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Computation of the stability radius of a
Schur polynomial: an orthogonal projection
approach

Q-H. Wu and M. Mansour

The robust Schur stability of a polynomial with uncertain coefficients will be investigated. A formula for
the stability radius of a Schur polynomial is established. The result is the counterpart of [1] for linear
discrete-time systems

Berancaenne paamyca cTabMABHOCTH
mHorouaeHa Illypa: MeTOA OpTOroHaABHBIX
TIPOEK LI

K. By, M. Maucyr

Hsyuaercs poBacruas lllyposa yCTOMMMBOCTS MHOOYIEHA C HeOMpeneNeHHMMH Koddpuuuentamu. [da-
eTcst popMyna ns paanyca cTaGUAbHOCTH Muorowtesa llypa. Pesymorar nonomuser paboty [1] ams
CAyYasAs JHHEAHBIX CHCTEM AHCKPETHOTO BPEMEHM.

1. Introduction

Given a polynomial
@(Z) = (an + 6n)zn + (an-1+ 511—1)3"—1 +-- 4 (a'l + 51)2 + (ao + 60)

whose parameter vector a = [an Apn_1 - . ao]T € R*1 the uncertainties §; are real and within
a hypersphere
248 o+ B+ <8

under the assumption that the nominal polynomial
SDO(Z) =anz" + a"n—lz‘n—1 +---+a1z2+ap

is Schur stable, i.e. the roots of wp{z) are all within the open unit disc, we are interested
in determining the largest § so that ¢(z) remains stable. In the parameter space R,
the stability boundary is described by (i) the n-dimensional subspace ¢(—1) = 0, (ii) the n-
dimensional subspace ¢(1) = 0, and (iii) the (n — 1)-dimensional hypersurface ¢(e®) = 0 and
J(e"jg) =0 for 6 € [0,7] [2]. Denote by 74,, rq,, and 7y, respectively, the distance from a
to the stability boundaries (i), (i), and (iii), and ry = min{rg,,ra,, 74,}. Since @o(z) is stable,
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cp(z) will be stable if and only if § < r4. Since the distance from a point a to a subspace
can always be calculated using the orthogonal projection approach (see [3]), the main problem
is then how to identify the distance between a and the hypersurface, which, for a fixed 6, is
also a subspace X5 of R™*! with the basis vectors x;, i = 1,2,...,n — 1. Denote by Ay the
orthogonal complement of Xg with a basis x;, 1 = n, n+ 1, then R"*! = X5 ® Xy, and every
a € R can be uniquely decomposed as a = Xy + Xg, where xy € Xy and x5 € Xs. The
distance from a to X is then the euclidean norm of Xy, denoted by |[xy{l2. 74, is then the
minimum of ||Xn||z which is a function of §. In [3], Xy is represented in terms of the inverse
of the gramian matrix of the vectors x; (i =1,2,...,n— 1), which is an (n — 1) x (n - 1)
matrix, and ||xy]|? is determined in a quadratic form which involves this inverse matrix. The
approach proposed by Soh et al. [4] is based on this mehtod. On the other hand, Xy can be
also represented as a linear combination of the vectors x, and X,41, and this combination can
be fully determined by the inverse of the 2 x 2 gramian matrix of X, and X,;. Hence, ||xnl}2
can be determined in terms of some real rational function |[xyl|[2 = % In a recent paper

(5], the polynomials p(z) and ¢(z) are determined in terms of the Chebyshev polynomials
Uk(I).
n—1

In this paper, we shall show that p(z) = Y (n— k)Uz(z), q(z) = [[Ha||, where H is the

k=0
skew-symmetric Toeplitz matrix (H )im = Um—;-1{z). This will allow us to determine exactly the
degrees of p(z) and g(z). Further, we shall find an orthogonal basis for A;, and the Pythagoras
form for ||xx||2. This establishes the counterpart of the result in [1] for discrete-time systems.

