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Variable-precision, interval arithmetic
COPIOCessors

MicuateL J. ScruuLte and Eare E. SwaArTzLANDER, JR.

This paper presents hardware designs, arithmetic algorithms, and numerical applications for variable-
precision, interval arithmetic coprocessors. These coprocessors give the programmer the ability to set the
initial predsion of the computation, determine the accuracy of the results, and recompute inaccurate
results with higher precision. Variable-precision, interval arithmetic algorithms are used to reduce the
execution times of numerical applications. Three hardware designs with data ‘paths of 16, 32, and 64 bits
are examined. These designs are compared based on their estimated chip area, cydle time, and execution
times for various numerical applications. Each coprocessor can be implemented on a single chip with a
cycle time that is comparable to IEEE double-predsion floating puint coprocessors. For certain numerical
applications, the coprocessors are two to four orders of magnitude faster than a conventional software
package for variable-precision, interval arithmetic.

VIHTepBaAbHBIe apUpMeTIIecKye
COIIPOLIECCOPBI TIEPEeMEHHOM PaspsSAHOCTH

M. V. Hlyaste, E. E. HIsarusAHAEP, MA.

TpeacTapaeHnl KOHCTPYKUUA AINAPATYPR, HCNOABIYEMble apHMeTHUerKHe AMOPHTMBL M HDHIOKE-
HHA R PEIUEHIT0 MHCIEHHBIX 3aja4 IUIA HHTEPBAILHBIX aPH(METHYECKHX CONPOIECCOPOl [EPEMEHHOH
PAIPANKOCTIL  DTH CONPONECCOpBl HO3BOIAKT HPOIPAMMICTY YCTAHABIMBATL HAMAIBHYKY PA3PANHOCTD
BLEMHCICHIUE, OUPLRSTE TOUHOCTS PE3YABTATOB H 3UHOBO BRIYHCIATE HETOUHLIE PEIYILTATLL ¢ Hosibiiedt
PAIPSTHOCTBRY. 15 YMEHBINEHHMA BPEMEHH BBUNUIHEHHA B MHCICHHBIX NDHIKEHMSX JCHOILIYRITCH
HHTEPRATEHO-APHDMETHYECKHE WITOPHTMEL HEPEMEHHON PAsPARHOCTH. PaccMOTpeHB TPH almapaTHble
CXeMBl € WHHOR AaWHeX umpuuon 16, 32 u 64 Sura.  OTH (XeMB CPABHHBAKITCA 10 TpeSyeMod
HAOHERAM KPHCTALE, BPOROIAKHTEIBHOCTH pabovero HMHKIJa H GBICTPOACHCTBHIO B DA3IHUHBIX YHCIEH-
HEIX UpHAOKeHHHX, KaLKLoT 13 3THX CONPONECCOPOB MOKET ObTh PELBOBIN HA OAHOM KPHCTALIE
€ padouelt HACTOTOR, CPABHUMOM ¢ CONPOLECCOPAMH ILIABAIOIIEH TOYKM MBOWHOR TOMHOCTH CTAHAAPTA
[EEE. B HeROTOPBIX MUCICHHBIX HPWHNKEHHAX HALIM CONPOLECCOPH Ha BAa-YeThpe Hopsnka Ouicrpee,
HEM PACTIPOCTPAHEHHBIE HPOrPAMMHBLIE AKETH, PETHIYIONE HHTEPBAILHYIY APHDMETHKY 1lepeMeHHo
PASPALHOCTH,

1. Introduction

Roundoff error and catastrophic cancelation in scientific computations can lead to results
that are completely inaccurate [5, 26]. On most computer systems, however, there is no
efficient method to increase the precision of the computation or determine the accuracy of
results. Consequently, programmers are often forced to spend extra time developing and testing
applications to ensure that they produce accurate and reliable results.

