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arithmetic. The algebraic approach is proved almost always m give indusion-maximal inner interval 
estinmtes of the .~,luti~m sets c ,  nsidered. We investigate basic prnperties of the algebraic .~*lutions to the 
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we present the Simple and last suMifferetaial Nnotmt method, prove its convergence and discuss numerical 
experiments. 
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1. Introduction 

1.1 .  Notation 

In this paper,  intervals and other interval objects are denoted by boldface letters, fo r  example,  
A,  B,  C , . . . ,  x,  y,  z, while non-interval (real) objects are not distinguished in any way. Also, we 
need the following notation: 

I ~ - - t h e  set of  all real intervals Ix_, 5] on R, x < 5, 

I ~ n - - t h e  set of  n-dimensional interval vectors, 

K x n u p p e r  and lower bounds of  x respectively, 

mid x = (~ + x _ ) / 2 - - m e a n  value (midpoint) of  x,  

rad x = (~ - x ) / 2 ~ r a d i u s  of  x, 

Ix[ = max(I~[ ,  [x.X.i } - -abso lu te  value (magnitude) of  x, 

{ min{l~l,  JXl}, if 0 ~ x,  - - m i g n i t u d e  o f x  or the least distance between 
(x) = - 0, otherwise of  x and zero, in some sense the opposite of  P°intSthe 

absolute value, 

( . , - ) - - s t a n d a r d  scalar multiplication in ]R n, that is, the sum of  component  products. 
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If x = (xi)i=l is an interval vector, then all of the operations defined above are to be 
understood componentwise, so that rad x, for example, is the real vector (rad x~)i~l. We shall 
assume the topology on the interval space I~  n to  be defined in the standard way, that is, by 
the Hausdorff metric 

Q(x, y)  = max{llx_ - yIl,l[x - Yll} (1) 
and the norm of the interval vector x E I~  n is 

Ilxll l Ixl , (2) 
where ll" ]1 is a monotonic vector norm on R n. 

1.2. Problem statement 

The subject matter of this paper is certain problems relating to interval linear algebraic systems, 
but we shall not consider them in the context of the so-called self-validating computations, 
validated numerics etc. as is fashionable among modern numerical analysts. To our mind, that 
artificially narrows the scope of interval analysis, of the very interval idea. Personally, I prefer 
to take interval analysis primarily as a convenient and computationaIly efficient tool to deal 
with a specific kind of uncertainty, a special case of the currently popular bounded uncertainty, 

that is, as a tool of data analysis that is alternative to probabilistic and fuzzy models. It is this 
viewpoint that underlies our work, and I am sure the outlined area will be the major realm 
of applications of interval analysis in the years to come. 

So our main object under consideration is the interval system of linear algebraic equations 

Ax  = b (3) 

with an interval n x n-matrix A and an interval right-hand side n-vector b. It is common 
knowledge that (3) is only a formal symbol, which in itself can mean, for instance, a collection 
of all point linear algebraic systems A x  = b with elements belonging to A and b respectively. 
To pose the problem correctly, let us define what is meant by the solution or the solution set 
to (3). In interval analysis, the following four solution sets have been the subject of more or 
tess vigorous enquiry so far: 

• the united solution set formed by solutions of all point systems A x  = b with A E A and 
b E b, i.e., the set 

E33(A,b) = {x E IR '~ ] (3A E A)(3b E b)(Ax = b)} (4) 

historically first and undoubtedly the most popular of the solution sets; it is called by 
Western authors simply as solution set and usually is denoted by 2 (A,  b) (see [1, 17, 19] 
and the extensive references there); 

• the tolerable solution set, formed by all point vectors x such that the product A x  E b for 
any A E A, i.e., the set 

Zv3(A,b)  = {x E IR n I(VA E A)(3b E b)(Ax = b)} (5) 

(see [8, 13, 18, 19, 25, 28] et al). Neumaier [18, 19] and some other authors use the term 
"restricted solution set" for (5), denoting it •0(A.,b), but in our work we keep to the 
more adequate term "tolerable". The history of the set ~v3(A,b) and of some related 
problems was described comprehensively in the papers by Neumaier [18] and by Kelling 
and Oelschliigel [13]; 
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• the controllable ~lution set 

E3v(A,b) = {x E R" I (Vb e b)(3A e A)(Ax = b)} (6) 

formed by all point vectors x E R n, such that for any desired b E b we can find a 
corresponding A E A satisfying A x  = b (see [26]); 

• the algebraic solution [22], i.e., such an interval vector xa that, substituting into (3) and 
executing all interval arithmetic operations, results in the valid equality Axa - b. 

In particular, one can readily see from these definitions that 

~v3(A,b) C_ E~33(A,b) and ~3v(A,b) C ~33(A,b). 

As a visual example to illustrate the above concepts, we have chosen the popular interval linear 
system 

[2, 4] [ .2,1]  [ -2,  2] 
([_1,21 [2,41 ) x = ( [_.2,2] ) (7) 

from [3] repeatedly considered by various authors. Its solution sets are depicted in Figure 1. 

Aside from the formal definitions (4)-(6), there also exist more convenient characterizations 
for the solution sets under study. It is well known that for any interval matrix A and a point 
v e c t o r  X 

A - x = { A x t A E A  } 

X2 

:c3v = 0 I 

Figure 1. The solution sets to (4)-(7) 

E3~ 

IP 

Xl 
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where "." denotes the common interval matrix-vector multiplication [1, 17, 19]. Because of this, 

Evs(A,b)  = { x E ~ r ' t A . x C _ b } ,  

E3v(A,b) = { x e l ~ ' ~ ] a - x D b }  

and for the united solution set, as Beeck first pointed out in [4], 

E3s(A, b) = {x e R '~ ] A .  x N b # 0}. 

The direct descriptions of the solution sets (4)-(6), since their computational complexity 
grows exponentially with n, become' laborious and practically useless, even for systems with 
relatively small dimension. Besides, Lakeyev and Noskov [16] managed to prove that the 
problems of recognition whether E~3(A, b) or Esv(A, b) is empty or not are NP-complete 
for the systems with rectangular A (see also Rohn [24]). For this reason, one usually confines 
oneself to finding simple subsets of Ev3(A, b) and E3v(A,b), since for all their points the 
properties ( A - x  f'l b -fi q)), ( A - x  C_ b) or ( A .  x _D b) remain valid, respectively. Put it 
differently, we replace E3~(A,b), Ev3(A.b), and E3v(A,b) by their inner approximations, 
formulating the problems to be solved in the following form: 

Find an interval vector that is included in the tolerable (8) 
solution set (ifnonempty) of the interval linear system 

and 

Find an interval vector that is included in the controllable 
solution set (if nonempty) of the interval linear system. 

(9) 

We are going to seek the inner approximation to the united solution set too, but such a 
problem statement, though not completely new (see, e.g., [4]), requires justification. Traditionally, 
outer component-wise estimates for the united solution set are computed, and the standard form 
of this problem--the so-called %uter problem" for the interval linear algebraic systemsuis as 
follows: 

Find an interval vector that includes the united (lo) 
solution set of the interval linear system. 

The problem (10), being in fact a generalized sensitivity problem in interval ibrm, is a classical 
interval analysis problem, and a large number of papers has been devoted to various aspects 
of its solution from the early 1960's to now. However, the outer approximation of E33(A, b) 
contains points that have nothing to do with solutions of the system Ax  = b for some A E A and 
b E b, and due to this, such a problem statement may turn out unacceptable in many practical 
situations. The latter is especially typical for the observation and identification problems. So 
the third problem we shall deal with is 

Find an interval vector that is included in the (II) 
united solution set of the interval linear system. 

The problem (8) is the classical linear tolerance ,problem [8, 18, 18, 19, 28] (sometimes 
referred to as the inner problem for the interval linear system), with numerous and fruitful 
practical applications, and the problem (9) is a new promising interval algebraic problem that is 
believed to have extensive potential use in the automatic control. We shall call the problems (9) 
and (11) the control problem and the identification problem for the interval linear algebraic system, 
respectively .1 

1The attthor realizes that the terms "identificati0n pr,~lenl" and ~c, mtrol prtrblem" may seem a lxx~r choice, 
• ~mmwhat vague and pretentious. T h e  words "identitication" and "contr01? have very wide mearting, which ks in no 
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1.3. Algebraic approach 
The aim of this work is to present a new efficient algorithmic approach to the solution of 
the problems (8), (9), and (11), but the principles that underlie our construction are to a great 
extent unusual. Our construction is based upon the concept of the algebraic solution to the system 
(3) mentioned above. 

