Computation of the stability radius of a Schur polynomial: an orthogonal projection approach

Q.-H. Wu and M. Mansour

The robust Schur stability of a polynomial with uncertain cuefficients will be investigated. A formula for the stability radius of a Schur polynomial is established. The result is the counterpart of [1] for linear discrete-time systems

Вычисление радиуса стабильности многочлена Шура: метод ортогональных проекций

K. By, M. Mahcyp

Изучается робастная Шурова устойчивость многочлена с неопределенными коэффициентами. Дается формула для радиуса стабильности многочлена Шура. Результат дополняет работу [1] для случая линейных систем дисхретного времени.

1. Introduction

Given a polynomial

$$
\varphi(z)=\left(a_{n}+\delta_{n}\right) z^{n}+\left(a_{n-1}+\delta_{n-1}\right) z^{n-1}+\cdots+\left(a_{1}+\delta_{1}\right) z+\left(a_{0}+\delta_{0}\right)
$$

whose parameter vector $\mathbf{a}=\left[\begin{array}{llll}a_{n} & a_{n-1} & \ldots & a_{0}\end{array}\right]^{T} \in \mathcal{R}^{n+1}$, the uncertainties δ_{i} are real and within a hypersphere

$$
\delta_{n}^{2}+\delta_{n-1}^{2}+\cdots+\delta_{1}^{2}+\delta_{0}^{2}<\delta^{2}
$$

under the assumption that the nominal polynomial

$$
\varphi_{0}(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0}
$$

is Schur stable, i.e. the roots of $\varphi_{0}(z)$ are all within the open unit disc, we are interested in determining the largest δ so that $\varphi(z)$ remains stable. In the parameter space \mathcal{R}^{n+1}, the stability boundary is described by (i) the n-dimensional subspace $\varphi(-1)=0$, (ii) the n dimensional subspace $\varphi(1)=0$, and (iii) the $(n-1)$-dimensional hypersurface $\varphi\left(e^{j \theta}\right)=0$ and $\nu\left(e^{-j \theta}\right)=0$ for $\theta \in[0, \pi]$ [2]. Denote by $r_{d_{1}}, r_{d_{2}}$, and $r_{d_{3}}$, respectively, the distance from a to the stability boundaries (i), (ii), and (iii), and $r_{d}=\min \left\{r_{d_{1}}, r_{d_{2}}, r_{d_{3}}\right\}$. Since $\varphi_{0}(z)$ is stable,

[^0]$\varphi(z)$ will be stable if and only if $\delta<r_{d}$. Since the distance from a point a to a subspace can always be calculated using the orthogonal projection approach (see [3]), the main problem is then how to identify the distance between a and the hypersurface, which, for a fixed θ, is also a subspace \mathcal{X}_{S} of \mathcal{R}^{n+1} with the basis vectors $\mathbf{x}_{i}, i=1,2, \ldots, n-1$. Denote by \mathcal{X}_{N} the orthogonal complement of \mathcal{X}_{S} with a basis $\mathbf{x}_{i}, i=n, n+1$, then $\mathcal{R}^{n+1}=\mathcal{X}_{S} \oplus \mathcal{X}_{N}$, and every $\mathbf{a} \in \mathcal{R}^{n+1}$ can be uniquely decomposed as $\mathbf{a}=\mathbf{x}_{N}+\mathbf{x}_{S}$, where $\mathbf{x}_{N} \in \mathcal{X}_{N}$ and $\mathbf{x}_{S} \in \mathcal{X}_{S}$. The distance from a to \mathcal{X}_{S} is then the euclidean norm of \mathbf{x}_{N}, denoted by $\left\|\mathbf{x}_{N}\right\|_{2} . r_{d_{3}}$ is then the minimum of $\left\|\mathrm{x}_{N}\right\|_{2}$ which is a function of θ. In [3], x_{N} is represented in terms of the inverse of the gramian matrix of the vectors $\mathbf{x}_{i}(i=1,2, \ldots, n-1)$, which is an $(n-1) \times(n-1)$ matrix, and $\left\|\mathrm{x}_{N}\right\|_{2}^{2}$ is determined in a quadratic form which involves this inverse matrix. The approach proposed by Soh et al. [4] is based on this mehtod. On the other hand, \mathbf{x}_{N} can be also represented as a linear combination of the vectors x_{n} and x_{n+1}, and this combination can be fully determined by the inverse of the 2×2 gramian matrix of \mathbf{x}_{n} and x_{n+1}. Hence, $\left\|\mathbf{x}_{N}\right\|_{2}$ can be determined in terms of some real rational function $\left\|\mathbf{x}_{N}\right\|_{2}^{2}=\frac{q(x)}{p(x)}$. In a recent paper [5], the polynomials $p(x)$ and $q(x)$ are determined in terms of the Chebyshev polynomials $U_{k}(x)$.