To improve the accuracy and reliability of numerical computations, several software tools
have been developed. Software packages, such as [4, 6, 35}, support variable-precision arithmetic,
which gives the programmer the ability to specify the precision of the computation based on the
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problem to be solved and the desired accuracy of the results. Interval arithmetic libraries [16, 20)
provide software support for fixed-precision interval arithmetic [1, 25]. Scientific programming
languages [32] provide special instructions and data types for interval arithmetic and exact
dot products [22]. Recently, techniques for variable-precision arithmetic and interval arithmetic
have been combined in the extended scientific programming languages PASCAL~XSC [17], C—
XSC [18], ACRITH—-XSC [33], and VPI [12]. These languages provide data types and special
instructions for variable-precision numbers, intervals, complex numbers, vectors, and matrices.
When traditional numerical tools are inadequate, computer algebra systems provide symbolic
or exact solutions [9, 34].

The main disadvantage of software tools for accurate and reliable arithmetic is their
speed. Since the arithmetic operations are simulated in software, tremendous overhead occurs
due to function calls, memory management, error and range checking, expression manipulation,
changing rounding modes, and exception handling. The interval arithmetic routines discussed
in [27] are approximately 40 times slower than their single-precision floating point equivalents.
Routines that support variable-precision, interval arithmetic {up to 56 decimal digits) are more
than 1,200 times slower than the corresponding single-precision routines. Arithmetic operations
in the arbitrary precision library discussed in [31] are 50 to 100 times slower than equivalent
floating point operations in hardware, even when no additional precision is required. Certain
application programs that use computer algebra systems are approximately 3,000 times slower
than equivalent numerical programs written in C [7].

To overcome the speed limitation of existing software tools, direct hardware support is
required. To improve the accuracy and performance of vector and matrix operations, processors
that support exact dot products have been designed [2, 13, 19]. To facilitate the use of interval
arithmetic, these processors provide the four rounding modes specified by the IEEE 754 floating
point standard [15]. Other processors, including CADAC [11], DRAFT (10}, and Cascade [8],
have been designed to provide hardware support for variable-precision arithmetic. Although
these processors improve the speed of variable-precision computations, they do not provide
special instructions for interval arithmetic or vector and matrix operations.

This paper presents hardware designs, arithmetic algorithms, and numerical applications
for variable-precision, interval arithmetic coprocessors (VPIACs). Section 2 gives an overview
of the number representation and hardware design of the coprocessors. Section 3 presents
the algorithms used to perform variable-precision, interval arithmetic. In Section 4, area and
delay estimates are given for VPIACs with data paths of 16, 32, and 64 bits. Cycle counts for
arithmetic and interval operations are reported in Section 5, along with execution times for
dot product computation, polynomial evaluation, and interval Newton methods. Conclusions
are given in Section 6. A software interface to the VPIACs is presented in [29] This paper is
an extension of the research presented in [30].

2. Hardware design

This section gives an overview of the number representation and hardware design for the
VPIACs. The hardware is designed to handle the common case quickly, while still providing
correct results and acceptable performance when extremely high precision is required. Each
VPIAC functions as a tightly-coupled coprocessor that receives input data and instructions from
the main processor. Standard floating point arithmetic is performed by the main processor, and
the VPIAC handles all variable-precision, interval computations. The hardware supports the
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Figure 1. Variable-precision floating point format

four rounding modes specified in the IEEE 754 floating point standard [15]. In the following
discussion, the data path size (i.e., the number of bits per word in the significand (mantissa) of
the variable-precision number) is denoted by m, and a VPIAC with a data path of m bits is
referred to as a m-bit VPIAC.

The format for variable-precision numbers is shown in Figure 1. Intervals are represented
by two variable-precision numbers, which correspond to the interval endpoints. Each variable-
precision number consists of a 16-bit exponent field (E), a sign bit (5), a 2-bit type field (T), a
5-bit significand length field (L), and a significand (F) that consists of L + 1 significand words
(F[0] to F[L]). The exponent is represented with a bias of 32,768. The sign bit is zero if the
number is positive and one if it is negative. The type field indicates if a number is infinite,
zero, or not-a-number. The length field specifies the number of m-bit words in the significand.
The words of the significand are stored from most significant F[0] to least significant F[L].
The significand is normalized between 1 and 2. The value of a variable-precision floating point
number VP is