Definition I. An interval vector is said to be algebraic solution to the interval system of  equations 
i f  substitution it into the system and execution of all interval arithmetic operations results in a 
valid equality. 

This concept was first considered by Ratschek and Sauer in [22], but only a few papers on 
this subject have appeared for the last decade. Apparently, until now Western researchers have 
taken ~ e  algebraic solution solely as a theoretical curiosity. Nonetheless, if x~ is an algebraic 
solution of the interval system Ax = b, then, due to inclusion monotonicity, there holds 

Az c_ Ax= = b 

for any z E xa, so x= C Ev3(A, b). We have proved 

Proposition 1. I f  the interval vector xa is an algebraic solution to the system Am = b, then 
xa C_ ~v~(A, b), that is, xa is a solution to the interval linear tolerance problem (8). 

The linear tolerance problem thus reduces to a purely algebraic one: find an algebraic 
solution of the system (3). That is a very attractive feature, notwithstanding that the algebraic 
solution to the interval linear system does not need to exist even if the corresponding linear 
tolerance problem is compatible. It is demonstrated, for instance, by the one-dimensional linear 
tolerance problem with A = [-1, 1], b = [-2,3] .  The interval linear equation [ - 1 , 1 ] - x  = 
[-2, 3] has no algebraic solutions, but ~v~(A, b) = [ ' 2 ,  2] ~ 0. 

However, the numerical procedures ([30, 31, 33] etc) devised so far to implement the 
approach to inner estimation of the tolerable solution set based on Proposition 1 (the algebraic 
approach) are cumbersome and inefficient, the cause of this being bad algebraic properties of the 
classical intervalarithmetic I]~, that is, more precisely, the absence of additive and multiplicative 
inverses for most intervals. Under these conditions, it is reasonable, as Shary proposed in [25], 
to embed IR into a wider algebraic system that would have better algebraic properties, that 
would be richer in manipulation technique, with the more powerful analytical tools, and then 
to seek the solution in it. If the interval vector so obtained proves to lie in IR, then it will be 
a solution to the original problem. 

The algebraic completion of IR has been performed by Kaucher (see, for instance, [11, 
12] and references there), who called the algebraic system so constructed ~the extended interval 
arithmetic ~R". The elements of 1~ are real pairs [~_, ~] that are not necessarily subject to the 
coudition x < ~. Thus, fIR is made up by adding improper intervals [z__, ~], z__ > ~, to the set 
IR = {[z., ~] l z., ~ E R, x_ < ~} of proper intervals and real numbers. ]IR is an additive group, 
but the muttiplicative group of ]JR is formed only by intervals [z, ~] with z._~ > 0. Also, recall 
the definition of a basic involution of Kaucher extended arithmetic, namely, the map 

dual : l ~  -~ ~R 

way exhausted by the mathematical fi~rmulations (11) and (9). We suggest that in the context of this paper one should 
consider the phrases "identification problem", "contn~l problem" merely as labeks fi~r the nmthenratical tbrnmlations (11) 
and (9) respectively, 
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with action 
dual Ix, 5] = [5, x]. 

The inclusion order relation is naturally carried over to ~R: 

Ix_, 5] C [y, ~] ¢ ~  x > y_ and ~ < ~: 

The inclusion monotonicity of the interval arithmetic operations also remains valid in Kaucher 
extended arithmetic: 

x C _ x ' , y C _ y '  =~ x , y C _ x ' , y '  

for * e {+. - , . , / }  and any x, x t, y, y '  E 1I!~. 
The most wonderful fact is that the algebraic solution in Kaucher arithmetic can help in 

the inner approximation of the controllable and united solution sets too! 

Proposition 2. I£ the intervM vector xa is an algebraic solution to the system A x  = b and all 
its components are improper, then dual x~ C_ ~sv(A, b), that is, dual x~ is a solution to the 
interval linear control problem (9). 

Proof. Indeed, suppose an algebraic solution xa to (3) has only improper components. Then we 
have x D_ x~ for any x E dual xa  and 

Ax _D Axa = b 

due to the inclusion monotonicity. Therefore, x E E~v(A, b), and so dual x~ C Esv(A, b). [] 

Proposition 3. I f  the interval vector x~ is an algebraic solution to the system Ax = dual b 
and all its components are improper, then dual x~ C_ ~33(A, b), that is, dual x~ is a solution 
to the interval Jinear identification problem (11). 

Proof. One can readily see that, for an improper interval x and a proper interval y,  

y D_ x .'. '.- y N dual x 4 O. (12) 

Furthermore, if xa is an algebraic soludon to the equadon 

Ax = dual b 

and all its components are improper, then 

Ax  D Ax~ = dual b 

for any x E dual xa, that is, 

Ax  n dual (dual b) = Ax n b # (3 

because of (12). Recalling Beeck's characterization of the united solution set [4, 19], we may 
conclude that x 6 E~3(A, b), and so dual x~ C_ ~ ~ss(A, b). 

The one-dimensional equation 
a , x = b  

• 6 {+, - , - , / } ,  with proper intervals a and b provides a major illustration of what has been 
stated above and the remarkable interpretation of Kaucher interval arithmetic. Suppose that 
its solvability condition holds, that is, there exists an algebraic solution x= to this equation and 

xa = b , - l a  

in Kaucher arithmetic (%-x, denotes the inverse operation to %"). The interval xa may be 
either proper or improper, but the following exact equalities hold in the both cases: 

xa = ~w (a, b) if x ,  is proper and 

dual xa = ~bv(a, b) if xa is improper! 
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1 .4 .  Discussion 
As far as the author knows, the above calculations have not appeared earlier in explidt 
form, although the possibility of reducing the  linear tolerance problem to computation of the 
algebraic solution was pointed out in a very vague form by Zyuzin [31] not long ago. The 
algebraic approach to the inner estimation of the united solution set (Proposition 8) has been 
advanced simultaneously and independently by the author and by Kupriyanova [15] (which 
was revealed at the international conference INTERVAL'94, St.Petersburg, Russia, March 7-10, 
1994; see [27]). Proposition 2 about the inner estimation of the controllable solution set is due 
to the author. 

Nevertheless, our algebraic approach seems not to be completely original. The beginnings 
of the basic ideas for above theory are contained in some extremely general results by Gardefies 
and Trepat [9, 10], namely, in the theorems on the analytical foundation of extended arith- 
metic semantics. Unfortunately, these results were both so general and formulated so briefly 
and without necessary explanations that they had been hardly understood and recognized by 
specialists in interval mathematics. We are going to revive and enrich that approach on a new 
powerful computational basis. A key property of the algebraic approach is that it almost always 
gives indusion-maxiraal inner approximations of the solution sets considered. 

Our task is thereby to find algebraic solution to the system (3) in Kaucher interval 
arithmetic. Taking into account the original statements (8), (9), and (11), it will suffice to 
restrict our attention to the case of proper interval matrix A. What ways can we offer to 
tackle that problem? 

The field of numerical analysis has amassed a rich arsenal of both theoretical approaches 
and practical algorithms, but an overwhelming majority of them has to do with operator 
equations in linear spaces. Formally, these methods are not directly applicable to computation 
of the algebraic solution ta  the system (3), since ~ n  is not a linear space. We avoid this 
difficulty by embedding II]R '~ into the standard linear space ]R 2n. Further, we assert existence 
and uniqueness results for algebraic solutions: if the proper interval matrix A contains a special 
kind of nonsingular point matrix and is sufficiently narrow (i.e., if llrad All is sufficiently small), 
then the interval linear system A z  = b has an algebraic solution in Kaucher arithmetic and it 
is unique. The "embedded" nonlinear equation obtained in R 2n corresponds to an order convex 
operator, and to solve it we use the subdifferential Newton method, which is shown to converge to 
an algebraic solution of the system (3) if the proper interval matrix A is "sufficiently narrow". 