In this paper, we shall show that $p(x)=\sum_{k=0}^{n-1}(n-k) U_{k}^{2}(x), q(x)=\|H a\|_{2}^{2}$, where H is the skew-symmetric Toeplitz matrix $(H)_{l m}=U_{m-l-1}(x)$. This will allow us to determine exactly the degrees of $p(x)$ and $q(x)$. Further, we shall find an orthogonal basis for \mathcal{X}_{n} and the Pythagoras form for $\left\|\mathbf{x}_{N}\right\|_{2}^{2}$. This establishes the counterpart of the result in [1] for discrete-time systems.

Throughout this paper, j denotes the imaginary unit, i.e. $j^{2}=-1$. For a square matrix $A, \operatorname{adj} A$ denotes its adjoint matrix, and $\operatorname{det}(A)$ its determinant. Given the vectors $\mathbf{a}_{i} \in \mathcal{R}^{n}$, $i=1,2, \ldots, m$ with $m \leq n, \operatorname{span}\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}\right\}$ is the linear span of \mathbf{a}_{i} over \mathcal{R}, i.e.

$$
\operatorname{span}\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}\right\}=\left\{\mathbf{a} \in \mathcal{R}: \mathbf{a}=\sum_{i=1}^{m} \alpha_{i} \mathbf{a}_{i}, \alpha_{1}, \alpha_{2}, \ldots, \alpha_{m} \in \mathcal{R}\right\}
$$

where \mathcal{R} in the field of real numbers.

2. Background result

As stated in previous section, for a polynomial $\varphi(z)$ of degree n, the stability region in the parameter space \mathcal{R}^{n+1} is bounded by

$$
\begin{aligned}
& \mathcal{P}_{1}: \varphi(-1)=0, \\
& \mathcal{P}_{2}: \varphi(1)=0, \\
& \mathcal{X}_{S}: \varphi\left(e^{j \theta}\right)=0 \text { and } \varphi\left(e^{-j \theta}\right)=0 \text { for some } \theta \in[0, \pi] .
\end{aligned}
$$

Denote by a the parameter vector of a Schur polynomial $\varphi_{0}(z)$, by $r_{d_{1}}, r_{d_{2}}$, and $r_{d_{3}}$ the distance from a to $\mathcal{P}_{1}, \mathcal{P}_{2}$, and \mathcal{X}_{S} respectively. Then the stability radius δ is

$$
\begin{equation*}
\delta=\min \left\{r_{d_{1}}, r_{d_{2}}, r_{d_{3}}\right\} \tag{1}
\end{equation*}
$$

Since \mathcal{P}_{1} and \mathcal{P}_{2} are hyperplanes, $r_{d_{1}}$ and $r_{d_{2}}$ can be readily determined:

$$
\begin{equation*}
r_{d_{1}}=\frac{\left|\varphi_{0}(-1)\right|}{\sqrt{n+1}}, \quad r_{d_{2}}=\frac{\left|\varphi_{0}(1)\right|}{\sqrt{n+1}} . \tag{2}
\end{equation*}
$$

The method to compute $r_{d_{3}}$ will be summarised in the following.
Define the $(n-1) \times(n+1)$ matrix Φ_{d} :

$$
\Phi_{d}:=\left[\begin{array}{ccccc}
1 & 0 & 0 & \ldots & 0 \tag{3}\\
-2 x & 1 & 0 & \ldots & 0 \\
1 & -2 x & 1 & \ddots & \vdots \\
0 & 1 & \ddots & \ddots & 0 \\
\vdots & \ddots & \ddots & \ddots & 1 \\
\vdots & \ddots & \ddots & 1 & -2 x \\
0 & 0 & \ldots & 0 & 1
\end{array}\right]
$$