VP = (-1)% x F x 2B-32768,

Variable-precision numbers have a maximum precision of 32m bits and their range is approx-

imately
[QT32768 932T69) o [1(-9864 109864

In comparison, IEEE double-precision floating point numbers have a maximum precision of 53
bits and their range is approximately

[2—1,022’ 2},824} o [10—307’ 10308]

A block diagram of the hardware unit that performs variable-precision, interval arithmetic
is shown in Figure 2. Control signals are shown as dashed lines. The significand and exponent
data paths are depicted as bold and plain lines, respectively. The main components of the
hardware unit are the register file, a m-bit by m-bit multiplier, a 2m-bit adder, a 4 word by
2m-bit selector, a long accumulator consisting of 64 2m-bit segments, a 2m-bit shifter, and a
16-bit exponent adder and data path control unit.

The register file consists of two memory units: a 64-word by 32-bit header memory, and
a 256-word by m-bit significand memory. Each header word contains the exponent, sign, type,
and length of the variable-precision number, along with an index that points to the most
significant word of the corresponding significand. When operations are performed on variable-
precision numbers, the header words are first read. In the following cycles, the significand
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Figure 2. Arithmetic coprocessor hardware design

words are accessed based on the operation and the value of the index fields. The header and
significand memories have two read ports and one write port. This allows two operand words
to be read and one cperand word to be written each cycle.

Significand words that are read from the register file go into the multiplier, the selector,
or the long accumulator. The selector performs comparison operations and determines which
values go into the adder and the shifter. The multiplier takes two m-bit significand words as
inputs and computes the 2m-bit product. The adder takes two 2m-bit numbers as inputs and
produces a 2m-bit sum and a carry-out bit. The shifter takes a 2m-bit number and shifts it by
up to 2m bits.

The long accumulator stores intermediate variable-precision results. It functions as an
extremely long fixed point register and is useful for performing variable-precision arithmetic
operations without roundoff error or overflow. The implementation of the long accumulator is
similar to the one presented in [2, 19]. The long accumulator consists of a 64 word by 2m-bit
dual-port-RAM, carry resolution logic, and rounding and normalization control. Temporary
variable-precision values are stored in the dual-port-RAM, that contains one write port and one
read/write port. Values are written to the RAM from either the adder or the register file.
Values read from the RAM either go directly into the register file, or are fed back into the
adder.

When adding a number to the long accumulator, it is possible for the carry to propagate
over several segments, resulting in a large number of additions. To prevent this, each segment
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Figure 3. Adding a number to the long accumulator

of the long accumulator has a 2-bit flag associated with it that tells if the bits in the segment
contain all ones, all zeros, or neither [2, 19]. A carry propagating into a segment that contains all
ones will cause the flag to signal all zeros. Similarly, a borrow into a segment that contains all
zeros will cause the flag to signal all ones. If a carry or a borrow comes into a segment that is
neither all ones nor all zeros, the carry or borrow will not be propagated beyond that segment.
The 2-bit flags and carry resolution logic determine the segment to which the carry is added.
When a value is read from a segment of the long accumulator, the corresponding 2-bit flag is
checked. If the flag indicates all ones or all zero, a constant is read back. Otherwise the value
is read from the accumulator RAM.

Figure 3 demonstrates the accumulation process using five bit segments, when the addend
is also five bits. The addend is added to two of the segments in the long accumulator. The
exponent of the addend determines the segments accessed in the long accumulator and the
amount that the addend is shifted. If a carry occurs after the second addition, it is added
to the first segment that does not contain all ones. The flags for segments between the carry
generation and carry resolution that indicated all ones are toggled to indicate all zeros, however
the bits in these segments remain unchanged. A similar situation occurs for subtraction and
borrow propagation.

Once the final result is computed, it is normalized and rounded to a variable-precision
floating point number. The all zeros and all ones flags simplify normalizing and rounding the
result, since they indicate the first non-zero segment of the long accumulator and help to
determine the sticky bit [19].