By and large', one may characterize the algebraic approach to the linear tolerance problem 
(8), the control problem (9) and the identification problem (11) as extremely efficient from 
the computational viewpoint (in practice it converges in a few iterations), but not suffidendy 
sensitive to examine the problem comprehensively, since an algebraic solution with the desired 
properties does not need to always exist. In particular, the technique developed will be useful 
for very quick computation of solutions to (8), (9), and (11) (in real time devices, for example) 
provided that their ~good solvability" is given a pr/0r/. 

2. Interval arithmetics 
Classical interval arithmetic is the algebraic structure (IR, + , - , - , / )  whose support is formed 
by intervals [:r, ~], :r < 5, of the real axis, while the binary operations--addition, subtraction, 



ALGEBRAIC APPROACH TO TIIE INTERVAL LINEAR STATIC IDEIVI'IFICATION... 

multiplication and division~are defined so that the fundamental property 

x * y =  { x * y t x E x ,  yEy}  

11 

(13) 

holds for intervals x, y such that (x * y), * E {+, - , . , / } ,  makes sense for all x E x, y E y. 
Hence, we have 

+ = 

- [_y, = - - _y], 

[_x, 3] [y, fl] = [minIx_y, x_V, zy, ~-9}, max{z-Y, _z~, 3y, ~-~y}], 

/ = l / y ]  f o r  0 .  

The classical interval arithmetic IR is known to be a commutative semigroup with respect 
to the addition and the multiplication, and is not even a lattice with respect to the natural 
inclusion ordering, since not every two-element subset of IT~ has infimum. "Incompleteness* 
both of the algebraic and of the order structures of IR naturally stimulated attempts to create a 
"more convenient" interval arithmetic based on it. As mentioned above, the algebraic completion 
of IN carried out in the works by Kaucher [11, 12] resulted in the algebraic system called "the 
extended interval arithmetic ][R'. We shall also use this term as well as the more academic 
oneu"Kaucher  interval arithmetic". Afterward, Gardefies and Trepat studied this arithmetic 
and established some its helpful properties and important applications [9, 10]. 

Taken as a whole the extended interval arithmetic ]L~ is a quite nontrivially arranged 
algebraic system. In this section we describe only those aspects of it that are necessary for our 
future consideration. In particular, for this reason we do not at all dwell on extended interval 
division. The complete description of ]IR may be found in [9, 11, 12]. 

The elements of ]IN are the pairs [;~, ~] of reals, that are not connected by [he obligatory 
condition _x _< 3. Thus, I~  is obtained by adjoining hntrroper intervals Ix, ~], x > 3, to the set 
IN = {[~,3] I x_,3 E N,_x ~ 3} of the proper intervals and the real numbers. The proper and 
improper intervals, the two major parts of [~, may change places as the result of the duality 
mapping 

dual : ]IN ---} lrR 

such that dual Ix_, ~] = IN, x_.]. As in classical interval arithmetic, 

x _ C y  ~ x _ > y  and ~ _ < y  

but the extended interval arithmetic is a conditionally complete lattice with respect to this 
inclusion order relation [5], in contrast to I~. In other words, 

7EF 

maximum with respect to the inclusion ordering) and 

A x~ := infc{x~ t 7 E F} = [sup<{_x~ 17 E F},inf<_{~ 17 ~ F}] 

minimum with respect to the inclusion ordering) are elements from ~IR now, if {x~ 17 
index set F} is a bounded family of "extended intervals". 
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Addition and multiplication by real numbers are defined upon ~ by 

: =  

{ [Az_,)~], if A E ~+, 
A. [z,J] := [A~,Az], otherwise. 

Thus, each element x of IIR has a unique additive inverse, denoted ~opp x", and 

x + opp x = 0 =~ opp [x_z., 5] = I-z_., -3] ,  
opp (Ax) = k opp x, )~ E R, 
opp z = -x, x 6 R. 

Inclusion monotonicity for addition: 

x C x / ,  y C _ y '  =~ x + y _ C x ' + y ' .  

s, e. s ~ Y  

It follows directly from the definition that, with respect to addition, fIR is a commutative 
group, which is isomorphic to the additive group of the standard linear space R 2. Sometimes, 
we denote for brevity the inverse operation for addition, i.e., the inner (algebraic) difference of 
1fiR, by e ,  so that 

x @ y  := x + opp y. 

The following fundamental formula generalizes the property (13): 

(14) 
zEpro x yEpro  y 

where 

M x := { V i f x i s  proper, 
A otherwise 

x if x is proper, (proper projection of the interval) 
pro x := dual x otherwise 

It expresses the connection between the result of the interval addit ion:x+ y and the results of 
separate point additions z + !1 for z E pro x and y E pro y. 

The set of basic involutions id(.), -(-) ,  opp(-), dual(-) multiply (compose) according to the 
following Cayley table: 

O 

id 

opp 
dual 

id - opp dual 
id - opp dual 
- id dual opp 

opp dual id - 
dual opp - id 

Table 1. 

In other words, their set's multiplicative structure coincides with the well-known Klein's 

four-group. 



ALGEBRAIC APPROACH TO THE INTERVAL LINEAR STATIC IDENTIFICATION...  13 

The following inclusion properties: 

x C _ y  =~ - x  C_ - y ,  
dual x _D dual y, 
opp x _D opp y, 
Ax C_ ,~y, A E R .  

Multiplication in Kaucher arithmetic is also defined on the basis of the representation (14): 

x . y  = [/]~ [/]~ (~. y). (16) 
xEpro x yEpro y 

To write this definition out in the explicit form, put 

P := { x e m l ( _ ~ > 0 ) a ( ~ > 0 ) } ,  - P  := { - x l x e P } ,  
U := { x e ~ R ] x < 0 < ~ } ,  V :-- { x e m l d u a l x e U  } 

so that ]I]R = T' L.J ( -7  ~) LJ/,/L.J "1). Then we have (see [12]): 

x ~ P  

x c b /  

x e - 7 '  

x E ' ~  

y E P  y E U  y E - P  y E ~  

[min{~ ,  ~y}, [~y, ~ ]  0 
[x~, ~yy] max{xy__, ~y}] 

[=EY_, ~Y] 0 [~_y., ~y] [raax{xxxx , R-~y}, 
min{x~, ~y}] 

Table 2. Multiplication in Kaucher arithmetic 

Though it is not evident from definition (16), extended interval multiplication turns out 
to be commutative and associative [9, 11, 12]. But the multiplicative group of ~ is formed 
only'by intervals [x_x., 5] with x~ > 0, since the cancellation law does not hold on any wider 
subset of ]I•. 

Other properties include: 

dual (xy) = dual x .  dual y, 
~(~) = (;~x)y = x(~y), ~ ~ ~, 
xC_x', yC_y Y =~ x - y C _ x ' . y ' .  

Extended arithmetic subtraction and division are defined: 

x - y  = x + ( - 1 ) - y ,  

x / y  = x .  [ I /y ,  l/y_] for 0 ~ pro y. 

Thus, these operations are also inclusion monotone. 