where $x=\cos \theta$ with $\theta \in[0, \pi]$. Denote by $\mathbf{x}_{i}, i=1,2, \ldots, n-1$, the column vectors of Φ_{d}, and by \mathbf{x}_{n} and \mathbf{x}_{n+1} a basis of \mathcal{X}_{N},-the zero space of Φ_{d}^{T}. Then,

$$
\begin{aligned}
\mathcal{X}_{S} & =\operatorname{span}\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n-1}\right\} \\
\mathcal{X}_{N} & =\operatorname{span}\left\{\mathbf{x}_{n}, \mathbf{x}_{n+1}\right\}
\end{aligned}
$$

and $\mathcal{R}^{n+1}=\mathcal{X}_{S} \oplus \mathcal{X}_{N}$. Let $a \in \mathcal{R}^{n+1}$, then a can be uniquely decomposed into

$$
\begin{equation*}
\mathbf{a}=\mathbf{x}_{N}+\mathbf{x}_{S} \tag{4}
\end{equation*}
$$

where $\mathrm{x}_{N} \in \mathcal{X}_{N}$, and $\mathrm{x}_{S} \in \mathcal{X}_{S}$. x_{S} is the orthogonal projection of a on \mathcal{X}_{S}. It is readily verified that the length $\|\cdot\|_{2}$ of x_{N}, defined as

$$
\begin{equation*}
\left\|\mathbf{x}_{N}\right\|_{2}^{2}:=\left\langle\mathbf{x}_{N}, \mathbf{x}_{N}\right\rangle:=\mathbf{x}_{N}^{r} \mathbf{x}_{N} \tag{5}
\end{equation*}
$$

is the distance from a to \mathcal{X}_{S} for a fixed $x \in[-1,1]$. Also, denote $r_{d_{3}}(x)=\left\|\mathbf{x}_{N}\right\|_{2}$. Then the distance from a to \mathcal{X}_{S} is given by

$$
\begin{equation*}
r_{d_{3}}=\min _{x \in[-1,1]}\left\{r_{d_{3}}(x)\right\} \tag{6}
\end{equation*}
$$

Define the matrix

$$
X_{N}=\left[\begin{array}{ll}
\mathbf{x}_{n} & \mathbf{x}_{n+1} \tag{7}
\end{array}\right]
$$

Then, from the orthogonal projection approach described in [3], we obtain

$$
\begin{equation*}
\mathbf{x}_{N}=X_{N} G^{-1}\left(\mathbf{x}_{n}, \mathbf{x}_{n+1}\right) X_{N}^{T} \mathbf{a} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
r_{d_{3}}^{2}(x)=\mathbf{x}_{N}^{T} \mathbf{x}_{N}=\mathbf{a}^{T} X_{N} G^{-1}\left(\mathbf{x}_{n}, \mathbf{x}_{n+1}\right) X_{N}^{T} \mathbf{a} \tag{9}
\end{equation*}
$$

where

$$
G\left(\mathbf{x}_{n}, \mathbf{x}_{n+1}\right):=X_{N}^{T} X_{N}=\left[\begin{array}{cc}
\mathbf{x}_{n}^{T} \mathbf{x}_{n} & \mathbf{x}_{n}^{T} \mathbf{x}_{n+1} \\
\mathbf{x}_{n+1}^{T} \mathbf{x}_{n} & \mathbf{x}_{n+1}^{T} \mathbf{x}_{n+1}
\end{array}\right]
$$

is the Gramian of \mathbf{x}_{n} and \mathbf{x}_{n+1} [3]. Since $G\left(\mathrm{x}_{n} \mathrm{x}_{n+1}\right)$ is a 2×2 matrix, (9) can be represented as a rational function

$$
\begin{equation*}
r_{d_{3}}^{2}(x)=\frac{q(x)}{p(x)} \tag{10}
\end{equation*}
$$

with

$$
\begin{align*}
p(x) & =\operatorname{det} G\left(\mathbf{x}_{n}, \mathbf{x}_{n+1}\right)=\mathbf{x}_{n}^{T} \mathbf{x}_{n} \mathbf{x}_{n+1}^{T} \mathbf{x}_{n+1}-\mathbf{x}_{n}^{T} \mathbf{x}_{n+1} \mathbf{x}_{n}^{T} \mathbf{x}_{n+1} \\
q(x) & =\mathbf{a}^{T} X_{N}\left[\begin{array}{cc}
\mathbf{x}_{n+1}^{T} \mathbf{x}_{n+1} & -\mathbf{x}_{n}^{T} \mathbf{x}_{n+1} \\
-\mathbf{x}_{n+1}^{T} \mathbf{x}_{n} & \mathbf{x}_{n}^{T} \mathbf{x}_{n}
\end{array}\right] X_{N}^{T} \mathbf{a} \tag{11}
\end{align*}
$$