3. Variable-precision, interval arithmetic algorithms

This section describes hardware algorithms for variable-precision, interval arithmetic. All inter-
vals are stored in the register file using consecutive register words, with the lower endpoint
stored first. For the variable-precision arithmetic operations, the two operands are denoted
by A and B, with significands F4 and Fp and exponents E4 and Ep, respectively. For
variable-precision, interval arithmetic operations, the intervals are X = [g,b] and ¥ = [¢, d].
The symbols 7 and A denote round-toward-minus-infinity and round-toward-positive-infinity,

respectively. For simplicity, all operands are assumed to have an n word (nm bit) significand
{ie, L=n-1).
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To perform variable-precision, floating point addition E4 and Ep are compared to deter-
mine the greater exponent. The operand with the larger exponent has its significand words
written into the long accumulator. If the two operands have the same exponent, Fig is written
into the long accumulator. If we assume that Eg > Ey4, Fp is written into the long accumu-
lator. In the subsequent cycles, F4 is added to the long accumulator, using a series of 2m-bit
additions, in which the carry-out of the i-th addition is the carry-in of the (¢ + 1)-th addition.
The difference between E4 and Ep is used to select the appropriate words from the long
accumulator and determine the number of bits that each word of Fj is shifted.

If addition is performed on operands with different signs, or subtraction is performed
on operands with the same sign, the number with the smaller magnitude is subtracted from
the number with the larger magnitude and the sign of the result is set to the sign of the
number with the larger magnitude. After the final result is computed the long accumulator is
normalized and rounded to a specified precision. The final result is then stored back into the
register file.

Interval addition and subtraction are defined as [23]

X+Y [Tla+c), A +d).
X-Y = [vla-d),Ab-c)]

Thus, interval addition (subtraction) requires two variable-precision additions (subtractions). The
lower endpoint is computed and rounded toward negative infinity. The upper endpoint is
computed and rounded towards positive infinity.

For floating point multiplication, the significands of the two operands are multiplied and
the exponents are added. The sign of the result is zero if the signs of the multiplier and the
multiplicand are the same, and one if they are different. Since the significand of the product is
between 1 and 4, it may be necessary to shift the significand right one position and increment
the exponent.

Variable-precision multiplication is performed by using the multiplier, adder, and long
accumulator to generate and accumulate 2m-bit partial products. In the first cycle, the expo-
nents are read from the header memory and added to compute the exponent of the product.
Each subsequent cycle, m-bits of the multiplier are multiplied by m-bits of the multiplicand to
produce a 2m-bit partial product that is added to the previously accumulated partial products.
The sum of the partial products is stored in the long accumulator. To avoid excessive carry
propagation, the less significant partial products are generated first, as shown in Figure 4.
After the product is computed, it is rounded and stored back into the register file. To multiply
two 7 word variable precision numbers n? partial products are generated and accumulated.
A similar algorithm is used for computing the square of a number. However, due to the
symmetry in the partial products of the square only (n® 4+n)/2 partial products are generated
and accumulated.

Interval multiplication is defined as [25]

XxY = [ \v ( min(ac, ad, be, bd)), A( max(ac, ad, be, bd))].

Rather than computing all four products and then comparing the results, the endpoints to
be multiplied to form the upper and lower endpoints of the product are determined by
examining the sign bits of a, b, ¢, and d [14]. With this technique, only two variable-precision
multiplications are required to perform interval multiplication, unless

a<0<b AND c<0<d.
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Figure 4. Variable-precisicn multiplication (4 words by 4 words)

Interval squaring is defined as

X = {a 2 5% (a >0y,
X? = [1?4% (b<0),
X? = [0,max(a.b)}] (a<0<bh).

For variable-precision multiplication and squaring, a method similar to the one proposed in [21]
is used to guarantee correct rounding and reduce the number of partial products that are
required.

For floating point division the significands of the two operands are divided and the
exponents are subtracted. The sign of the result is zero if the signs of X and Y are the same,
and one if they are different. Since the significand of the result is between 1/2 and 2, it may
be necessary to shift the quotient left one position and decrement the exponent.

