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Bounds of high quality for first kind Volterra 
integral equations 
HANS--JORGEN DOBNER 

E-Methnds for .,aflving linear Volterra integral equatitms of the first kind with smot~th kernels are 
considered. E-MethotL~ are a new type of numerical algorithms computing numerical approximations 
together with mathematically guaranteed do.~ error I~amds, The basic concepts from verifi~ttion thet~ry 
are sketched and such ~lf-validating numerics derived. O~mputati~mal experiments show the effidency 
t)f these prtn:edures being an advance in numerical methods. 

TeCHBIe rpaHmI~i peTneHm~ HHTerpaABHHX 
ypaBHeHHfi BOABTeppa nepBoro poAa 
X.-IO. AoGH~P 

Pat:cMa'rpllmtKrrc~t E-,~e'rrmta petitcrttt~ ~ttl~CftHmX HHT~:I'~I.'II~HbIX ypaBxeHttt~ L'k~:ll,'reppa ttepmwo l~lt;t 
C I','III21KI.IM H21pl)M. E-MeTon~ IIpejtc'raB.'l,qH)T co6o~i m:pl:r,~ THII HHCJICHNI~X a:ll'Opll'rMt)B, lltl31~IJIHRIlIIIIX 

IIO.'lytlltTb OJtH|)BpeMeHH~ C tI|tCJleHHhtMl! IIpHf/I;tgKCHHaIMil MaTCMRTIIttI~CKI! l';IpabITllpt)B~lHHble 'recblble 

|'p~IHIII|IM Iltll'pelllH(mTelTI. B pa&rre tl3Jlal'a~)TC~ ()CH(IBHblC IIOHI,IT~IJ, I "l'~}pllll Bep~lcabtlKallllll It e¢~ IIpII- 

.'IOgKeHII~I B (R~jlaUl'll CaMl}BeplllJi0111lltpyIOlllllX BbltlllClleHlfl?l. ql.lCdl{lHHl~e 31tCllepttMeltTm ltOKaZlMttaklT 

3~eKTIIBHtRTrI~ 3TIIX HflllblX BIMqltC./I~ITe21bhlIMX MeTO21tIB. 

1. Introduction 
We deal with the following linear Volterra integral equadon of the first kind 

f 0 S k ( s ' t ) y ( t ) d t = g ( s ) '  0 < s < a  (1) 

which will be treated under the same assumptions as in the paper of De Hoog and Weiss [1]: 

g is continuously differentiable on [0, a], (2) 

9(0) = 0, (3) 

k(s,t) is continuous for 0 < t < s < a ,  (4) 

Ok(s, t) exists and is continuous for 0 < t < s < a, (5) 
Os 

A k(s, s) # 0. (6) 
se[0,~] 

Then (1) is equivalent to the linear Volterra integral equation of the second kind 

z(s) = g'(s) fo" 1 ok(s,O =(t~ k(s,s) k(s,s) ~s ,dr, O < s < a .  (7) 
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The solution of (7) is uniquely determined and continuous. 

Remark. Equation (1) is ill posed in the sense of Hadamard (cf. Hadamard [5]). The equivalence 
of (1) with (7) shows us, that a small perturbation in 9 can effect a great change in x resp. y. 
Furthermore, the criterion (3) may be violated, so that (1) has no solution at all. 

If we introduce the new quantities 

then (7) has the form 

A h(s) := g'(s) (8) 
,~[o,,,1 k(s, s) 

1 ok(s,t) 
A q(s,t) := (9) 

(~.O~[o,~]x[O.~l k(s. s) Os 

f0 x(s) = h(s) + q(s,t)x(t)dt. 0 < s < a. (10) 

In operator notation, where I stands for identity, (1) and (10) can be shortly written as 

k(y ) = g 

resp. 
x = h + q ( x )  or ( I - q ) x = h .  

The enclosure of (1) is determined via an enclosure of the equivalent equation (10). In 
Section 2 the basic ideas from inclusion theory are explained. Then in Section 3 enclosure 
methods for linear Volterra integral equations of the second kind are derived. Some modifi- 
cations and generalizations are established in Section 4. Numerical computations are given in 
Section 5, these are compared with other results obtained by discredzation schemes. 

2. Enclosure theory 
We will discuss _existence and enclosure methods also called E-Methods for (1). These are 
methods providing the existence of a solution y of (1) whithin explicitly computable tight 
bounds. 

