the result is zero if the signs of X and Y" are the same, 
and one if they are different. Since the significand of the result is between 1/2 and 2, it may 
be necessary to shift the quotient left one position and decrement the exponent. 

The algorithm used to perform division is a variation of the short reciprocal divide algo- 
rithm [24], which has been modified tbr variable-precision, interval arithmetic. This algorithm 
uses an approximation to the reciprocal of the divisor to generate and accumulate succes- 
sive quotient digits. The divide algorithm requires n a + n single precision nmttiplications and 
2 (n2+ n) single precision additions to divide two n word numbers and produce a correctly 
rounded n word quotient. 

Interval division is defined as [25] 

unless 0 E Y. In this case, the quotient interval is infinite and extended interval arithmetic 
is used [14]. Similar to intelwal multiplication, the sign bits are examined to determine which 
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endpoints are divided to compute the endpoints of the quotient, and only two variable-precision 
divisions are required. 

A similar algorithm is used to compute square roots. It requires (n2+3n)/2 single precision 
multiplications and (3'n 2 + 5n)/2 single precision additions to compute the square root of an 
n word number to n words of precision, Since the square root is monotonically increasing, an 
interval square r~)t is defined as 

provided that a _> 0. Otherwise one or both endpoints of the result is not-a-number. 

Accurate dot products are essential for scientific applications. The dot product of two 
vectors X = [xt, x2 . . . . .  xk] and Y = [Yl, y2, . . . ,  Yk] T is defined as 

k 

X . Y = ~ x ~ . y i .  
i--1 

For each xi, Yi pair in the dot product a variation of the multiplication algorithm is used 
to compute a new product and add it to the long accumulator. The segments chosen from 
the long accumulator and the amount that the new product is shifted is determined by the 
exponent of the new product. The all ones and all zeros flags help reduce carry propagation 
over long .distances. ARer the entire dot product is computed, it is normalized and rounded 
to the specified precision. 

To compute the lower endpoint of an interval dot product, the lower endpoint of each 
interval multiplication is computed and added to the long accumulator. Once the lower 
endpoints of all k products have been accumulated, the value in the long accumulator is 
normalized, rounded toward negative infinity, and stored back tO the register file. After 
resetting the long accumulator to zero, the upper endpoint of the dot product is computed 
by accumulating the upper endpoint of each interval multiplication. After the upper endpoint 
of the dot product is computed, it is normalized, rounded toward positive infinity, and stored 
back to the register file. 

To efficiently support interval arithmetic, several interval operations are provided. These 
include interval hull, intersection, width, and midpoint, which are defined as follows: 

hull(X, Y) = [min(a, c), max(b, d)], 
intersecti,m(X, Y) = [max(a, c), min(b, d)], 

midpoint(X) = (a + b)/2, 
width(X) = b - a .  

The intersection and hull operations take two variable-precision intervals and return a variable- 
precision interval. The width and midpoint operations, on the other hand, take one variable- 
precision interval and return a variable-precision floating point number. To determine the 
minimum and maximum values, the exponent adder and the operand selector are used. If the 
two numbers being compared have the same sign and exponent, then the selector compares 
their significand words from most significant to least significant to determine which number is 
greater. Thus, it takes at most 2n significand comparisons to determine the upper and lower 
endpoints for interval hull. Interval intersection requires at most 3n significand comparisons, 
since after the lower and upper endpoints are determined, a test is made to ensure that the 
upper endpoint is greater than or equal to the lower endpoint. If it is not, a warning is 
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signaled. The interval midpoint and width operations are implemented using the variable 
precision addition and subtraction algorithms, respectively. If the result is not representable, 
it is rounded to the nearest variable-precision floating number. The division by two in the 
midpoint operation is implemented by decrementing the exponent of a + b by one. To compare 
intervals, relational operators such as equal to, subset, superset, is-contained-in, and disjointness 
are also provided as defined in [17]. 

4. Area and delay estimates 
Table 1 gives the hardware requirements for three VPIACs with data paths of 64, 32, and 16 
bits. The number of words is denoted by w and the number of bits is denoted by b. For 
example, the long accumulator for the 64-bit VPIAC consists of 64 words, each of which is 128 
bits long. 