The algorithm used to perform division is a variation of the short reciprocal divide algo-
richm [24], which has been modified for variable-precision, interval arithmetic. This algorithm
uses an approximation to the reciprocal of the divisor to generate and accumulate succes-
sive quotient digits. The divide algorithm requires n? + n single precision multiplications and
2(n* + n) single precision additions to divide two n word numbers and produce a correctly
rounded n word quotient.

Interval division is defined as [23]

XY = { 7 ( min(a/c.a/d.b/c. b/d)), A( max(a/e, a/d.bfc. b/d))}

unless 0 € Y. In this case, the gquotient interval is infinite and extended interval arithmetic
is used [14]. Similar to interval multiplication. the sign bits are examined to determine which
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endpoints are divided to compute the endpoints of the quotient, and only two variable-precision
divisions are required.

A similar algorithm is used to compute square roots. It requires (n®+3n)/2 single precision
multiplications and (3n% + 3n)/2 single precision additions to compute the square root of an
n word number to n words of precision. Since the square root is monotonically increasing, an
interval square root is defined as

VX = [ v(va), A(VE)]

provided that a > 0. Otherwise one or both endpoints of the result is not-a-number.

Accurate dot products are essential for scientific applications. The dot product of two
vectors X = [xy,Z9,.... 2] and Y = [11, 42, .. L yk)T is defined as

k
X~Y=~"Z$,’-yi.

i=1

For each z;, y; pair in the dot product a variation of the multiplication algorithm is used
to compute a new product and add it to the long accumulator. The segments chosen from
the long accumulator and the amount that the new product is shifted is determined by the
exponent of the new product. The all ones and all zeros flags help reduce carry propagation
over long distances. After the entire dot product is computed, it is normalized and rounded
to the specified precision.

To compute the lower endpoint of an interval dot product, the lower endpoint of each
interval multiplication is computed and added to the long accumulator. Once the lower
endpoints of all & products have been accumulated. the value in the long accumulator is
normalized, rounded toward negative infinity, and stored back to the register file. After
resetting the long accumulator to zero, the upper endpoint of the dot product is computed
by accumulating the upper endpoint of each interval multiplication. After the upper endpoint
of the dot product is computed, it is normalized, rounded toward positive infinity, and stored
back to the register file.

To efficiently support interval arithmetic, several interval operations are provided. These
include interval hull, intersection, width, and midpoint, which are defined as follows:

hull(X,Y) = [min(a,c), max(b.d)].
intersection(X.Y) = [max(a,c), min(b.d)}.
midpoint(X) = (a+b)/2,
width{(X) = b~a

The intersection and hull operations take two variable-precision intervals and return a variable-
precision interval. The width and midpoint operations, on the other hand, take one variable-
precision interval and return a variable-precision floating point number. To determine the
minimum and maximum values, the exponent adder and the operand selector are used. If the
two numbers being compared have the same sign and exponent, then the selector compares
their significand words from most significant to least significant to determine which number is
greater. Thus, it takes at most 2n significand comparisons to determine the upper and lower
endpoints for interval hull. Interval intersection requires at most 3n significand comparisons,
since after the lower and upper endpoints are determined, a test is made to ensure that the
upper endpoint is greater than or equal to the lower endpoint. If it is not, a warning is
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signaled. The interval midpoint and width operations are implemented using the variable
precision addition and subtraction algorithms, respectively. If the result is not representable,
it is rounded to the nearest variable-precision floating number. The division by two in the
midpoint operation is implemented by decrementing the exponent of a+b by one. To compare
intervals, relational operators such as equal to, subset, superset, is-contained-in, and disjointness
are also provided as defined in [17].

4, Area and delay estimates

Table 1 gives the hardware requirements for three VPIACs with data paths of 64, 32, and 16
bits. The number of words is denoted by w and the number of bits is denoted by b. For
example, the long accumulator for the 64-bit VPIAC consists of 64 words, each of which is 128
bits long.