To reach this goal the following tools are necessary: 

2.1.  Computer arithmetic 
Precise formulation of the floating point operations +, - , . , / ,  i.e. "no floating point number 
lies between the exact and the rounded result of such a single floating point operation." 
Furthermore, there is need of an exact scalar product • as fifth floating point operation (see 
Kulisch and Miranker [9]). 

2.2.  Interval arithmetic 
The set of all real closed intervals A 

A = [A] = [ A , ~  = {x E RIA < x < A}, A, A E R  
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is abbreviated with I(R). The standard operations +, - ,  -, / are defined as usual (with 0 ~ B 
in case of division) 

A*B:={a,bIaEA, bEB}, . e { + , - , . , / }  (11) 

for the explicit representation of this operations cf. Moore [11]. The relations =, C, U, M are 
defined in a set theoretic manner (for vectors and matrices componentwise). For A E I (~)  
midpoint, diameter and absolute value are defined as 

1 
mid(A) := ~ ( A + A ) ,  

diam(A) := A - A ,  

]A] := m a x { l a t : a e A } .  

For intervals A, B, C, D the important rules hold 

A. (B+C) C A .B+A.C,  (12) 

diam(A i B) = diam(A) + diam(B), (13) 

A (a6A, b E B ~ a . b E A , B ) ,  (14) 
.e{+,-,-,/) 

A C_ C, B C D o  A*B C_ C*D. (15) 

2.3. Ultra a r i t h m e t i c  

The concept is founded on series expansion techniques as an arithmetic methodology. The pair 
(B..Q) consists of a real Banach space B with norm ll.[t and a set of (dyadic and monadic) 
operations ~ defined in B: 

{ } f~=  + , - , . , / ,  , ,exp, sin, c o s , . . . .  

"In this paper B is always the space 6'[0, a] equipped with the maximum norm. 

If {~i}isN, is a generating system of B, that is 

{~, ~,...} = B 

then the set I,~(B), n ~ N, 

I,~(B) = { ~ A~o3,Aj E I(")} . (16) 
j= l  

is called inter~'al screen. The pair .T'n = (In(B), ~)  is called (interval)functoid, if the enclosure 
operations ~. * E ~, are explained such that 

A V A u ,veu~y  (iz) 
uEUEIn(B) 

• £~ ~6 ~eVel,l(B) 
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holds; here A, V are univers~ and existen6al quantifier respectively. It is important to note that 
the objects of OVa are  sets of functions, whose graph is lying between two boundary functi(ms; 
so U E OVn characterizes the following subset in t3 

U = U ( s ) = { u ~ B I  A u(s) EU(.q}. (18) 
s¢[0,a} 

U 6 Ova is called function enclosure or interval extension of u E B if 

A u(s) c U(s). (19) 

In the same way enclosm'es for kernels k(s, t) or operators k are declared. Throughout 
this paper we agree that small letters u. v , . . .  always denote (real valued) elements of B, 
whereas capital letters U, V.... indicate the corresponding (set valued) elements of Or. 

For U = ~ uj~j, V = F_. vjg~j E OV. we define the coefficientwise enclosure UCnV, 
j= l  j= l  

A ~J c ~j. t2o) 
j= l  

Trivially we have 

U c_. V ~U C_V (21) 

For U E OVa we put 
diam(U) := sup {diam U(s)}. 

O<s<_a 
Further descriptions of the underlying ideas can be found in Kaucher and Baumhof [6], 
Kaucher and Miranker [7]. 

2.4.  A u t o m a t i c  d i f f e r e n t i a t i o n  

Let u, v be real valued functions, being sufficiently smooth in a neighbourhood of to. The 
Taylor coefficients (u)k of a function u are defined by 

1 dku. , 1 dku , (22) 
A (~)~. := ~-a-y(to)  resp. (~(~))~ := ~ / ; ( ~ ; .  
k>O 

For a constant c and the independent variable t we have 

(c)o = c, A (~)~ = 0, 
k_>l 

(t.)o=to, (t)1=l. A(t)k=°.  
k>2 

Furthermore, the following rules hold 

A (~ ± v)k = (~)~ ± (~)~, 
k_>o 

A (~. v)k 
k>O 

A (~/~')~ 
k>O 

k 
= Z(ub(v),_j, 

j=O 

; - ~)~ - ~ ( v ) ~ .  (u/~)~-j  . 
V .4=1 

(23) 

(24) 

(25) 

(26) 

(27) 
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Using the chain rule we obtain additionally 

A u ' =  + .  ( )~ (k 1) (~)~+~ (2s) 
k>_0 

so that we are able to calculate Taylor coefficients for a wide class of functions (Ralt [12]). 
If employing interval arithmetic in the recurrence formulae (23)-(28) there is available a 
constructive way to determine enclosures for given real quantities: 

n 

]~ u(t) EU( t )=~ , (u )k ( t - - t o )k+u( ( [ to ,  tl]))~+l(t--to) n+l. (29) 
t~[t0,h] k=0 

To bound rounding errors the Taylor coefficients are computed additionally with interval 
analytical means. 