Area estimates are given in "Fable 2, based on data from a t.0 micron CMOS standard 
cell library [23]. The estimates for the multiplier assume that multiplication is implemented 
using a Reduced Area Multiplier [3], followed by a carry look-ahead adder. The area of each 

Component 64-bit VPIAC 32-bit VPIAC 16-bit VPIAC 
Multiplier 64b by 64b 32b by 32b 16b by 16b 

Adder 128b 64b 32b 
Significand Memory 256w by 64b 256w by 32b 256w by 16b 

Header Memory 64w by 32b 64w by 32b 64w by 32b 
Long Accumulator 64w by 128b 64w by 64b 64w by 32b 

Shifter 128b 64b 32b 
Operand Selector 4w by 128b 4w by 64b 4w by 32 b 

Exponent Add/Sub 16b 16b 16b 
Latches 128b and 64b 64b and 32b 32b and 16b 

Table 1. Hardware requirements 

Component 64-bit VPIAC 32-bit VPIAC 16-bit VPL4C 
Multiplier 49.4 15.2 4.9 

Adder 4.2 2.1 1.0 
Significand Memory 35.5 17.8 8.8 

Header Memory 4.4 4.4 4.4 
Long Accumulator 26.3 13.0 6.5 

Shifter 8.2 3.9 1.9 
Operand Selector 7.8 4.1 2.0 

Exponent Add/Sub 0.6 0.6 0.6 
Latches 4.8 2.6 1.4 

Pads, Space etc. 84.7 38.2 18.9 
Total 225.9 101.9 50.4 

Table 2. Area estimates (ram 2) 
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Component 64-bit VPIAC 32-bit VPIAC 16-bit VPIAC 
.... Multiplier (Reduction) 20.0 14.0 10.5 

Multiplier (Final Add) 18.4 13.8 9.3 
Adder 18.4 13.8 9.3 

Significand Memory 8.2 7.4 7.0 
Header Memory 6,8 6.8 6.8 

Long Accumulator 7.8 7.0 6.8 
Shifter 8.9 8.2 7.8 

Operand Selector 4.2 3.5 3.2 
Exponent Add/Sub 4A 4.4 44 

Latches 2.0 2.0 2.0 
Cycle Time 22.0 16.0 12.5 

Table 3. Delay and cycle time estim,ates (ns) 

component is estimated by calculating the total size of the macrocells (e.g., AND gates, full 
adders, half adders, etc.) that make up the component and then adding an additional 50 
percent for internal wiring. The total area is estimated as the sum of the component areas plus 
an additional 60 percent for control logic, global routing, unused space, and pad area. The 
total estimated chip areas for the 64-bit, 32-bit, and 16-bit VPIACs are 225.9 mm 2, 101.9 mm 2, 
and 50.4 mm 2, respectively. In comparison, an IEEE double-precision coprocessor in the same 
technology has a total area of 100.8 mm 2 [30]. 

Delay and cycle time estimates are given in Table 3. The delay of each component 
is computed by taking the worst case delay of the critical path and adding 25 percent for 
unexpected delays and clock skew. The multipliers use two cycles. In the first cycle the partial 
products are generated and reduced to two numbers. In the second cycle these two numbers 
are added together to produce the product. The cycle time for each design is the sum of the 
multiplier reduction delay and the latch delay. "Die cycle times for the 64-bit, 32-bit, and 16-bit 
VPIACs are 22.0 ns, 16.0 ns, and 12.5 ns, respectively. An IEEE double-precision coprocessor 
in the same technology has a cycle time of 20.0 ns [30]. 

5~ Cycle counts and execution times 
Table 4 shows the number of cydes required for operations on both point and interval 

operands. The number of m-bit words in each operand is denoted by n. Short multiplication 
refers to the product of a one word multiplier and an n word multiplicand. For the dot 
product operation, k represents the number of elements in the two vectors whose dot product is 
computed. The cycle counts reported include the cycles needed for instruction fetch, instruction 
decode, reading the operands from the register file, performing the operation, rounding the 
result, and storing the rounded result back into the register file. The cycle counts given assume 
that the operands are atreadv in the register file. 