The following result is due to Wu and Mansour [5].
Proposition 1. A basis for \mathcal{X}_{N} is

$$
\left.\begin{array}{rl}
\mathbf{x}_{n} & =\left[\begin{array}{lllll}
U_{n-1}(x) & U_{n-2}(x) & \ldots & U_{1}(x) & 1
\end{array} 0\right.
\end{array}\right]^{T}, ~\left(\begin{array}{llll}
\\
\mathbf{x}_{n+1} & =\left[\begin{array}{llll}
-U_{n-2}(x) & -U_{n-3}(x) & \ldots & -U_{0}(x)
\end{array} 01\right.
\end{array}\right]^{T}
$$

where $U_{k}(x)$ is the Chebyshev polynomial of the second kind.
We shall use this basis to define the matrix X_{N} throughout the rest of this paper. From Proposition 1 and (11), we see that

$$
\begin{align*}
& \operatorname{deg}[p(x)] \leq 2(n-1)+2(n-2)=4 n-6 \\
& \operatorname{deg}[q(x)] \leq 2(n-1)+2(n-2)=4 n-6 \tag{12}
\end{align*}
$$

Examples shown that there are cancellations in the coefficients of $p(x)$ resp. $q(x)$, and $2(n-1)$ should be the degree for both $p(x)$ and $q(x)$. We shall show in the following section that this is true.

Further, it should be noted that the basis of \mathcal{X}_{N} given in Proposition 1 is not an orthogonal one. However, since for any nonsingular 2×2 matrix $V(x)$, the vectors

$$
\left[\begin{array}{ll}
\mathbf{y}_{n} & \mathbf{y}_{n+1} \tag{13}
\end{array}\right]=X_{N} V(x)
$$

also form a basis for \mathcal{X}_{N}, we can choose the matrix $V(x)$ such that the resulting \mathbf{y}_{n} and \mathbf{y}_{n+1} are orthogonal, i.e. $\mathbf{y}_{n}^{T} \mathbf{y}_{n+1}=0$. It is clear that $r_{d_{3}}^{2}(x)$ is independent of the choice of the basis of \mathcal{X}_{N}. Hence, $r_{d_{3}}^{2}(x)$ can be represented in the Pythagoras form:

$$
\begin{equation*}
r_{d_{3}}^{2}(x)=\left(\frac{\mathbf{y}_{n}^{T} \mathbf{a}}{\left\|\mathbf{y}_{n}\right\|_{2}}\right)^{2}+\left(\frac{\mathbf{y}_{n+1}^{T} \mathbf{a}}{\left\|\mathbf{y}_{n+1}\right\|_{2}}\right)^{2} \tag{14}
\end{equation*}
$$

by choosing a suitable $V(x)$ to orthogonalize the basis. In the following section we shall show how to choose the matrix $V(x)$.

3. The main results

Let us first define $U_{-k}(x)$ for $k=1,2, \ldots$

$$
\begin{equation*}
U_{-k-1}(x)=2 x U_{-k}(x)-U_{-k+1}(x) \tag{15}
\end{equation*}
$$

It is readily verified that $U_{-k}(x)$ satisfies the recursive form for $U_{k}(x)$:

$$
U_{-k+1}(x)=2 x U_{-k}(x)-U_{-k-1}(x)
$$

Hence, $U_{-k}(x)$ extends the definition of the Chebyshev polynomials for negative indices. We claim that

$$
\begin{equation*}
U_{-k}(x)=-U_{k-2}(x) \tag{16}
\end{equation*}
$$

Ideed, for $k=1,2,3$ we have

$$
\begin{aligned}
U_{-1}(x) & =2 x U_{0}(x)-U_{1}(x)=0 \\
U_{-2}(x) & =2 x U_{-1}(x)-U_{0}(x)=-U_{0}(x) \\
U_{-3}(x) & =2 x U_{-2}(x)-U_{-1}(x)=-U_{1}(x)
\end{aligned}
$$