2.5. Fixed point theorems for verified numerics 
In this context we restrict ourselves to a small setting concerning selfvalidating algorithms; here 
it suffices to validate the existence of a solution with a theorem corresponding to Schauder's 
fixed point theorem: 

Theorem 1. Let f : B ~ B be a nontrivial compact mapping, F an enclosure of f ,  0 # X ,  
X E 17:n such that the condition 

F(X)  G,, X (30) 

prevails, then there exists a fixed point ~ of f ,  which is enclosed within f ( X )  

V ~ ~ / ( x ) .  (31) 
~EX 

Proof. X describes an interval in the ordered Banach space /3 = (C[0, a], [[.l[o~), hence X is 
closed and convex. Due to (18), (19), (21) and the theorem of Schauder the foregoing assertion 
follows. [-'] 

2.6 .  Programming languages 
We need programming languages so that all the concepts of the Sections 2.t and 2.2 are 
available. Such a language is PASGAL-XSC (cf. Klatte et al. [8]), an extension of PASCAL. The 
advantage of this new language is among others that programs written in PASGAL-XSC are 
easily readable, because all operations have been implemented as operators and can be used in 
mathematical notation. 

3. Mathematically guaranteed bounds of high quality 
for linear Volterra integral equations of the first kind 

As outlined in Section 1, under the hypothesis (2)-(6), the solution of (1) is also a solution of 
(10) and vice versa. So we consider the problem 

L z(s) = h(s) + q(s,t)x(t) dt, 0 < s < a. (32) 
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The solution of (32) will be determined iterafively. To reach our main goal~guaranteed 
high precision bounds--the iteration is performed in the functoid ~,~ using function endosures 
Q, H for the kernel mad the inhomogeneity resp. (c£ Sections 2.3, 2.4). Let :~ be an initial 
~tess for the solution of (32) gained for example by a conventi(mal numerical scheme and 
X E ~n its interval extension. Consider the residuum 

u = o(x - Q)(k)<~ H 

then we iterate With a fixed, appropriate p E N according to 

X (i+n = - Q,,(s, t)42 U(t)  dt: 

v_l(,s,t)~) X t i ) ( t ) d t  =: F(X(i~) -~ .~ ,  i =O, 1 . . . .  

where the endosures Q~ of the iterated kernels qv satisfy the relation 

Q0 :-- I, 

A 0,,(~, t )  := ~0 ~ Q(s, r)O O~-~O', t) d~'. 
v,~N 

(a3) 

(34) 

(35) 

Now we formulate the first enclosure theorem. 
Theorem 2. I f  an iterate X (i) E .~n of  the process (34) satisfies the inclusion condition 

X (/+1) C,~ X (0 (36) 

then it is assured by computational means that a solution ~, E B o f  (32) exists within ~" E .~n: 

A ~(s) ~ k(s) = k(s)~x~'+l~O). (37) 
.,e[0.a! 

Pro~ By (19) and (35) we see that the compact operator f 

P rs  ~oS 
f ( x )  := - ~ J0 q~(s, t )u(t)  dt + qp+l(s, t )x ( t )  dt, 0 < s < a 

b"=O ~ 

maps the nonvoid closed convex set X (i+1) into itself, so that the existence of a fixed point ~) 
of" f with ~) E X (i'q) is guaranteed according to Theorem 1. With an approximafive inverse r 
fc,r the Fr~chet derivative of (I  - q) we rewrite (32) in the form 

x =  

a mean value argumentation now gives 

x = ~ - r ( ( I  - q)Yc - It) + ( I  - r[(I  - q ) -  hV(e))(x - z~); { between 5: and x. (38) 

Subtracting ~ on both sides and using the linearity of (I  - q) - h yields 

z - ' = - r ( ( I  - q )2  - h )  + ( I  - r ( I  - q ) ) ( z  - ~) .  (39) 
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In addition we can derive lim = 0, hence the Neumann series ~ q~' converges 

and coincides with ( I -  q)-l .  The operators q~ can be represented as integral operators with 
kernels q~(s, t) according to (35). If r is choosen as 

then 

r = ~"~ q~ 
v=0 

I - r ( I  - q) = qp+l 

from which it can be seen that :~ must be added to a fixed point of (39) to obtain a solution 
of (32). 