The algorithms used for addition, subtraction, short multiplication, hull, intersection, mid- 
point, and width are O(n), and the algorithms for square, multiplication, division, and square 
root are O(n2). The algorithm for dot product computat!on is O(k. n2). Although algorithms 
with better asymptotic complexities exist, they require more control logic and are slower for 
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Operatio n point operand s interval operands 
Addition/Subtraction 2n + 8 4n + 12 
Short Multiplication 2n + 12 4n + 20 

Square n2/2 + 2n + 12 n 2 + 4n + 22 
Multiplication n 2 + n + 12 2n 2 + 2n + 22 

Division 3n 2 + 4n + 20 6n 2 + 8n + 38 
Square Root 3n 2 + 6n + 26 6n 2 + 12n + 48 
Dot Product k(2n 2 + 12) + 2n + 20 k(4n 2 + 26) + 4n + 36 

Hull not applicable 2n + 8 
Intersection not applicable 3n + 12 

Midpoint not applicable 2n + 8 
Width not applicable 2n + 8 

Table 4. Cycle counts 

Bits 64-bit VPIAC 32-bit VPIAC 16-bit VPIAC VPI-SP 
64 5.41 (410) 5.50 (403) 9.15 (243) 2220 

128 7.57 (659) 11.7 (426) 28.5 (175) 4990 
256 16.1 (950) 36.4 (421) 105 (146) 15300 
512 50.1 (1010) 135 (407) 413 (133) 54900 

1,024 186 (tt30) 529 (397) 1640 (128) 210000 

Table 5. Execution times for point dot product (#s) 

Bits 64-bit VPIAC 32-bit VPIAC 16-bit VPIAC VPI-SP 
64 11.4 (409) 11.5 (405) 18.7 (249)  4660 

128 15.7 (629) 23.9 (413) 57.3 (172) 9880 
256 32.8 (896) 73.3 (401) 211 (139) 29400 
512 t01 (1010) 270 (378) 826 (123) 102000 

1,024 372 (1050) 1060 (368) 3290 (119) 390000 

Table 6. Execution times for interval dot product (#s) 

small and moderate precisions. Hardware support and efficient implementation of the interval 
operations allow them to be executed in approximately twice as many cycles as the equivalent 
operations on point operands. 

Tables 5 and 6 show execution times for point and interval dot products, with k = 16. 
The number of bits (n. ra) is varied from 64 to 1,024 bits. For comparison, the execution times 
of the VPI software package (VPI-SP) are also given [12]. The ratio of the VPI-SP's execution 
time to the corresponding processor's execution time is given in parenthesis, The cycle counts 
for point and interval dot products are 

CyclesDotPoint = 32n 2 + 2n + 212, 
CydesDotlnterval = 64n 2 + 4n + 452. 

For the coproce~ors, the execution time is computed as the product of the number of cycles 



58 M. J. SCHULTEp E. E. SWARTZLANDERI JR. 

Bits 64-bit VPIAC 32-bit VPIAC 16-bit VPIAC VPI-SP 
64 10.6 (262) 9.60 (307) 12.0 (232) 2780 

t28 t3.2 (478) 15.4 (410) 27.0 (234) 6310 
256 21.1 (910) 34.5 (557) 81.0 (237) 19200 
512 47.5 (1450) 104 (662) 285 (241)  68800 

1,024 143 (1860) 365 (726) 1080 (245) 265000 

Table 7. Execution times for point polynomial evaluation (#s) 

Bits 64-bit VPIAC 32-bit VPIAC 16-bit VPIAC VPI-SP 
64 18.5 (303) 17.3 (324) 22.5 (249) 5600 

128 23.8 (508) 28.8 (420) 52.5 (230) 12100 
256 39.6 (927) 67.2 (546) t61 (228) 36700 
512 92.4 (1440) 205 (649) 569 (234) 133000 

1,024 282 (1770) 728 (685) 2150 (232) 499000 

Table 8. Execution times for interval polynomial evaluation (~s) 

and the cycle time. For example, for the 32-bit VPIAC, if the precision of the computation is 
512 bits, then n = 16, CyclesDotPoint = 8,436, and CyclesDotInterval = 16,900. Since the cycle 
time for the 32-bit VPIAC is 16 ns, the execution times for point and interval dot products are 

ExecDotPoint = 16 x 8.436 -- 134,976 ns ~ 135#s, 
ExecDotInterval = 16 × 16,900 = 270,400 ns ~ 270/~s. 

The execution times of the VPI software package are determined by running one thousand 
iterations of the operation on a 40 MHz Sparc IPX processor and taking the average execution 
time. 