Throughout this paper, j denotes the imaginary unit, ie. j% = —1. For a square matrix
A, adjA denotes its adjoint matrix, and det(A) its determinant. Given the vectors a; € R,
i=1,2,...,m with m < n, span{ay, ay, ..., a,} is the linear span of a; over R, ie.

m
span{a;, ay,...,a,} = {aER fa=) aa, al,ag,...,ameR}

i=1

where R in the field of real numbers.

2. Background result

As stated in previous section, for a polynomial ¢(z) of degree n, the stability region in the
parameter space R™*! is bounded by

Pl . (p(—].) = 0,

Py o p(1)=0,

Xs :+ o(e®)=0 and @(e®) =0 for some 8 € [0, 7]

Denote by a the parameter vector of a Schur polynomial yo(z), by 74,, Ta,, and 74, the distance
from a to Py, P,, and As respectively. Then the stability radius 6 is

6 = min{ry,, 74, Ta; }- (1)
Since P; and P; are hyperplanes, ry, and 74, can be readily determined:

= i‘PO(—l)] ]‘100(1)1 (2)

Y~ L Y= &
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The method to compute 74, will be summarised in the following.
Define the {n — 1) X (n+ 1) matrix $,:

1 0 0 ... O
=2r 1 0o ... 0
1 -2z 1 :
®;0=| 0 1 . .0 3)
: - .1 =2z
| 0 0o ... 0 1]
where z = cosé with § € [0,7]. Denote by x;, ¢ = 1,2,...,n — 1, the column vectors of &g,

and by X, and X, a basis of Ay,—the zero space of @5. Then,

Xs = span{xi,Xz,...,Xn-1},
Xy = span{X,,Xn41}

and R" = X5 @ Xy. Let a € R™L, then a can be uniquely decomposed into
a=2xpy+Xs 4)

where xy € Xy, and x5 € As. Xg is the orthogonal projection of a on Xs. It is readily
verified that the length || - |2 of Xy, defined as

”xN”g =Xy, Xy) = XEXN (5)

is the distance from a to A for a fixed z € [~1,1]. Also, denote 74,(z) = [|xn|l2. Then the
distance from a to X is given by

Ty = xenfl-l{%u{rds (.’L‘)} (6)
Define the matrix
XN = [Xn Xns1]- (M

Then, from the orthogonal projection approach described in [3], we obtain
Xy = XnG 7 (Xy, Xp01) X2 (8)
and
ra(2) = XyXy = aTXNG‘l(xm Xny1) X2 ©
where
XX, XiXnp
Xi1Xn Xnp1Xny)

is the Gramian of x, and X,.1 {3} Since G(x; X,+1) is a 2 X 2 matrix, (9) can be represented
as a rational function

G(Xny Xns1) 1= Xy Xy = [

. (z) = 1“;—% (10)
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with
p(:L‘) = det G(Xm xn+1) = xfxnxfﬂxnﬂ - xzxrwlexn—»-lv
gz) = alXy X1 Xnel ~Xn X XTa (11)
= Na.
“XpaX,  XnX,

The following result is due to Wu and Mansour [5].

Proposition 1. A basis for Xy is

Xn = [Un-1(z) Un—(z) ... Uhy(@) 107,
Xne1 = [~Un-a(z) —Un-s(z) ... = Up(z) 0 17

where Uy(z) is the Chebyshev polynomial of the second kind.

We shall use this basis to define the matrix Xy throughout the rest of this paper. From
Proposition 1 and (11), we see that

deg(p(z)]

< 2
degla(c)] < 2

n—1 =
(n-1)+2(n-2)=4n—6. (12)
Examples shown that there are cancellations in the coefficients of p(z) resp. g(z), and 2(n —1)
should be the degree for both p(z) and g(z). We shall show in the following section that this
is true.

Further, it should be noted that the basis of Xy given in Proposition 1 is not an orthogonal
one. However, since for any nonsingular 2 X 2 matrix V(z), the vectors

Vn ¥Yne1]=XwV(2) (13)

also form a basis for Xy, we can choose the matrix V{(z) such that the resulting y, and yn
are orthogonal, ie. yTy, ; = 0. It is clear that 733 (x) is independent of the choice of the basis
of Xn. Hence, rﬁs (z) can be represented in the Pythagoras form:

Z(z) = _yza ’ y;{-&-la 2
() <||}’n||2> +(uywluz) (14)

by choosing a suitable V(z) to orthogonalize the basis. In the following section we shall show
how to choose the matrix V(z).