From (34) the definition of the enclosure operations (17) and the function enclosures (19) 
we obtain (37), thus completing the proof. [] 

ReTnark. Because lim ~ = 0, therefore there exists an integer p with Ilqp+lll = 7 < 1. In 
/ / ~ O O  

$ 

practice (34)is performed with a value p, based on some rough estimates for IIf q (s, t)dtII. 
0 

If the stopping criterion (36) can not be achieved after a prescribed number of iterations then 
the loop is repeated with an enlarged value of p. 

The interplay between (I) and (10) is described in 

Theorem 3. Let the kernel and the forcing term of (1) satisfy (2)-(6). I f  X E ~,~ such that 
tbr tJ~e solution x E B of  (10) holds 

A e x(s) 
se[0,a] 

then the solution y E B of (i) exists and 

A v(s) e x ( s )  (40) 
sE[0,a] 

Proof. Trivial because y = x according to the assumptions (2)-(6). [] 

In practice there is often available only a disturbed right hand side gS: 

If9 -9~11 <- 6 (41) 

where 6 is a known a priori error level. Unfortunately g 6 might not fulfill (3) or this 
perturbation causes great changes in the corresponding solution x. In the latter situation the 
diameter of the enclosing function X cannot be made arbitrarily small whereas the first case 
is trated in validation numerics by determing a set valued function G E 5v~ (strategies for this 
purpose are developed in Dobner and Kaucher [3]), such that 

96 E G, (42) 

diam(G) = 6, (43) 

V y(o) = o. (44) 

Now we can summarize 
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Theorem 4. I f  G E ,~n suffices (42)-(44) and i f  for an iterate X (i) E ~,~ of (34) the enclosure 

X (i+1) ~,~ X (i) 

is achieved, then it is guaranteed that there exists at least a pair (~:, ~) E X (i+1) X G such that 

[sk(s,t)~(t)dt=~(s), O<s<  a 
do 

and at the same time 

£ ok   t) (t)et ' ~,-~ o _< s < ~. 

Proof. Follows from Theorem 2 and (42)-(44). [] 

4. Numerical experiments 
The endosure methods described in the foregoing chapters have been tested by solving several 
examples, where for sake of clarity the number of decimals in displaying the errors were 
reduced. There has been used the functoid .T,~, where the underlying interval screen has been 
chosen as 

The endosure operations (17) are defined with the help of the following rounding process 

(, sJ, j <_ n (46) 
$3" = © so = s,~[0, aS-n], else. 

Example I. 

Solution: x(s) = 1. 
We compare our enclosure result with the result of De Hoog and Weiss [1], computing 

the solution of (47) with a discretization method (cf. [1], method(34)) based on an implicit 

Runge-Kutta scheme. 

enclosure method 
dimension n = 10 dimension n = 40 

s diam X(s)  diam X(s )  

0.3 1.1 • 10 -12 2 . 1 0  -13 
0.6 I . I .  10 -12 2- I0 -la 

0.9 1.1 • 10 -12 2. I0 -la 
1.2 1.1- 10 -12 2- 10 -13 

1.5 1.1 • 10 -12 2.10 -13 

discretlzation method 
stepsize h = 0.0375 

error of discretization method .... 

1.3.10 -8 
1.8.10 -8 
6.5.10 -s 
2.7- 10 -r  
4 .7 .10 -~ 
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Example 2. 

1 + s - s in(s)  - cos(s) = loS(1 + s - t ) x ( t )  dr ,  0 < s < 1.2. 

43 

(48) 

Solution: z(s) = sin(s). 

This equation is also taken from De Hoog and Weiss [1]. The verified result and the 
solution obtained by De Hoog and Weiss with an implicit Runge-Kutta discretization (cf. [1], 
method (34)) are placed side by side for various dimensions resp. stepsizes at the endpoint of 
the considered domain. 

e n c l o s u r e  m e t h o d  

dimension n diamX(1.2) 

I0 1.4. I0 -~ 
20 7.I- 10 -n 

40 7.1.10 -12 

discretlzation m e t h o d  

stepsize h error at s = 1.2 

0.3 -1 .2110-s  
0.15 - 8 . 0 . 1 0  - r  
0.075 - 5 , 0 .  I0 -8 

Example 3. 

l + s + e  -s = f o s ( l + s - t ) x ( t ) d t ,  0 < s < 9 .  (49) 

Solution: x(s) = se -s. 
Below we display the error of the enclosure method and of a discretization scheme, based 

on an implicit Runge-Kutta discretization (errors taken from De Hoog and Weiss [1], method 

e n c l o s u r e  m e t h o d  d i s cre t i za t i o n  m e t h o d  

dimension n = 40 dimension n = 60 stepsize h = 0.3 
s diam X(s) di'am X(s) error 

(34)). 