The 64-bit VPIAC has the shortest execution times, but the largest area requirements. 
The 16-bit VPIAC has the smallest area requirements, but the longest execution times. The 
32-bit VPIAC offers a good compromise between the two designs, with fairly low area and 
good execution times. When the precision is relatively low (i.e., 128 bits or less), the execution 
times of the 32-bit VPIAC and the 64-bit VPIAC are quite close. For example, for point dot 
product computations with 64 bits of precision, the 32-bit VPIAC has an execution time that 
is only 1.7 percent greater than the execution time of the 64-bit VPIAC. This occurs because 
although the 64-bit VPIAC requires fewer cycles to compute the dot product, it has a longer 
cycle time. For 16 element dot product computations, the VPIACs are 119 to 1130 times faster 
than the VPI-SP. 

Tables 7 and 8 show the execution times for point and interval polynomial evaluation, 
for a 20 term polynomial. Hornet's rule is used, so that each term in the polynomial requires 
1 addition/subtraction and one multiplication. The cycle counts for evaluating a 20 term 
polynomial are 

CyclesPolyPoint = 20n 2 + 60n + 400, 
CyclesPolyInterval = 40n 2 + 120n + 680. 

When the precision is 64 bits, the 32-bit VPIAC actually has a shorter execution time than the 
64-bit VPL~C, due to its shorter cycle time. As the precision increases, the n 2 term dominates 
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Bits 64-bit VPIAC 32-bit VPIAC 16-bit VPIAC VPI-SP 
64 10,1 (6310) 10.8 (5900) 14.5'(4390) 63700 

128 13.4 (11100) 18.5 (8050) 34,1 (4370) 149000 
256 23.2 (20100) 43.7 (10700) 103 (4530) 467000 
512 54.6 (32100) 132 (13300) 362 (4830) 1750000 

1,024 166 (39600) 463 (14200) 1360 (4830) 6570000 

Table 9. Execution times for interval newton method (~8) 
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and the 64-bit VPIAC has the shortest execution times. For 20 term polynomial evaluations, 
the VPIACs are 228 to 1860 times faster than the VPI-SP. 

Table 9 shows the execution times for one iteration of an interval Newton method [25]. 
The interval Newton method takes an interval Xi which includes a zero of the function f(x) ,  
and computes a tighter intervS.1 X~+I which includes the same zero. It employs the following 
iterative equation: 

f(midpoint(X~))~ N X~. 
X i + l =  midpoint(X/)-  f ' (Xi)  ] 

For the execution times shown in Table 9, .f(x) and its derivative f'(x) are chosen as 

f ( x )  = lOz  ~ - 5z  + 3 v f f -  17, 
f ' ( z )  = 2 0 z + ~  '~ - 5 .  

Each iteration of the algorithm requires six additions/subtractions, 5 short multiplications, I 
square, 2 divisions, 2 square roots, 1 midpoint operation, and one intersection. Each of these 
operations is performed on interval operands. The number of cycles per iteration is 

CyclesNewtonInterval = 25n 2 + 93n + 386. 

For all reported interval Newton methods, the 16-bit VPIAC has the longest execution times. 
The 64-bit VPIAC has the shortest execution times, except when the precision is 64 bits. For 
interval newton method, the VPIACs are 4370 to 39600 times faster than the VPI-SP. The 
long execution times for the VPI-SP is primarily due to its slow computation of the interval 
square root. 

6. Conclusions 
This paper examined hardware designs for VPIACs with data path widths of 64-bits, 32-bits, 
and 16-bits. The 16-bit VPIAC has the shortest cycle time and uses the least amount of area, 
but has longest execution times for the applications examined. The 64-bit VPIAC has the 
shortest execution times for most applications, but uses the largest amount of area and has the 
longest cycle time. The 32-bit VPIAC offers a good compromise between the two designs. It 
uses less than half the area of the 64-bit VPIAC, and has comparable execution times for low 
to moderate precisions. The design of the 32-bit VPIAC is described in more detail in [28]. 

The VPIACs give the programmer the ability to set the initial precision of the computation, 
determine the accuracy of the results, and recompute inaccurate results with higher precision. 
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They can also be used to evaluate the accuracy of programs before running them on a general 
purpose processor, or to select between various programs based on their accuracy for given 
inputs. Direct hardware support for variable-precision, interval arithmetic gready improves the 
accuracy and reliability of the computation, and is much faster than existing software techniques 
for controlling numerical error. The coprocessors are two to four orders of magnitude faster 
than the VPI software package for variable-precision point and interval applications. 
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