If we assume

$$
U_{-k}(x)=-U_{k-2}(x) \quad \text { and } \quad U_{-k-1}(x)=-U_{k+1-2}(x)
$$

then

$$
\begin{aligned}
U_{-k-2}(x) & =2 x U_{-k-1}(x)-U_{-k}(x) \\
& =-2 x U_{k-1}(x)+U_{k-2}(x)=-U_{k}(x)=U_{(k+2)-2}(x)
\end{aligned}
$$

With this extension, X_{N}^{T} can be represented as

$$
X_{N}^{T}=\left[\begin{array}{rrrr}
U_{n-1}(x) & U_{n-2}(x) & \ldots & U_{-1}(x) \\
-U_{n-2}(x) & -U_{n-3}(x) & \ldots & -U_{-2}(x)
\end{array}\right]=:\binom{U_{n-1-(i-1)}(x)}{-U_{n-2-(i-1)}(x)}_{i=1,2, \ldots, n+1}
$$

Proposition 2. For Chebyshev polynomials of the second kind, there holds

$$
U_{n}(x) U_{n-i}(x)-U_{n+1}(x) U_{n-1-i}(x)=U_{i}(x)
$$

Proof. From $U_{n+1}(x)=2 x U_{n}(x)-U_{n-1}(x)$, we get

$$
\begin{aligned}
U_{n+1}(x) U_{n-1-i}(x) & =\left(2 x U_{n}(x)-U_{n-1}(x)\right) U_{n-1-i}(x) \\
& =2 x U_{n-1-i}(x) U_{n}(x)-U_{n-1}(x) U_{n-1-i}(x) \\
& =U_{n}(x)\left(U_{n-i}(x)+U_{n-2-i}(x)\right)-U_{n-1}(x) U_{n-1-i}(x)
\end{aligned}
$$

and

$$
\begin{aligned}
U_{n}(x) U_{n-i}(x)-U_{n+1}(x) U_{n-1-i}(x) & =U_{n-1}(x) U_{n-1-i}(x)-U_{n}(x) U_{n-2-i}(x) \\
& =U_{n-1}(x) U_{n-1-i}(x)-U_{n+1-1}(x) U_{n-1-1-i}(x)
\end{aligned}
$$

Repeating this process, we obtain

$$
U_{n}(x) U_{n-i}(x)-U_{n+1}(x) U_{n-1-i}(x)=U_{n-k}(x) U_{n-k-i}(x)-U_{n+1-k}(x) U_{n-1-k-i}(x)
$$

where $k=0, \pm 1, \pm 2, \ldots$ Setting $k=n-1-i$, we get finally

$$
\begin{aligned}
U_{n}(x) U_{n-i}(x)-U_{n+1}(x) U_{n-1-i}(x) & =U_{i+1}(x) U_{1}(x)-U_{i+2}(x) U_{0}(x) \\
& =2 x U_{i+1}(x)-U_{i+2}(x)=U_{i}(x)
\end{aligned}
$$

Now, let us define the matrices

$$
\begin{align*}
P_{1} & =\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right] \tag{17}\\
H_{p} & =X_{N} P_{1} X_{N}^{T}
\end{align*}
$$

Based on Proposition 2, the matrix H_{p} can be determined.

Corollary 1. The matrix H_{p} defined in (17) is given by

$$
H_{p}=\left[\begin{array}{ccccc}
0 & U_{0}(x) & U_{1}(x) & \cdots & U_{n-1}(x) \\
-U_{0}(x) & 0 & U_{0}(x) & \cdots & U_{n-2}(x) \\
-U_{1}(x) & -U_{0}(x) & 0 & \ddots & \vdots \\
\vdots & \vdots & \ddots & \ddots & U_{0}(x) \\
-U_{n-1}(x) & -U_{n-2}(x) & \ldots & -U_{0}(x) & 0
\end{array}\right]
$$

Proof. The (l, m)-th element of H_{p} is

$$
\begin{aligned}
\left(H_{p}\right)_{l m} & =U_{n-2-(l-1)}(x) U_{n-1-(m-1)}(x)-U_{n-1-(l-1)}(x) U_{n-2-(m-1)}(x) \\
& =U_{n-l-1}(x) U_{n-l-1-(m-l-1)}(x)-U_{n-l}(x) U_{n-l-2-(m-l-1)}(x) \\
& =U_{m-l-1}(x) \quad l, m=1,2, \ldots, n+1 .
\end{aligned}
$$

The last equation follows from Proposition 2. The equality $\left(H_{p}\right)_{m l}=-\left(H_{p}\right)_{l m}$ follows from (16).