0.9 7.9.10 .7 5 .0 .10  -is 
4.5 2 .9 .10 -s 9 .3 .10  - t°  
7.2 4 .3 .10 .4 4.1 • 10 .8 
9.0 4 .3 .10 -s 4 .0 .10  -7 

- 4 . 9 . 1 0  -5 
1.1 • 10 -6 
1.1 • 10 - 7  

1.5.10 -s 

Here the accuracy of the E-Solution decreases as s increases, this arising from the fact 
that the diameter of the function enclosure for the inhomogeneity becomes very large at the 
end of the interval. If enlarging the functoid dimension, then the error of the enclosure 
solution decreases. The connection between a fixed functoid dimension and an increasing 
diameter of the domain is illustrated in the table below. 

Example 4. 

dimension 

20 
20 
20 

domain 

[0,1] 
[0,2] 
[0, 4] 

di= X(s) 
7 . 1 0  -13 

1.1- 10 -11 
5 .9 .10 -6 

fO s + 5 ( s ) = X  ( l + s - t ) x ( t ) d t ,  O_<s<_2, A E R .  (50) 
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Type of solution: polynomial. 

To study the stability behaviour of the enclosure solution, (50) is computed for the following 
perturbations 6: 

6 =  6 0 = 0 ,  
6 = 61 = [1 ,1000000000001]s+  [2 .10 -12 ,3  • 10-12]s 2. 

Furthermore, x is endosed for, different values of the parameter A. 

diam X(0.5) 
diam X(1.0) 
diam X(2.0) 

n = 3 0 ,  A = l  
6 = 6 0  

1.0.10 -is 
3 .0 .10  -12 

2.2. I0 -I~ 

n = 3 0 ,  A = l  [ n = 3 0 , ) ~ = O . 1  

(5 = 6x I 6 = 61 2.5.10 -12 1.6- 10 -12 
5.0 .10 -12 2.2.10 -12 
1.7- 10 -I1 3 .5 .10  -12 

In the next table we display the results for a disturbed inhomogeneity. 

diam X(0.5)' 
diam X(1.0) 
diam X(2.0)  

n = 30, A = 10 
6 = 61 

5.5- 10 -1° 
2 .4 .10  -3 
2 .6 .10  +6 

n = 60, A = 10 
6 = 61 

1.0.10 -12 
1.6- 10 -7 
6 .3 .10  -3 

Example 5. 

1 - cos(s) = fos cos(s - t )z(t)  dr, 0 < s < 1.95. (51) 

Solution: x(t) = t. 
This equation can be found in Linz [10], where x is approximated with a midpoint method 

and extrapolation. The results of the discretization schemes were adapted from Linz [10]. 

enclosure method 
n = 6 0  

s diamX(s) 

0.15 2.0- I0 -IS 
0.75 2.0- I0 -Is 

1.35 2 .0 .10  -11 
1.95 5.0- 10 -7 

discretization method 
h = O . 1  

error in midpoint method 

6 .0 .10 -5 
3.1 • 10 -4 
5 .6 .10 -4 
8 .1 .10  -4 

h = 0 . 1  
error in extrapolation 

1 ,0 .10 -5 
1.0- 10 -5 
1 .0 .10 -5 
1.0- 10 -5 

Again the enclosed solution is of high accuracy. 

5. Some final remarks 
In contrast to most conventional numerical methods the result of the enclosure algorithms are 
verified, i.e., it is mathematically guaranteed that the computed solution exists within a set of 
small diameter. Additionally E-Solutions are given in a functional form so that the value at 

each point is available with the same effort. 



BOUNDS OF HIGH QUALITY FOR FIRST KIND VOLTERRA INTEGRAL EQUATIONS 45 

As shown before, the accuracy achieved with enclosure numerics is often better than the 
accuracy obtained, e.g., with discretization schemes. 

The blowing up of X with increasing argument which can be observed for some examples, 
is affected by the choice of the basis and rounding according to (45), (46); it could be avoided 
if using more appropriate basis systems, e.g., Tschebyscheff systems and Tschebyscheff rounding 
(cf. Kaucher and Baumhof [6]). 
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