The interrelation between the multiplication and the addition is: 

if x is proper, x -  (y + z) C x .  y + x -  z, (subdistribufivity) 
if x is improper, x .  (y + z) D_ x .  y + x .  z (superdistributivity) 
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and these inclusions turn into exact equalities for thin x. 
By induction, the above semantic interpretation (14) and (16) may be generalized to some 

rational expressions. Let x = ( x l , . . . ,  xp) be a proper interval vector, y = (Yl,- . . ,  Yq) be 
an improper one and f ( x , y )  (= f ( x l , . . . , x p ,  y l , . . . ,yq))  be a rational expression having only 
one occurrence of each variable (if at all) to the first power. We designate by f (x ,  y) the result of 
substitution of the vectors x, y in f and execution of all extended interval arithmetic operations, 
that is, the corresponding "natural interval extension". Then (see [9]) 

f(x,y)=V A A 
z E x  ~/Epro y yEpro y z E x  

In the extended interval arithmetic, the operations with vectors and matrices are defined 
similar to those in IR. The sum (difference) of two interval matrices of identical size is an 
interval matrix of that same size formed by elementwise sums (differences) of operands. If 
X = (x~) E li]~ "~×l and Y = (yq) E IIR ~X'~, then the product of the matrices X and Y is a 
matrix Z = (z~j) E R m×'~ such that 

l 

zij = ~ xiayaj. 
k = l  

The above semantic interpretation is not always the case for interval matrix operations, 
remaining valid only for addition and subtraction. In multiplication, we have merely their 
weak forms. Even for the proper X, Y, in contrast to the pure equality (13), there holds [19] 

X Y  = the interval hull of { X Y  [ X E X, Y E Y} 

where the "interval hull" is the smallest (with respect to inclusion) interval matrix containing 
the original set. Still some semantic conclusions can be done too. Further, we will consider 
the extended interval matrix-vector multiplication at length. In particular, if Y is a proper 
interval matrix, v is an improper interval vector and V, A are componentwise extensions of 
the corresponding lattice operations, then 

A E A  r e p r o  v r e p r o  v AEA. r e p r o  v 

The definitions of the midpoint, the absolute value, etc. are carried over to the entire 
arithmetic ItR in a straightforward way and, in the componentwise manner, over the interval 

space I ~  ~. 
Finally, the norm I1' I] is defined on IIR '~ as in (2), while the topology on the extended 

interval space ~R '~ is set; similar to (1), by the metric 

y) = IIx e yll. (t9) 
All the extended arithmetical operations, the matrix-vector operations in IIR n as well as the 
operations V, A and the basic involutions of ]II~ n are continuous in the metric (19) (see [12]). 

m Immersion into linear space 

3.1. Definit ion and basic properties 

The problem we have thus arrived at is to find an algebraic solution to the interval linear 

system 
Ax = b, 
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Essentially, it is the ordinary problem of the solution of an operator equation, which much of 
the traditional numerical analysis deals with. The peculiarity of the situation is that the main 
set LR n on which the equation is considered is not a linear space at all, which is due to the lack 
of distributivity. So most of the existing computational approaches are not directly applicable 
to our problem. 

In actual fact, we can easily avoid this difficulty by making use of an embedding of ]tR a 
in the common and well studied Euclidean space R 2n. It is fairly simple to realize that each 
bijection L : ~ n  __~ N2~ induces .the bijection 

L~: (ItN") ~R" -~ (R~") R~" 

from the set of all mappings over fIR n to the set of all mappings over R 2'~, such that each 
¢ : ~ n  ~ ]~Nn is matched to the induced mapping 

¢~ = ~ o ¢ o L -1  : • 2 .  ~ 1¢~. (20 )  

where ~o" stands for composition. We can thereby change the problem of solution of the 
equation in ]IR '~ to the problem of solution of the equation in ]~2,~, a situation that modern 
numerical analysts are much used to. The major question about the construction of the 
embedding is to provide a reasonable compromise between its simplicity and convenient form 
o f  the induced mappings ¢~. We take the following 

Definition 2. A bijective mapping L : ~ '~  --* N 2" is said to be an immersion of  ]IN n into N 2n 
provided that it satisfies the properties 

(i) L is an isomorphism o f  the additive groups I[R n and N 2n, 
Oi) L is a homeomorphism of  the topological spaces ]IR '~ and N 2n. 

It follows immediately from this definition that 

L(0~R.) = 0R~,,  

~(opp x) = - t ( x ) ,  x E m " .  

In addition, the inverse mapping L -1 : R 2'~ ~ ~ n  also satisfies conditions (i)--(ii) from the 
definition of ~, and 

~-~(0R~-)  = 0IR°, 

C I ( - x )  = opp CI(x) ,  x E R 9n. 

Proposition 4. An  immersion is a positive-homogeneous mapping. 

Proof. It is standard. If x E IN n and k is a positive integer, then 

~(kx) = ~(x + x + - . .  + x)  = k~(x). 
k 

If k = 1/l  for some positive integer l, then 

,~(kx) + ~(kx) + . . .  + ~(kx) = ~(x) ~ ~(kx) = t % ( x )  = k~(x). 
7 
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Thus, the equality ~(kx) = ks(x) is valid for each positive rational k. Extension to all 
nonnegative reals is performed by passage to the limit, making use of the continuity of 5. [] 

In particular, 

+ = + 

+ = + 

for any A, ,u E R + and x, y E f ir  n, x, y E R 9-", 

Proposition 5. If  5 : ~ n  ~ Run is an immersion and T is a nonsingular linear transformation 
of  I~ 2'~, then (T o L) is also an immersion. Conversely, any other immersion ~ is represented in 
the form (T  o ~) for some nonsinffular linear transformation T : R u" --~ R 2'~. 

Proof The first statement is substantiated trivially. To prove the second one, let us consider the 
mapping (x-1 o 5). Evidently, as the composition of two isomorphisms, it is an automorphism 
of the additive group R 9n, that is, a nonsingular linear transformation of the space Ru'L We 
may take T = e; -1 o ~. r'] 

3.2. S t a n d a r d  i m m e r s i o n  

The significance of Proposition 5 is that it asserts the equivalence of all immersions of IfR n 
into IR u'~. Any two of them are the same to within a nonsingular linear transformation of ~u-, 
and so, when constructing a specific immersion, we may be guided only by convenience of its 
representation in the standard bases of ~ n  and Run. We recommend for practical realization 
the embedding of ]~'~ in R un that acts as follows: 

@1, x ~ , . . . ,  x , , )  ~ ( - x t ,  -_xu, • • . ,  - _ x , ,  x i ,  x : , . . . ,  ~,~) 

i.e., when the lst, 2nd , . . . , n - t h  components of the vector ~(x) are set to equal to the left 
endpoints of x l , x u , . . . ,  x~ with opposite signs, and the (n + 1)- th, . . . ,  2n-th components of 
~(x) are set to equal to the right endpoints of x l , x u , . . . , x n ,  respectively. We shall refer to 
the mapping (21) as the standard immersion o'. 

Each immersion 5 : ~t~ n --~ ~un naturally induces a partial ordering '~C" on the linear 
space R 2n, which is an image of the inclusion order on ]IR'L Specifically, for x, I /E  R 2n one 
can say that ~x does not exceed y" and write "x E y" if and only if ~-l(x) C 5-1(y) in LI~'L 
Since for any x, y, u, v E 1~2,~ there holds 

x E y ,  o~ER + ~ c~xCay ,  
x E y ,  u , E v  ~ x + u G y + v  

then the partial order "~" conforms to the linear structure of R 2n and therefore is set by some 
positive c o n e / ~  = {x E ~2n I ;T ~ 0} [5, 14, 20], SO that 

x E y ¢=:=~ Y -  x E KE. 

Clearly, the concrete formulas for "G" depends on the form of immersion, but for the 
standard immersion (21) they look especially simple. It is not hard to see that then 

x E y if and only if x < y in the componentwise sense (22) 
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that is, if xi _< y~, / = 1 , 2 , . . . , 2 n .  The positive cone under the standard immersion is 
correspondingly 

K< = {x E R 2" [ x~ > 0, i = 1 , 2 , . . . , 2 n } .  

Thus the induced partial order on the space R 2n coincides with the common componentwise 
ordering and this is the main justification of the form (21) for the standard immersion that 
we have chosen. Furthermore, the above is a sufficiently telling argument for us to treat from 
now on only the standard immersion a of the form (21) as well as the componentwise ordering 
(22) on R 2n, which is associated with a. So shall we. 

Consider now the properties of the mappings (20) induced over R 2'~ by the immersion of 
the interval space. The simplest and the most elementary of them are those corresponding to 
the multiplication by thin matrices in ]LR n. 

Proposition 6. If  ¢ : ]~n _.~ []~n is an operator of  multiplication by a thin matrix Q = (qij), 
Q E ]~n×n i.e., ¢(X) = Qx, then ~b ~ is a linear transformation of the space ]~2n. For the 
standard immersion c~, the matrix of the linear transformation ~ has the size 2n x 2n  and 
the following block form 

( Q+ Q- ) Q _  Q+ (23) 

where the matrices Q+ = (q~) and Q -  = (q;~) a re  the positive and negative parts of  Q 
respectively, that is, such that 

q+ = max{qii, O} and q~ = max{-qq ,  0}. 