Area estimates are given in Table 2, based on data from a 1.0 micron CMOS standard
cell library [23]. The estimates for the multiplier assume that multiplication is implemented
using a Reduced Area Multiplier 3], followed by a carry look-ahead adder. The area of each

Component 64-bit VPIAC 32-bit VPIAC 16-bit VPIAC
Multiplier 64b by 64b 32b by 32b  16b by 16b
Adder 128b 64b 32b

Significand Memory 236w by 64b 256w by 32b 256w by 16b
Header Memory 64w by 32b 64w by 32b 64w by 32b
Long Accumulator 64w by 128b 64w by 64b 64w by 32b

Shifter 128b 64b 32b
Operand Selector 4w by 128b 4w by 64b  4wby 32 b
Exponent Add/Sub 16b 16b 16b

Latches 128b and 64b 64b and 32b  32b and 16b

Table 1. Hardware requirements

Component 64-bit VPIAC 32-bit VPIAC 16-bit VPIAC

Multiplier 494 15.2 19
Adder 4.2 21 10
Significand Memory 35.5 178 838
Header Memory 1.4 44 44
Long Accumulator 26.3 13.0 6.5
Shifter 8.2 39 19
Operand Selector 78 4.1 20
Exponent Add/Sub 06 06 06
Latches 48 26 14
Pads, Space etc. 847 38.2 189
Total 2259 1019 504

Table 2. Area estimates (mm?)
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Component 64-bit VPIAC 32.bit VPIAC 16-bit VPIAC

Multiplier (Reduction) 200 140 10.5
Multiplier (Final Add) 184 138 9.3
Adder 184 138 9.3
Significand Memory 8.2 T4 70
Header Memory 63 6.8 6.8
Long Accumulator 78 70 6.3
Shifter 8.9 8.2 78
Operand Selector 4.2 3.5 3.2
Exponent Add/Sub 44 44 44
Latches 20 20 20

Cycle Time 220 16.0 12.5

Table 3. Delay and cycle time estimates (ns)

component is estimated by calculating the total size of the macrocells (e.g., AND gates, full
adders, half adders, etc) that make up the component and then adding an additional 50
percent for internal wiring. The total area is estimated as the sum of the component areas plus
an additional 60 percent for control logic, global routing, unused space, and pad area. The
total estimated chip areas for the 64-bit, 32-bit, and 16-bit VPIACs are 225.9 mm?, 101.9 mm?,
and 504 mm?, respectively. In comparison, an IEEE double-precision coprocessor in the same
technology has a total area of 100.8 mm? [30].

Delay and cycle time estimates are given in Table 3. The delay of each component
is computed by taking the worst case delay of the critical path and adding 25 percent for
unexpected delays and clock skew. The multipliers use two cycles. In the first cycle the partial
products are generated and reduced to two numbers. In the second cycle these two numbers
are added together to produce the product. The cycle time for each design is the sum of the
multiplier reduction delay and the latch delay. The cycle times for the 64-bit, 32-bit, and 16-bit
VPIAGs are 220 ns, 160 ns, and 12.5 ns, respectively. An IEEE double-precision coprocessor
in the same technology has a cycle time of 20.0 ns {30].

5. Cycle counts and execution times

Table 4 shows the number of cycles required for operations on both point and interval
operands. The number of m-bit words in each operand is denoted by n. Short multiplication
refers to the product of a one word multiplier and an n word multiplicand. For the dot
product operation, k represents the number of elements in the two vectors whose dot product is
computed. The cycle counts reported include the cycles needed for instruction fetch, instruction
decode, reading the operands from the register file, performing the operation, rounding the
result, and storing the rounded result back into the register file. The cycle counts given assume
that the operands are already in the register file.