Note that H_{p} is a skew-symmetric Toeplitz matrix, and $P H_{p}=-H_{p} P$, where P is the rotation matrix such that $\mathbf{a}^{T} P=\left[\begin{array}{llll}a_{0} & a_{1} & \ldots & a_{n}\end{array}\right]$ for all $\mathbf{a}=\left[\begin{array}{llll}a_{n} & a_{n-1} & \ldots & a_{0}\end{array}\right]^{T}$, i.e. the elements on the secondary diagonal of P are all equal to one, and the other elements are all zero.

We are now in a position to determine $\operatorname{deg}[p(x)]$ and $\operatorname{deg}[q(x)]$.
Theorem 1. $p(x)=\sum_{k=0}^{n-1}(n-k) U_{k}^{2}(x)$, and $q(x)=\left\|H_{p} a\right\|_{2}^{2}$. Hence

$$
\operatorname{deg}[p(x)]=\operatorname{deg}[q(x)]=2 \cdot \operatorname{deg}\left[U_{n-1}(x)\right]=2(n-1)
$$

Proof. It is clear that

$$
\begin{align*}
p(x) & =\mathbf{x}_{n}^{T} \mathbf{x}_{n} \mathbf{x}_{n+1}^{T} \mathbf{x}_{n+1}-\mathbf{x}_{n}^{T} \mathbf{x}_{n+1} \mathbf{x}_{n}^{T} \mathbf{x}_{n+1} \\
& =\mathbf{x}_{n}^{T}\left(\mathbf{x}_{n} \mathbf{x}_{n+1}^{T}-\mathbf{x}_{n+1} \mathbf{x}_{n}^{T}\right) \mathbf{x}_{n+1} \\
& =\mathbf{x}_{n}^{T} X_{N} P_{1} X_{N}^{T} \mathbf{x}_{n+1}=\mathbf{x}_{n}^{T} H_{p} \mathbf{x}_{n+1}, \\
q(x) & =\mathbf{a}^{T} X_{N} \cdot \operatorname{adj} G\left(\mathbf{x}_{n}, \mathbf{x}_{n+1}\right) \cdot X_{N}^{T} \mathbf{a} \\
& =\mathbf{a}^{T} X_{N}\left[\begin{array}{cc}
\mathbf{x}_{n+1}^{T} \mathbf{x}_{n+1} & -\mathbf{x}_{n+1}^{T} \mathbf{x}_{n} \\
-\mathbf{x}_{n}^{T} \mathbf{x}_{n+1} & \mathbf{x}_{n}^{T} \mathbf{x}_{n}
\end{array}\right] X_{N}^{T} \mathbf{a} \tag{18}\\
& =\mathbf{a}^{T}\left(X_{N} P_{1} X_{N}^{T}\right)^{T}\left(X_{N} P_{1} X_{N}^{T}\right) \mathbf{a} \\
& =\left\|H_{p} \mathbf{a}\right\|_{2}^{2}
\end{align*}
$$

Consider (18). From Corollary 1 follows

$$
\mathbf{x}_{n}^{T} H_{p} \mathbf{x}_{n+1}=\sum_{k=0}^{n-1}\left(U_{k}(x) \cdot \sum_{i=1}^{n-k}\left(x_{i} y_{i+k+1}-x_{i+k+1} y_{i}\right)\right)
$$

where x_{i} and y_{l} are, respectively, the i-th and the l-th entry of \mathbf{x}_{n} and \mathbf{x}_{n+1}. Since $x_{i}=U_{n-i}(x)$, $y_{l}=-U_{n-1-l}(x)$,

$$
\begin{aligned}
x_{i} y_{i+k+1}-x_{i+k+1} y_{i} & =-U_{n-i}(x) U_{n-1-i-k-1}(x)+U_{n-i-k-1}(x) U_{n-1-i}(x) \\
& =U_{m}(x) U_{m-k}(x)-U_{m+1}(x) U_{m-1-k}(x)=U_{k}(x)
\end{aligned}
$$

Hence,

$$
\begin{aligned}
p(x) & =\sum_{k=0}^{n-1}\left(U_{k}(x) \sum_{i=1}^{n-k} U_{k}(x)\right) \\
& =\sum_{k=0}^{n-1}(n-k) U_{k}^{2}(x)
\end{aligned}
$$