Proof. The first statement immediately follows from the distributivity relation 

a .  ( x + y ) = a . x + a . y  

that is valid for thin a, while the second one is a consequence of the multiplication rule 

A. [_.x, 5] = if ,~ e ~+ then [Ax, ~ ] ,  else [ ~ ,  ~x__] 

and formula (21). [] 

The block 2n × 2n-matrix from Proposition 6 is so significant in our theory that we shall 
use a special designation for it. 

Definition 3. For a given n × n-matrix Q, we put (o o) 
Q- Q+ 

Notice that for any matrices C, D E R n×n the relation 

C<_D 

in the common componentwise sense does not necessarily imply 

C a < D  ~. 

The other important feature is that the matrices Qa E R 2nx2n are always non-negative: such 
matrices must represent "_~"-isotone operators on R 2n that correspond to inclusion-isotone 
multiplication on Q in ]~n. 
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3.3. z - n 0 n s i n g u l a r  matr i ce s  

Below, the mappings ¢d that satisfy the nonsingularity condition 

• ( u ) # 0 .  -'. ?- u # 0  (24) 

will play a leading role. It is vital to note that the nonsingularity of the point matrix Q in the 
sense of classical linear algebra does not necessarily mean that the corresponding operator of 
multiplication by Q in l[l~ n is also nonsingular in the sense of (24). The matrix 

(11 - 1 1 )  (25) 

for instance, has nonzero determinant, but 

i.e., this matrix generates a .singular positive-homogeneous operator on tIIR 2. To distinguish 
such cases, we give the following 

Definition 4. We say that the matrix Q E R nxn is z-nonsingular, i f  multiplication by it meets 
the nonsingularity requirement (24) on ]II~'*, that is, i f  

Q x = O  -: '.- x = O E I R ' L  

Otherwise, we call the matrix Q z.singular. 

Obviously, if a matrix is singular in the common sense, then, afortiori, it is z-singular. As 
a corollary of Proposition 6 we get 

Proposition 7. The point matrix Q E p n×n is z-nonsingular i: and only i f  the matrix Q~" E 
R 2"~×2" is nonsingular in the common sense, i.e., i s  determinant does not equal to zero. 

For example, the identity matrix (1 0) 
"°o 

0 1 

is z-nonsingular, and the matrix (25) is z-singular. All nonnegative nonsingular matrices are 
z-nonsingular. 

Our immediate task is to show that there are sufficient z-nonsingular matrices. 
From a more general viewpoint, the operators of multplicafion by a matrix (both point 

and interval) are continuous positive-homogeneous operators on 1~'~. The topology on their 
set is determined by the standard norm 

II~ull 
I1¢'11 = sup llujj¢0 llull 

which is equivalent to 
II~H = sup II'~ui[. 

IJull=l 

Since the unit sphere is compact in I[R '~, nonsingularity of ¢d is equivalent to infllulf=l II~ull > 0. 
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Proposition 8. The nonsingLdar positive-homogeneous operators on ~ n  form an open subset 
in the set of all positive-homogeneous operators. 

Proof. Let ~t' be a nonsingular positive-homogeneous operator on ]IR n with 6 = infllutl=l Ileull > 
9, and let e be a positive-homogeneous operator such that I1¢ e ell < 6. For any u E fIR n, 
we have 

t leul l  = l i eu  e (¢ e e)u l l  > IlCutl - tt(,z.' e e)u l l  

and because of this, 

inf llOull > inf llq'ull - sup I1('I' e e )u l l  = 6 - I1¢ e ell  > 0. 
liull=l - llull=l IMI=I 

Hence, the positive-homogeneous operator  6) is also nonsingular. [3 

We have thus shown, among other things, that the set of z-nonsingular matrices is nonmeager 
in the sense o f  Baire [6] under  the natural choice of the topology over the sets of  all matrices 
R nxn or ]I~nxn, or, in other words, is of the second Baire category. ! n particular, the set of 
all z-nonsingular matrices form an everywhere dense subset in the set of  all.square matrices. 

4. Investigating the equation 
As the result of the embedding, we have reduced investigation of the mappings IIR n --~ ll~ n to 
investigation of  the mappings ~2,, ~ R2n of the standard Euclidean space. In -particular, we 
have turned the original problem that concerns us, i.e., that of finding zeros of  

~ (u )  = A u  e b,  

into the problem of solution of  the equation 

¢ ( z )  = 0 (26) 

in R 2n such that {~ = cr o cpo ~r -1 : R 2'~ ~ R 2n, i.e., 

On the other hand, theoretical investigation of  the original equation is sometimes easier or 
more convenient in the interval space I[~ n, when. useful properties of interval arithmetics are 
invoked. So, we will utilize both above representations of  the equation under study. 

We would like to remind the following fundamental definitions [5, 7, 14, 20]: 

Definition 5. Let [7 be a linear space with a partial order 6. An operator T : U ~ U is called 
isotone wit[~ respect to the partial ordering "~-<" i f  T(x)  ~ T(y) for any x, y E U, x ~ y. An 
operator T is called antitone i f  T(x )  ~ T(y)  for any x, y 6 U, x ~ y. The operator T is called 
positive i f  x ~ 0 implies T(x)  ~ O. 

For linear mappings, isotonity is known to be equivalent to its positivity. 

Proposition 9. The induced mapping q? : R 2n ---* Run, defined by (27), is isotone [or any 
interval matrix A E ~2nx2n. 
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Proof. Let x, y E R 2", x < y. 
property, 

that is, 

Then o'-X(x) C o--l(y), and by the inclusion monotonicity 

A a - I ( x )  ~ b _C A a - l ( y )  @ b 

as required. V1 

4.1. Existence and uniqueness of algebraic solutions 
The next two results--Theorems 1 and 2 - -a re  very important, but their comprehensive proofs 
involve much tedious mathematics, so in this short paper we present only their brief outlines. 

Theorem 1. It" the interval matrix A E ~R "×n is sutticien@ narrow (that is, i f  [[rad A[[ is 
suff~cientIy small) and pro A contains an z-nonsingular point matrix, then the interval linear 
equation A x  = b has an algebraic solution for any b E ][R'L 

Proof. It is based on the theory of the topological degree of a mapping (see, e.g., [20]). 
Let A from A be an ~-nonsingular point matrix. If A is sufficiently narrow, then we may 

perform a continuous nonsingular homotopy (even the linear homotopy) from the mapping 
(27) to the mapping 

As the consequence of the Poincare-Bohl theorem the topological degrees of ~(x) and ~(x) 
coincide with respect to a sufficiently large ball having the center in the origin of coordinates. 
The equation Aa: = b always has a solution, so does Ax  = b too. [] 

Theorem 2. I f  the interval matrix A E ]~n×n is sult~ciently narrow and pro A contains only 
z-nonsingular point matrices, then the algebraic solution to the interval linear equation A x  = b 
is unique. 

Proof First, the equation A x  = b may have only a finite number of different isolated solutions, 
if all point matrices A E p r o A  are ~-nonsingular. Second, even the above situation is impossible 
for sufficiently narrow A, when the mapping (27) is "almost linear" in R ~. [] 

Without uniqueness, algebraic solutions to A x  = b may constitute entire order segments. 
From a practical standpoint, inclusion-maximal and inclusion-minimal algebraic solutions are 
of prime importance, and there can be several noncomparable such solutions. For example, 
if A = [-1,  1], b = [-1,  1], every interval of the form [~, 1] and [ - t ,  ~], - 1  < ~ < 1, is an 
algebraic solution. Hence, the equation has one inclusion-maximal algebraic solution [-1,  1] as 
well as two noncomparable inclusion-minimal solutions - 1  and 1. 

If the set of algebraic solutions to (3) is bounded, then each algebraic solution is contained 
in an inclusion-maximal algebraic solution, and contains an inclusion-minimal algebraic solution 
t o  (3). 