3. The main results
Let us first define U_(z) for £k =1,2,...

U_r-1(z) = 22U_i(z) — U_gs1(z). {15)
It is readily verified that U_x(z) satisfies the recursive form for Uy(z):

U_k+1(.'L') = 2:L‘U_k(112) - U_k_l(l‘).
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Hence, U_i(z) extends the definition of the Chebyshev polynomials for negative indices. We
claim that

U-k(z) = —Ug-2(z). (16)
Ideed, for k£ =1, 2,3 we have
U_l(x) = 2ZUO(ZE) - Ul(.’E) = O,
U_s(z) = 2zU_1(z) — Us(z) = —Us(z),
U_3(1L') = 2IU_2(I} - U_l(l‘) = —Ul(],‘).

If we assume
U_k(I) = —-—Uk-z(.’L‘) and U_k..l(i):) = —U)H_l_z(l‘)
then
U_ka(z) = 22U_p_1(z) — U_g(z)
—ZIZIUk_l(IL') + Uk_z(.’L') = —Uk(z) = U(/H_z)_g(.’l:).

With this extension, X% can be represented as

T _ Un_l(x) Un_z(.’r) U_1(£E) . Un_l_(i_l)(x)
K= Unal) ~Uusle) - —U~z<x>]"(—Un-z-«-nm)izu,...,,,ﬂ'

Proposition 2. For Chebyshev polynomials of the second kind, there holds
Un(I)Un_i(l‘) — Un+1($)Un_1_i($) = Ui(x).
Proof. From Ups+1(z) = 22U, (z) — Upn-1(z), we get

Unir()Unoyi(z) = (22Un(z) = Unr(z))Un-14(2)
22Up 1 i{x)Upn(z) — Unet () Un1-i(2)
Un(2)(Un—i(2) + Un—2-4(x)) = Un-1(2)Un-1-i(2)

1

and

UH(I)Un—i(x) - Un+l(‘z)Un—1—i(I) = Un—l(I)Un—l—i(z) - Un(I)Un~2—1($)
Un-1(2)Un-1-:(2) = Un41-1(2)Un-1-1-i(2).

Repeating this process, we obtain
Un(2)Un-i(2) — Uns1(2)Un_1-4(2) = Up_ (@) Un—p~i(x) = Unt1-£(%)Un-1-4-i(T)
where kK =0,+1,+2,... Setting ¥ =n — 1 — 4, we get finally

Un(2)Un—i(z) = Uns1(2)Un-1-4(z) = Uina(2)Vi(z) — Uisa(z)Vo(z)
= 2$Ui+1($) - Ui+2(l‘) = U,;(:II).

Now, let us define the matrices

0 1
ho= [—1 0]* (17)

H, = XyP X}

Based on Proposition 2, the matrix H, can be determined.
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Corollary 1. The matrix H, defined in (17} is given by

0 U()(.’L') Ul(.’E) - Un_l(z)
—Uo(l') 0 UQ(.Z') AN Un_g(l‘)
Hp = “Ul(.’L') —U()(CL‘) 0
: : L Up(z)
—Un_l(z) —Un-z(l‘) - —-Uo(ft) 0

Proof. The (I, m)-th element of H, is

Hp)pn = Un-2--1)(@)Un-1-(m-1)(%) = Un—1-1-1)(2) Un—2—(m-1) ()
Un—[—l(x)Un—l—l—(m—l—l)(x) - Un—l(x)Un—l—Z—(m—l-l)(m)
= Un-i-1{z) Iim=12,...,n+1.