Remark. The above equation gives a recursive form for $p(x)$. Indeed, if we rewrite the distance function $r_{d_{3}}(x)$ of a polynomial $\varphi_{0}(z)$ of degree n as

$$
p_{d_{3}}^{2}(x)=\frac{q^{(n)}(x)}{p^{(n)}(x)}
$$

then

$$
p^{(n)}(x)=p^{(n-1)}(x)+\left\|\mathbf{x}_{n}\right\|_{2}^{2}
$$

In the rest of this section, we shall find an orthogonal basis for \mathcal{X}_{N} by choosing a suitable $V(x)$. Let us first introduce the 2×2 matrix $U_{i, i+k}$ composed of the i - and $(i+k)$-th columns of X_{N}^{T} :

$$
U_{i, i+k}=\left[\begin{array}{rr}
U_{n-1-(i-1)}(x) & U_{n-1-(i+k-1)}(x) \tag{19}\\
-U_{n-2-(i-1)}(x) & -U_{n-2-(i+k-1)}(x)
\end{array}\right]
$$

where $k=1,2, \ldots, n+1-i$. The following result can be also obtained using Proposition 2.
Corollary 2. For $k=1,2, \ldots, n+1-i$, $\operatorname{det}\left(U_{i, i+k}\right)=U_{k-1}(x)$, and

$$
\left(U_{i, i+k} P_{1}\right) \cdot\left(P_{1} U_{i, i+k}\right)^{T}=U_{k-1}(x) \cdot I_{2}
$$

Proof. The first part follows directly from Proposition 2, since

$$
\begin{aligned}
\operatorname{det}\left(U_{i, i+k}\right) & =U_{n-1-(i+k-1)}(x) U_{n-2-(i-1)}(x)-U_{n-1-(i-1)}(x) U_{n-2-(i+k-1)}(x) \\
& =U_{n-i-1-(k-1)}(x) U_{n-i-1}(x)-U_{n-i}(x) U_{n-i-2-(k-1)}(x)
\end{aligned}
$$

To prove the second part, we consider the matrix product $A P_{1} A^{T} P_{1}^{T}$ for any 2×2 matrix A. Obviously, $P_{1} A^{T} P_{1}^{T}$ is nothing else the adjoint matrix of A. Hence, $A P_{1} A^{T} P_{1}^{T}=\operatorname{det}(A) \cdot I_{2}$.

Denote by \mathbf{h}_{i} the i-th column vector of the matrix H_{p}, and define

$$
\begin{align*}
& \mathbf{h}= \begin{cases}\frac{1}{2}\left(\mathbf{h}_{\frac{n+1}{}}-\mathbf{h}_{\frac{n+1}{2}+1}\right) & n=\text { odd } \\
\frac{1}{2}\left(\mathbf{h}_{\frac{n}{2}+2}-\mathbf{h}_{\frac{n}{2}}\right) & n=\text { even }\end{cases} \tag{20}\\
& \mathbf{g}= \begin{cases}\frac{1}{2}\left(\mathbf{h}_{\frac{n+1}{2}}+\mathbf{h}_{\frac{n+1}{2}+1}\right) & n=\text { odd } \\
\frac{1}{2 x}\left(\mathbf{h}_{\frac{n}{2}+2}+\mathbf{h}_{\frac{n}{2}}\right) & n=\text { even }\end{cases}
\end{align*}
$$

Proposition 3. For $n=$ even, we have

$$
\left.\begin{array}{rl}
\mathbf{h} & =\left[\begin{array}{lllll}
T_{\frac{n}{2}}(x) & T_{\frac{n}{2}-1} & (x) & \ldots & T_{0}(x) \ldots
\end{array} T_{\frac{n}{2}-1}(x) T_{\frac{n}{2}}(x)\right.
\end{array}\right]^{T},\left[\begin{array}{llll}
U_{\frac{n}{2}-1}(x) & U_{\frac{n}{2}-2}(x) & \ldots & U_{-1}(x)
\end{array} \ldots-U_{\frac{n}{2}-2}(x)-U_{\frac{n}{2}-1}(x)\right]^{T}, ~ l
$$

where $T_{k}(x)$ is the Chebyshev polynomial of the first kind: $T_{k}(\cos \theta)=\cos k \theta$.