The algorithms used for addition, subtraction, short multiplication. hull, intersection, mid-
point, and width are O(n), and the algorithms for square, multiplication, division, and square
root are O(n?). The algorithm for dot product computation is O(k-n?). Although algorithms
with better asymptotic complexities exist, they require more control logic and are slower for
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Operation point operands interval operands
Addition/Subtraction 2n+8 4n 4+ 12
Short Multiplication 2n+12 4n+ 20

Square n/2+2n +12 n?+4n +22
Multiplication n?+n+12 2n? + 2n + 22
Division 3n? +4n+20 6n? + 8n + 38
Square Root 3n? +6n + 26 6n? + 12n + 48
Dot Product k(2n* +12) +2n+20 k{4n?+ 26)+4n + 36
Hull not applicable 2n+8
Intersection not applicable 3n+12
Midpoint not applicable 2n +8
Width not applicable 2n+8

Table 4. Cycle counts

Bits  64-bit VPIAC

32-bit VPIAC 16-bit VPIAC VPI-SP

64 541
128 7.37
256 161

@10)
(659)
(950)

512 501 (1010)
1024 186  (1130)

5.50 (403) 915 (243) 2220
117 (426) 285 (175) 4990
364 (421) 105 (146) 15300
135 (407) 413 (133) 54900
529 (397) 1640  (128) 210000

Table 5. Execution times for point dot product (us)

Bits  64-bit VPIAC 32-bit VPIAC 16-bit VPIAC VPISP

64 114 (409)
128 157 (629)
256 328 (396)
512 101 (1010)
1024 372 (1050)

115 (405) 187 (249) 4660
239 (413) 573 (172) 9880
783 (401) 211 (139) 29400
270 (378) 826 (123) 102000
1060 (368) 3290 (119) 390000

Table 6. Execution times for interval dot product (us)

small and moderate precisions. Hardware support and efficient implementation of the interval
operations allow them to be executed in approximately twice as many cycles as the equivalent

operations on point operands.

Tables 5 and 6 show execution times for point and interval dot products, with k = 16.
The number of bits {n-m) is varied from 64 to 1,024 bits. For comparison, the execution times
of the VPI software package (VPI-SP) are also given [12]. The ratio of the VPI-SP’s execution
time to the corresponding processor’s execution time is given in parenthesis. The cycle counts
for point and interval dot products are

CyclesDotPoint

32n? 4+ 2n 4+ 212,

CyclesDotInterval = 64n? +4n + 452.

For the coprocessors, the execution time is computed as the product of the number of cycles
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Bits  64-bit VPIAC 32-bit VPIAC 16-bit VPIAC VPI-SP
64 106 (262) 960 (307) 120 (232) 2780
128 132 (478) 154 (410) 270 (234) 6310
2356 211 (910) 345 (337) 810 (237) 19200
512 475 (1450) 104  (662) 285 (241) 68800
1024 143 (1860) 365 (726) 1080 (245) 263000

Table 7. Execution times for point polynomial evaluation (us)

Bits  64-bit VPIAC 32bit VPIAC 16-bit VPIAC VPI-SP
64 185 (303) 173 (329) 225 (249) 5600
128 238 (508) 2838 (420) 525 (230) 12100
256 396 (927)  67.2 (346) 161 (228) 36700
512 024 (1440) 205 (649) 569 (234) 133000

(685) 2150 (232) 499000

1,024 282 (1770} 728

Table 8. Execution times for interval polynomial evaluation {us)

and the cycle time. For example, for the 32-bit VPIAC, if the precision of the computation is
512 bits, then n = 16, CyclesDotPoint = 8,436, and CyclesDotlnterval = 16,900. Since the cycle
time for the 32-bit VPIAC is 16 ns, the execution times for point and interval dot products are

ExecDotPoint = 16x 8436 = 134976 ns =~ 135us,
ExecDotInterval = 16 x 16,900 = 270,400 ns =~ 270us.

The execution times of the VPI software package are determined by running one thousand
iterations of the operation on a 40 MHz Sparc IPX processor and taking the average execution
time.