The last equation follows from Proposition 2. The equality (Hj),, = — (H,),,, follows from
(16). O

Note that H, is a skew-symmetric Toeplitz matrix, and PH, = —H,P, where P is the
rotation matrix such that aTP = [ao a1 ... an] for all a = [a, an_y ... ag)7, ie. the elements

on the secondary diagonal of P are all equal to one, and the other elements are all zero.
We are now in a position to determine deg[p(z)] and degfg(z)].

Theorem 1. p(z) = :z::(n — k)U¥(z), and g(z) = ||H,a||2. Hence

deg(p(z)] = deg(g(z)] = 2 - deg [Un-1(z)] = 2(n - 1).
Proof. Tt is clear that

p(z) = xfxnx12:+1xn+1 - Xfxnﬂxfxnﬂ
= x:()%xvj;ﬂ = xn+1x£)xn+l
= XZXNPIXITVxn-i-I = xT{‘prnﬁ—-l’
9(z) = aTXy-adjG(x,, X,.1) - XRa

= aTXy x£+;xn+1 "x§+1xn XTa
XX XX,

= a'(XyPX{)T(XyPXR)a

= |[Hpali.

Consider (18). From Corollary 1 follows
n—1 n—k
fopan = Z (Uk(m) : Z (iriyi+k+l - $i+k+1yi))
£=0 i=1
where z; and y; are, respectively, the i-th and the I-th entry of X, and X,41. Since z; = U,—i(z),
n= '“Un—l—l(x):

Tilfirke1 — Tivki1¥i = —Unoi(@)Un1-i-k=1(2) + Uncick-1(2)Un-1-4(z)
Um(x)Um—k(I) - Um+1($)Um—1—k($) = Ui(z).
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Hence,
o) = 3 (vl 30
= g(n—k)UZ(z).

O

Remark. The above equation gives a recursive form for p(z). Indeed, if we rewrite the distance
function r4,(z) of a polynomial @g(z) of degree n as

then
p(z) = p" 7 (z) + [|xall3.

In the rest of this section, we shall find an orthogonal basis for Xy by choosing a suitable
V(z). Let us first introduce the 2 x 2 matrix Uj;1x composed of the i- and (i + k)-th columns
of X%

Un-1-i-13(z)  Un-1-(i+s-1)(2) (19)
“Un-2-(i-1y(x) =Un_a—(isr-1)(x)

where k =1,2,...,n4+ 1 —i. The following result can be also obtained using Proposition 2.

Ui,i+k =

Corollary 2. For k=1,2,...,n+1 -, det (U, ;1x) = Ur—_1(z), and
(UsiskPL) - (PUsiik)” = Upca(z) - L.
Proof. The first part follows directly from Proposition 2, since

det (Uiitk) = Un-1—(i4k-1)(&)Vn-2-(i-1)(Z) = Un-1-(i=1)(2)Un-2—(i-+&-1)(Z)
= Un—i—l—(k—l)(x)Un—i—l(x) - Un—i(I)Un—i—z—(k-l)(JJ)-
To prove the second part, we consider the matrix product AP, ATPT for any 2 x 2 matrix A.
Obviously, P, AT PT is nothing else the adjoint matrix of A. Hence, AP, AT PT = det(A)  [,.0
Denote by h; the i-th column vector of the matrix Hp, and define

. }(hapt = hapyy) n=odd
L ghgﬂ —hy n = even,

Nl= |

h%_x +h%+1) n = odd
& % (h§+2‘+ h%) n = even.

Proposition 3. For n = even, we have
T
h = [T3(2) T3a@) - To(@) .. Taoa(z) Ty(z)]
T
g = [Us1(®) Usoa@) - Uaa(@) ... —Up-a(z) — Upa(z)]

where Ti(z) is the Chebyshev polynomial of the first kind: Ti(cos8) = cos k6.
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Proof. It is clear that the i-th element of g, denoted by (g);, is given by

Un-g_(i_l)(l‘) + Ul’:_(i_.l)(x)
- 2 2
(g>1 2

= Uz_1-a-n(a).