Indeed, if an algebraic solution x~ is not contained in a wider algebraic solution, then it is 
maximal. Otherwise, let us take the maximum V{Y E 1IR '~ [ A y  = b, y D xa} of all algebraic 
solutions containing x~. We may conclude from the continuity properties of the arithmetical 
and V-operations on ]t~ that the interval vector so obtained is also an algebraic solution. The 
second assertion is proved similarly, taking the inverse partial ordering. 
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The next interesting example is the interval system 

[2,-21 ) 
which also illustrates Theorem 2 as well as Proposition 3 about the inner estimation of the 
united solution set. Here, we have the whole parametric family of algebraic solutions 

[1 - t , - 1  + t] 

with t E R. All these algebraic solutions are noncomparable and each of them is simultaneously 
both inclusion-minimal and inclusion-maximal. 

Note that Theorems 1, 2 and Proposition 9 hold true for any interval matrix A from 
I[]R nxn and right-hand side vector b E I[IR n, not necessarily proper. The rest of this section 
will be devoted to equations that arise in the implementation of the algebraic approach to the 
linear tolerance, control and identification problems (8), (9), (11), namely, to the equations with 
the proper interval matrices. 

4.2. Maximality of the interval estimates 
Kupriyanova was the first to notice that the algebraic approach to the inner approximation of 
the united solution set almost always gives estimates which are ~x/ma/by inclusion. In [15], she 
formulated and proved the corresponding statement, but only for nonsingular interval matrices 
A. Below, we give the most general formulation of that result and its proof of our own. 

Theorem 8. If  the improper interval vector x~ is an inclusion-minimal algebraic solution to 
the system Ax = dual b, then dual xa is an inclusion-maximal interval vector contained in 
I]3~(A, b), that is, provides an inclusion-maximal solution to the linear identification problem 
(1i). 

Proof. We shall carry it out ad absurdum. Assume that a proper interval vector y exists such 
that y D dual x=, y # dual xa. Then dual y C x~ and 

A .  (dual y) C Ax~ = dual b. (28) 

It should be recognized that the equality in (28) is impossible for the minimal algebraic solution 
x=, by its very definition. In view of the representation (18), we have the strict inclusion 

A Ay  c dual b 
yEy 

or, more precisely, 

inf~ey(A--Y)i - hi, i = 1, 2 , . . . ,  n, 

with at least one of these 2n inequalities (say, the k-th) being strict. 

Let us take the vector 9 E y which provides that strict inequality. We may have 

either (A__yy)k > bk or (A'Y)k < h~ 

but in both cases A~ N b = 0. Hence, ~ ~ ~33(A, b) due to Beeck's characterization, and so 
y ~ Ig~3(A,b). [] 

The next two "maximality theorems" have been established by the author recently. 
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Theorem 4. I f  the proper interval vector xa is an inclusion-maximal algebraic solution to 
A x  = b, then it is an inclusion-maximal interval vector contained in Ev3(A,b), that is, 
provides an inclusion-maximal solution to the linear tolerance problem (8). 

Proof. Let us take an interval vector y D xa, y # xa. It follows from the definition of the 
maximal algebraic solution that 

A y  D b (29) 

where the equality is impossible. With respect to interval vectors, such as A y  and b are, the 
inclusion (29) means that a whole face of Ay  exists that does not belong to b. Formally, there 
exist an index k E {1,2 . . . . .  n} and a real number t, equal either to (Ay)k or to (A--Y)k, such 
that 

( (Ay)x, . . . ,  (Ay)k-1, t, (Ay)k+l, . . . ,  (Ay) , )  N b = @. 

We now recall that 

A y  = the interval hull of {Ay  t A E A, y E y} 

so -4~7 e ( (Ay)I , . . . , (Ay)k- I , t , (Ay)a÷I , . - - , (AY)n)  for some A E A and ~ E y. In 

particular, one may conclude that A~ ~ b for some A E A. The latter just means ~ 
Ev~(A, b), and y ~ Ev3(A, b). [] 

Theorem 5. / f  the improper interval vector xa is an indusion-minimal, algebraic solution to 
A x  = b, then dual xa is an inclusion-maximal interval vector contained in E3v(A, b), that is, 
provides an inclusion-maximal solution to the control problem (9). 

Proof. If a proper interval vector y exists such that 

dual x~ C y C Ev3(A, b) 

then dual y C x,~ and 
A .  (dual y) C b. 

Here, when dual y # xa, equality is impossible by virtue of minimality of xa. 
Invoking the representation (18), we may rewrite the latter in the form 

A A y  c b. 
yEy 

By the very definition of the lattice operation "A', the above inclusion means that 

A y ~ b  (30) 

for at least one point ~ E y, since otherwise, if all A . y  D b, we would have the inverse relation 
Auey A y  _D b. Specifically, (30) implies ~ ~ E3v(A, b), and so y ~ ~ v ( A ,  b) as required. V1 
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4.3. Order convexity and subdifferentiability 
If A is a proper interval matrix, then for any u, v E ]R n 

A ( u  + v )  C_ A u  + Av ,  (31) 

A consequence of this subdistrihutivity property is of crucial importance for our further con- 
sideration. Really, it follows from (31) that 

a(A(u + v)) _< a(Au + Av) 

and so we have for A E (0, 1) and any x ,y  E R 2n such that x = ty(u), y = ~(v)  

< a ( A A u  + (1 - A)Av @ b)  (32) 

= , ~ ( A u  O b)  + (1 - ~ ) ~ ( A v  e b)  

= ~ ( ~ )  + ( i  - ~ ) ¢ ( y ) .  

The relationship obtained is the multidimensional analogue of the well-known convexity in- 
equality. Let us recall the following definitions 

Definition 6. Let U, V be real linear spaces, and V is partially ordered by the order " ~ :  The 
mapping F U --~ V is called order convex with respect to ~-~" i f  

tbr any x, y ~ U and ), e (0, 1) (see [20]). 

Definition 7 .  A vector w is called a subgradient of  the convex function f : R k ---+ R at the point 
x i f  

f ( z )  > / ( z )  + (w, z - z) 
for any z. The set of  all subgradients of  the function f at the point z is called subdifferential of 
the function f at x, while the function f itseff is said to be subdifferentiabte at x i f  its subdifferential 
is nonempty at that point. (see [2, 23]). 

It is welt known [2, 23] that convex hounded continuous functions are always subdifferen- 
tiable in the interiority of their domain. 

The chain of transformations (32) shows that the mapping under investigation ~ : R 2~ 
R 2'~ is order convex with respect to the common componentwise order on R 2n, which is 
equivalent to the functionals qh : R 2': "--* R--coordinate components of ¢ ~ b e i n g  convex for 
i = 1, 2 , . . . ,  2n. Therefore, for ¢~(x), i = 1, 2 , . . . ,  2n, the subdifferenfials are defined at any 
point x E R 2n, i.e., the sets of vectors s~ E R 2n, i = 1, 2 , . . . ,  2n, such that 

q~i(z + v) - ,I,~(z) ___ (s,, v) for all v e R 2n. 
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Then, constructing 2nx2n-matrix S = (81, 82, . . . ,  82n) T, we may conclude that at each x E R 2'~ 
the set of linear operators S : R 2n --~ ]R 2n that satisfy the inequality 

f ( =  + ~) - f (z)  >_ S(v) 

for any v E 1~2,~ is nonempty. We will call this set the order subdifferential of the order convex 
map f at the point x and denote it by O~(x). ~ 

Proposition 10. All linear operators S E Of(x) are isotone at any point x E R 2n. 

Proof. As was already mentioned, isotonity of a linear mapping is equivalent to its positivity. It 
is sufficient therefore to prove that S(v) > 0 for any x, v E R 2n, S E Off(x) and v > O. 

From the definition of subdifferential we have 

s(,,) _> ,~(=) - ¢(= - v). 

On the other hand, x > x - v and by Proposition 9 

f(~) - f ( z  - v) > 0. 

Hence, S(v) is actually > 0 C3 

4.4. Estimate of the subdifferential 

To conclude this section, we consider the practical calculation of the subdifferential 0 f ( x )  and 
some its estimates, which is important for the implementation of the algorithm to be developed 
and will be utilized in the proof of its convergence as well. 