The 64-bit VPIAC has the shortest execution times, but the largest area requirements.
The 16-bit VPIAC has the smallest area requirements, but the longest execution times. The
32-bit VPIAC offers a good compromise between the two designs, with fairly low area and
good execution times. When the precision is relatively low {ie., 128 bits or less), the execution
times of the 32-bit VPIAC and the 64-bit VPIAC are quite close. For example, for point dot
product computations with 64 bits of precision, the 32-bit VPIAC has an execution time that
is only 1.7 percent greater than the execution time of the 64-bit VPIAC. This occurs because
although the 64-bit VPIAC requires fewer cycles to compute the dot product, it has a longer
cycle time. For 16 element dot product computations, the VPIACs are 119 to 1130 times faster
than the VPI-SP.

Tables 7 and 8 show the execution times for point and interval polynomial evaluation,
for a 20 term polynomial. Horner’s rule is used, so that each term in the polynomial requires
1 addition/subtraction and one multiplication. The cycle counts for evaluating a 20 term
polynomial are

CyclesPolyPoint 20n? + 60n + 400,
CyclesPolyInterval = 40n? + 120n + 680.

When the precision is 64 bits, the 32-bit VPIAC actually has a shorter e*cemtxon time than the
64-bit VPIAC, due to its shorter cycle time. As the precision increases, the n? term dominates
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Bits  64-bit VPIAC 32-bit VPIAC 16-bit VPIAC _ VPI-SP
64 101 (6310) 108 (5000) 145 (4390) 63700
128 134 (11100) 185 (3050)  34.1 (4370) 149000
256 232 (20100) 43.7 (10700) 103 (4530) 467000
)
)

512 546 (32100) 132 (13300) 362 (4830) 1750000
1024 166 (39600) 463 (14200) 1360 (4830) 6370000

Table 9. Execution times for interval newton method {us)

and the 64-bit VPIAC has the shortest execution times. For 20 term polynomial evaluations,
the VPIACs are 228 to 1860 times faster than the VPI-SP.

Table 9 shows the execution times for one iteration of an interval Newton method [25].
The interval Newton method takes an interval X; which includes a zero of the function f(z),
and computes a tighter interval X;,; which includes the same zero. It employs the following
iterative equation:

X = (midpoim(X,-) - MM) nX;.

F(X:)
For the execution times shown in Table 9, f{z) and its derivative f'{z) are chosen as

flz) = 10z% -5z + 3z - 17,
f(z) 20z + 55 ~ 5.

Each iteration of the algorithm requires six additions/subtractions, 5 short multiplications, 1
square, 2 divisions, 2 square roots, 1 midpoint operation, and one intersection. Each of these
operations is performed on interval operands. The number of cycles per iteration is

CyclesNewtonInterval = 25n% + 93n -+ 386.

For all reported interval Newton methods, the 16-bit VPIAC has the longest execution times.
The 64-bit VPIAC has the shortest execution times, except when the precision is 64 bits. For
interval newton method, the VPIACs are 4370 to 39600 times faster than the VPI-SP. The
long execution times for the VPI-SP is primarily due to its slow computation of the interval
square root.

6. Conclusions

This paper examined hardware designs for VPIACs with data path widths of 64-bits, 32-bits,
and 16-bits. The 16-bit VPIAC has the shortest cycle time and uses the least amount of area,
but has longest execution times for the applications examined. The 64-bit VPIAC has the
shortest execution times for most applications, but uses the largest amount of area and has the
longest cycle time. The 32-bit VPIAC offers a good compromise between the two designs. It
uses less than half the area of the 64-bit VPIAC, and has comparable execution times for low
to moderate precisions. The design of the 32-bit VPIAC is described in more detail in [28]
The VPIAGs give the programmer the ability to set the initial precision of the computation,
determine the accuracy of the results, and recompute inaccurate results with higher precision.
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They can also be used to evaluate the accuracy of programs before running them on a general
purpose processor, or to select between various programs based on their accuracy for given
inputs. Direct hardware support for variable-precision, interval arithmetic greatly improves the
accuracy and reliability of the computation, and is much faster than existing software techniques
for controlling numerical error. The coprocessors are two to four orders of magnitude faster
than the VPI software package for variable-precision point and interval applications.
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