Further, we claim that

2Up(z) = Uk(z) = Tira(2).
Hence, the i-th element of h is

Us _i-1)(z) — Uz—2-(-1)(2)

(h); = 5
Usn_i-1)(2) + Uz —2--1)(7) = 2U3z3_(i-1)(2)
5 _
2(zUz_1-(i-1y(x) — Uz -2-(i-1y(2)
= ( 5 : ) =Tz -1(x).

To verify the claim, it suffices to show
Ur(z) — Ti(z) = zUp1 ().
Indeed, from

UQ(.’I)
To(.’]’))

S
&
I
N
8

Us(z) = 42% — 1,
To(r) =22 -1

1
1

=

G
I

s

3

we see that

U(z) = Ti(z) =z = zUp(z) and U(z) — To(z) = 22° = zUy(z).

Let us assume that (21) holds for £ — 1 and k£, ie.
Up-1(z) ~ Ti—1(z) = 2Uk—2(z) and Ux(z) — Ti(z) = zUk-1(z).
Then, for k+ 1, we get

Uet1 = Tey1 = 2zUx(z) — Ug-1(z) — (2$Tk(37) - Tk—l(z))
= 22(Ui(z) ~ Tu(z)) ~ (Ve-1(2) = Tima (2))
= x(2xUk_1(x) - Uk_z(z)) = zU(z).

The proof is thus completed.

O

Equipped with the notations above, we are now in a position to find a Pythagoras form

for 73, ().

Theorem 2. The vectors h and g defined in (20) form an orthogonal basis for Xn. Hence,
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Proof. We prove only the first part of the theorem, since the second part then follows directly.
Let us first complete the proof for n = odd. In this case, we get from (17), (19), and (20)

B8l = [bap Bapa¥

[Fner Xl Ungs iV

1 11
=3 ( 11 ) '
From Corollary 2, we get det [ng-_l,%-_l_H] = Up(z) = 1. Hence, the matrix Ung1 ng1,,V1 is

always nonsingular, and [h g] forms a basis for Xy. It remains then only to show that h and
g are orthogonal. From Corollary 1, we get

(23)

where

P [hi hn+1—(i—1)] = - [hn-(»l—(i—l) hi] (24)
foo 7 =1,2,..., "—*2"—1 Hence, h%_l_,_l = -—Ph%. From (23) we get further
I+P I-P
h= ) hﬂz-_l, g = 2 hnT+1

Since (I + P)(I - P) =0, hWTg = 1nl,,(I+ P)(I - P)hn_}; =0. h and g are orthogonal.
2
The proof for n = even can be completed in the same way, except that we have to show
that the matrix U%%*,ng, where

N |

1
z
1
z

is nonsingular for all = since

h g = 2 h§+2]V2
= [~Xni1 Xn]Uz z02V2.

=n
E]

From (21) and the recursive form of the Chebyshev polynomials, we get

-1
Un-1-(2-1)(x) Un—l-(%+1)(“’)]

1
UsrnppVo = -
2 242V2 2 [ —Un—z—(g—l)(x) - n—2—(%+1)(93)

88|

It

|: —Tg(I) U%—l(x) }
Toa(z) —Up-a(z) |

Hence, the matrix Uz z,V2 is well-defined for all z. To show that this matrix is also
nonsingular for all z, we just recall Corollary 2. Then, from det(V2) = -5, we get
det [Ug,%sz] = —1# 0. This completes the proof. 0O
Remark. For n = odd, we have chosen V(z) = PlUnz_Lx"n;f_ulVl, while for n = even, V(z) =
PUz n,sVs. In both cases, V(z) are unimodular polynomial matrices. Hence, V(z) is

212
nonsingular for all z.
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4. Conclusion

In this paper, we have done the following. First, we have determined the degrees of the
polynomials p(z) and g(z). This result is useful in numerically computating the minimum of
rﬁa(x). Further, using the basis vectors X, and X,4; given in [5] and a 2 X 2 nonsingular
matrix V(z), we have found an orthogonal basis for Ay and hence a Pythagoras form for
73,(z). This is the counterpart of the result in [1] for discrete-time systems.
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