The natural componentwise partial order on R 2n is the direct product of the orders "<" 
on R. Therefore, the order subdifferential is the direct product of the common subdifferentials 
of the separate components of f ( x ) .  The sub~fferential of the convex function f i ( x ) ,  i = 
1, 2 , . . . ,  2n, coincides with its gradient at its points of the differentiability [2, 23]. At the points 
of differentiability x, the subdifferential Of(x) thereby consists of the only element, namely, of 

the Jacobi matrix 

Ofl(z) 
Oxl 

Oxl 

0fl(z) 
. . °  

OT,2n 
° . .  

Of 2,,(z) 
Oz~,, 

(33) 

of the mapping f ( x ) .  
In the general case, the subdifferential Of(x) is known to be a convex polyhedral set, 

with one-sided directional derivatives 

Ofi(x) = lira f~(x + ~g) - f~(x) 
09 a\o 

21t is more correctly to speak of order <-.subdifferent#d or <_.erder sdutifferent/td, but we drop the symbt~l ~_<" for 

brevity, since no other orders on R 2'~ are considered. 
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g E ~2,,, a E R+, being the support functions for the component subdifferentiats O0~i(z ) [2, 23]. 
Let us denote by 

(~(~i(X) • l i ra  ( £ ~ i ( x 1 " ' " X j - l ' X ~  - o t ,  X j + l ,  . . . , T , 2 n  ) - -  ¢ ~ i ( X l ,  . . . , x 2 r L )  

Oz; a 

and 
O~(z) = lira ¢ i ( x , , . . . ,  xd_,, xd + ~, z j+ t , . . . ,  z~_,,) - ~ i (x l , . . . ,  xun) 

a G 
that is, the one-sided partial derivatives, from the left and from the right, with respect to the 
j th  coordinate direction. Assuming differentiability, 

O¢,(x) OeO,(x) S~i(x) 

For the functions Oi(x), the existence of the one-sided derivative with respect to any coordinate 
direction in no way affects the existence of the derivative with respect to the other variables. 
Besides, the matrices of the form (33) composed of the one-sided derivatives obviously belong 
to the subdifferential c9¢(x). Hence, Oct(x) is a direct product of the "partial" subdifferentials, 
that is, an interval 'matrix whose elements are [cg¢i(x)/cOx'f, cq~(x)/cgx+]. 

More precisely, if 4- E { + , - } ,  then we have for i = 1, 2 . . . .  , n 

{ -O-~j  ~ (a i j (q - l (X) ) j ) ,  if j E  (1 ,2 , . . . , n} ,  

OX d \ . . . .  - / 

modulus of the one-sided derivative ) 
of a~jy, if j e {1, 2 , . . . ,  n}, or 

= of a~d_,~y, if j e { n +  1 , . . . ,  2n}, " (34) 

with respect to an endpoint of y 

Similarly, for i = n + 1 , . . . , 2n ,  

Oz ; 

modulus of the one-sided derivative \ 
of a~_,~dy, if j E  {1 ,~ , . . . ,n} ,  or ) of a~-nd-,~Y, if j E {n + 1 , . . : ,  2n}, " 
with respect to an endpoint of y 

(35) 

Close inspection of Table 2 shows that the derivatives (34)-(35) are equal either to the 
absolute value of an endpoint of the interval aq (respectively, ai,j-n, a~-,~ d, ai-, ,d-n) or, if 
0 E a~j (respectively, aid-n, a~-nd, ai-,,d-n), the derivatives (34)-(35) may equal to zero. In 
any event, 
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O¢,(x) 
ox? 

0 ¢ i ( z )  
0x?  

O¢i(x) 

e [(a~j>, I~,jl], 

e [(a~j_,,). la<i-.t],  

e [(a{_,,j), lai-,,jl], 

e [(ai-.~,j-..), lai-,~j-.l] ,  

if i , j<n ,  

if i<_n<n+l<_j ,  

if j < n < n + l < i .  

if n + l < i , j .  

So, overall, the fbllowing estimate 

(<AI/At)<0o x/< ( ,A, ,A, ) 
(A) (A) - - IAI IAt 

is valid. 

S. P. SHARY 

(36) 

5. A l g o r i t h m s  

5.1. A brief overview 

"Fo solve an operator equation, one often reduces it to the tbrm 

x=a(x) .  (37) 

Then, having chosen some x (°), we iterate 

x(k-.1) = G(x(k)) .  (38) 

Under suitable conditions, x (~} converges to the fixed point x* of the mapping G, that is, to 
the solution of (37). To obtain more sophisticated numerical algorithms for finding algebraic 
solutions, it is natural to avail ourselves of the fact that the main space (either ]JR n or N2n) 
carries the additional partial ordering structure (indusion order or its induced). The solution 
of both algebraic and functional equations in partially ordered spaces is a developed branch 
of modern numerical analysis. Classical results on this subject may be found, for instance, 
in the well known books by Krasnoselskii [14], Cotlatz [7], Ortega and Rheinboldt [20] and 
others. The standard ways to solve equations of the type (37) with monotone and their related 
operators rely upon the facts that are variations of the widely known Kantorc~ch lemma (see [20] 
as well as [7, 14] where it appears in the nameless form). This kind of methods for computing 
the algebraic solution were developed in the works by Zyuzin [30-32] and Kupriyanova [15]. 
Their  main result is a stationary one-step iterative methc~ in ~1~ n, which can be formulated as 
fi~llows: 

Let the operator H : lI~" ---* ]IN a be defined by 

( n ) 
(HIx)), = b , e  E ~,jxj ® ~ . ,  , :=  1,2 . . . . .  ,~ (39) 

j=I,j#i 
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and there exist intervals v (°), w (°) E L~ '~, such that v (°) C w(°) and 

v (°) c_ H(v(°)) C_w(°), 

v (°) G H(w (°)) G w (°) 

(i.e., the order segment Iv0, Wo] is H-invariant). Then the sequences 

v (k) := H(w(k-1)), (40) 

w (k) := H(v(k-1)), k = 1 ,2 , , . .  (41) 

converges to fixed points v* and w* of the operator H (which are algebraic solutions 
to the original equation), 

v (°) C_ v (t) G "'" G v* G w* G "'" C_ w (t) C_ w (°) 

and any fixed point.u* E Iv (°), w (°)] of the operator H lies within [v (°), w(°)]. 

How can an initial approximation for the method (39)-(41) be found? That is a crucial 
point and, unfortunately, there are no satisfactory prescriptions for such a selection in general. 
If we seek a proper algebraic solution to the system (3), then, as Zyuzin has shown in [32], the 
desired choice of invariant order segment for (39) reduces to solution of an auxiliary linear 
tolerance problem. This result (which is in a sense a conversion to Proposition t) indicates that 
finding an invariant order interval for the scheme described above turns out to he at any rate 
no easier than the original problem. 

The other significant disadvantage that is intrinsic to all simple iterative schemes (38) (in 
particular, to (39)) and their modifications is the low convergence rate, which is merely linear. 

52. Subdifferential Newton method 
We have managed to overcome the above drawbacks (more or less) successfully. One of the 
main mathematical results of this work is the following iterative algorithm that solves the 
equation (26)-(27) in the enveloping space ]~2n: 

Algorithm I 
(subdifferential Newton method with a special starting approximation) 

As the starting vector x (°) take the solution of the ~midpoint" system 

(mid A)°'x = a(b). 

If the k-th approximation x (k), k = 0, 1 . . . .  , has already been found, 
then compute any S (k) E O~(x (k)) and put 

Here, r is a damping factor from (0, 1] whose choice should be considered separately. We 
incline to recommend r to be equal or close to 1. Our computational experience shows that 
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then, as a rule, Algorithm I gives exact solution to t h e  problem in a small finite number of 
iterations, which usually does not exceed the dimension of the system. In this kind of method, 
the damping factor was originally introduced to prevent divergence. However, it is not quite 
clear for me yet whether taking ~" < 1 really improves convergence of the subdifferential 
Newton method or not. Anyway, the less r ,  the slower Algorithm I works. 

Complete investigation of the subdifferential Newton method is beyond the scope of the 
present work. Computer experiments with it demonstrate very interesting and surprising 
phenomena (see Section 6), which are to be studied thoroughly. Below, we shall prove, based 
on the standard technique (see, e.g., [20]), a local convergence theorem that amounts to the 
following: 

Theorem 6. I f  the proper interval matrix A is suffldendy narrow and all point 2n x 2n-matrices 
C that sads£y ((A) (A))<C <([A' 'A[) 

<A)  (A.)  - - IA I  IA I  

are nonsingular, the,, Algorithm I converges to a(xa), where xa is an algebraic solution of  the 
system Ax = b. 

Proof Let us specify what is meant by a %ufficiendy narrow" interval matrix A. We shall 
require that 

the convex hull of the set 

< c < J - - - \ I A I I A I J  (42) 
(where C-IK<_ denotes the preimage of the cone K_< under the linear 
transformation C) itself is a cone K_~ in R 2n, that is, defines a partial 
ordering "_" of R 2'~. 

This is not an arbitrary condition. If the matrix A is thin, that is, A = A, then (AV)-IK< 
is actually a cone, being the image of the cone in the linear transformation. If the matrices 
C1, 6"2 E R u'*×u~' are %ufficiently close" then the cones G~qK< and G~'IK_< are close too, and 
their convex hull is still a cone. So the condition (42) reflects ~narrowness" of the interval 
matrix A in some sense indeed. 

It is worth noting that if a matrix G E R 2n×2n satisfies 

. ( A )  (A) - - tA I  IA I  

then it is nonnegative, i.e., 
CK< C_ K<. 

This implies 
C-~K<_ ~_ Ks 

so that 
K~ D K <  

(one could say that ~the partial order <~ is weaker than the common <"). 
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Further, owing to the special choice of the starting vector, 

A .  ¢r-l(x (°)) _D (mid A ) .  a-l(x(°)) = b 

SO 

29 

As we could see, the inequality (36) 

(<A> (,A, ,A,) 
<A) (A) - - IA I IAI 

holds for each S (k), and thereby, in view of (42), (45) follows. 

So. we have proved 
x(k) t> x(k+l) > o--l(b) 

and there exists a litnit x* of the sequence {x(k)}. We can find it by solving the fixed-point 
equation 

Therefore, qB(X*) = 0. [] 

Note that this result may be taken as yet another way of proving the existence of an 
algebraic solution to the equation Ax = b in extended interval arithmetic. 

¢(z I°)) > 0. 

Next note that by the definition of subdifferential 

¢(z(k+~)) > ¢(x(~)) + S(k)(z(TM) _ z(~)) 

for S (k) E Oq~(x (k)) and any k = 0, 1, 2 , . . . ,  while by virtue of Algorithm I 

S (k) (z (~+1) - .  (~)) = -r ,~(z(~)) .  (43) 

Hence. for 0 < 7" < 1 we get by induction 

~ ( x  (k)) > 0, k = 0, 1, 2, . . .  (44) 

which, beating in mind the representation (27) tbr (I'(x), is equivalent under our assumption 
[o 

x (k) > a - l (b ) ,  k = 0 ,1 ,2 , . . .  

The other important point is that the sequence {x (k)} generated by our algorithm is 
monotonically decreasing with respect to the order "_ ' ,  that is 

z (k) ~ x (k+~) (45) 

for all t" = 0, 1, 2 . . . .  Indeed, combining (43) and (44) one obtains 

S(k)(x (k+~) - z (k)) < 0. 
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6. Computational tests 
S. P .  S F I A R Y  

In this secdon we sumnaarize numerical experiments carried out with the subdifferential Newton 
method on a PC/AT -t86. The Algorithm I was implemented using Turbo C in standard clmible 
precision floating point arithmetic. 

Now let us illustrate the theoretical constructions of the previmls sections with the results 
of numerical tests. 

Example 1, the classical one (see Figure 1), 

[2.4] [-2.1] [-2.2] 

When used r = 1, Algorithm I gives, in merely 2 iterations, the exact algebraic soludon~the  
vector ([-0.333 . . . .  0.333...i.  [-0.aa3 . . . .  0.a3a. . . ])T--which is easily seen to he the indusion- 
maximal interval vector contained in the tolerable solution s~t to this system, On the other 
hand, the absohlte error of the result is in the order of 10 -v only after 22 iterations in the 
lnethod (39) based on the Kantorovich temma [32, 33]. 

Example 2. 
[2, 4] [-2,1] [2, -2] 

As in the previous case, Algorithm I converges to the exact algebraic solution ([1.-1]. [1.-11) r 
in 2 iterations ~br r = 1. One can readily see from Figure 1 that the vector 
dual ( [1 . -1 ] , [1 . -1 ] )  provides a g o o d  inner approximation for the united solution set of 
the system (7), even maximal by inclusion. 

Example 3 [30]. 
( [ 2 . 4 ]  1 -5 . -1 ]  [-2.3]  ) ( [ - 2 8 . 4 3 ! )  

[-3.1] [5.7] [4.6] .r -- [-60.29] 
[-i.11 [-2.q [-z.-2l [,11.39] 

With r = 1. Algorithm I converges in 4 iterations to the exact algebraic solution 
([2.5}. [ -3 ,  4]. [-4,--1])T. 

Example 4. when Algorithm I diverges. 

( [ 3 . 4 ]  [-5,-2] [-2,2]) ( [ - 2 8 , 4 3 ] )  
[-3.-1] [6.71 [5.61 x =  [ -60,69] .  
[-1. O] [-1.1] [-4, 1] [-11.39] 

For this interval linear system and with r = 1, Algorithm I generates an oscillating sequence 
that evidently does not converge to any limit. It is interesting to note that the right-hand side" 
of this system is wider than that of the previous example, while all elements of the matrix but 
aaa are thinner. Nevertheless, the method fhils. 

Example 5. Let us tuna to the interval linear systems with the matrix from [29]: 

[ ' n - l , X ]  [ a - l , l - ; 3 ]  . . .  [ a - l . l - f l ]  / [ 1 - n , n - 1 ] ' ~  

[a  - 1 . 1  - .J] b, - i .  N ]  . . .  [ a  - 1 , 1  - ,31 t [1 - n ,  n - 1] J : : " . .  : : 

[a  - 1. i - ,31 [,.~ - 1 . 1  - 3] . . .  [n - 1, U ]  [1 - n ,  , , -  11 
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where n denotes dimension (n > 2), 0 < a < fl < 1 and N is a real number > n -  1. For 
any tested dimensions 1 _< n < 45, any pseudorandomly chosen N and arbitrary right-hand 
interval vector, Algorithm I converged to exact algebraic solution of the system in 2 iterations. 

Example 5, mysterious behavior of the subdifferential Newton method. 

For the interval linear 7 x 7-system 

[4, 6] [-9, 01 [0, 121 [2, 3] [5, 91 [-23, -9] [15, 23] 
[0,11 [6,101 [-1, 1] [-1,3 t [-5, I] [1, t5] [-3,-11 
[0,3] [-20,-91 [12,77] [-6,301 [0,3] [-18,1] [0,11 

[-4, 11 [-1, 1] [-3, 1] [3, 5] [5, 9] [1, 2] [1, 41 
[0.3] [0, 61 [0,201 [-1, 51 [8,141 [-6,1] [10,17] 

[-7", -2] [1, 2] [7,14] [-3,1] [0, 2] [3, 5] [-2,1] 
[-1.5] [-3, 2] [0, 8] [1,11] [-5,101 [2, 7] [6, 82] 

X 

[-10,95! 
[35, ~4] 

[-6,21 
[30, 7] 

[4,951 
[-6, 46] 
[-2, 65] 

Algorithm I converges to the exact algebraic solution 

[-1.22474317578,0.50542987670] 
[18.26444337096,-9.51750410300] 

[-0.02818650587,1.16075521933] 
[16.40769576636,-14.45553419850] 

[-1.34356527337,3.98821848038] 
[-3.52893852104,4.54345836822] 

[5.43086236811,-0.67400838683] 

in 9 iterations. At the same time, if we replace the element art in the matrix by the interval 
[10.82], which is narrower than the original one, the Algorithm I diverges. 

An advertisement 
Public domain software that implements subdifferential Newton method (as well as its text in 
C) is available. 
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