Proof. It is clear that the i-th element of \mathbf{g}, denoted by $(\mathbf{g})_{i}$, is given by

$$
\begin{aligned}
(\mathrm{g})_{i} & =\frac{U_{\frac{n}{2}-2-(i-1)}(x)+U_{\frac{n}{2}-(i-1)}(x)}{2 x} \\
& =U_{\frac{n}{2}-1-(i-1)}(x)
\end{aligned}
$$

Further, we claim that

$$
\begin{equation*}
x U_{k+1}(x)-U_{k}(x)=T_{k+2}(x) \tag{21}
\end{equation*}
$$

Hence, the i-th element of h is

$$
\begin{align*}
(\mathbf{h})_{i} & =\frac{U_{\frac{n}{2}-(i-1)}(x)-U_{\frac{n}{2}-2-(i-1)}(x)}{2} \\
& =\frac{U_{\frac{n}{2}-(i-1)}(x)+U_{\frac{n}{2}-2-(i-1)}(x)-2 U_{\frac{n}{2}-2-(i-1)}(x)}{2} \tag{22}\\
& =\frac{2\left(x U_{\frac{n}{2}-1-(i-1)}(x)-U_{\frac{n}{2}-2-(i-1)}(x)\right)}{2}=T_{\frac{n}{2}-(i-1)}(x) .
\end{align*}
$$

To verify the claim, it suffices to show

$$
U_{k}(x)-T_{k}(x)=x U_{k-1}(x)
$$

Indeed, from

$$
\begin{array}{lll}
U_{0}(x)=1, & U_{1}(x)=2 x, & U_{2}(x)=4 x^{2}-1 \\
T_{0}(x)=1, & T_{1}(x)=x, & T_{2}(x)=2 x^{2}-1
\end{array}
$$

we see that

$$
U_{1}(x)-T_{1}(x)=x=x U_{0}(x) \quad \text { and } \quad U_{2}(x)-T_{2}(x)=2 x^{2}=x U_{1}(x)
$$

Let us assume that (21) holds for $k-1$ and k, i.e.

$$
U_{k-1}(x)-T_{k-1}(x)=x U_{k-2}(x) \quad \text { and } \quad U_{k}(x)-T_{k}(x)=x U_{k-1}(x)
$$

Then, for $k+1$, we get

$$
\begin{aligned}
U_{k+1}-T_{k+1} & =2 x U_{k}(x)-U_{k-1}(x)-\left(2 x T_{k}(x)-T_{k-1}(x)\right) \\
& =2 x\left(U_{k}(x)-T_{k}(x)\right)-\left(U_{k-1}(x)-T_{k-1}(x)\right) \\
& =x\left(2 x U_{k-1}(x)-U_{k-2}(x)\right)=x U_{k}(x)
\end{aligned}
$$

The proof is thus completed.
Equipped with the notations above, we are now in a position to find a Pythagoras form for $r_{d_{3}}^{2}(x)$.

Theorem 2. The vectors \mathbf{h} and \mathbf{g} defined in (20) form an orthogonal basis for \mathcal{X}_{N}. Hence,

$$
r_{d_{3}}^{2}(x)=\left(\frac{\langle\mathbf{h}, \mathbf{a}\rangle}{\|\mathbf{h}\|}\right)^{2}+\left(\frac{\langle\mathbf{g}, \mathbf{a}\rangle}{\|\mathbf{g}\|}\right)^{2}
$$

Proof. We prove only the first part of the theorem, since the second part then follows directly.
Let us first complete the proof for $n=$ odd. In this case, we get from (17), (19), and (20)

$$
\begin{align*}
{\left[\begin{array}{ll}
\mathbf{h} & \mathbf{g}
\end{array}\right] } & =\left[\begin{array}{ll}
\mathbf{h}_{\frac{n+1}{2}} & \mathbf{h}_{\frac{n+1}{2}+1}
\end{array}\right] V_{1} \tag{23}\\
& =\left[\begin{array}{ll}
-\mathbf{x}_{n+1} & \mathbf{x}_{n}
\end{array}\right] U_{\frac{n+1}{2}, \frac{n+1}{2}+1} V_{1}
\end{align*}
$$

where

$$
V_{1}=\frac{1}{2}\left(\begin{array}{rr}
1 & 1 \\
-1 & 1
\end{array}\right)
$$

From Corollary 2, we get $\operatorname{det}\left[U_{\frac{n+1}{2}, \frac{n+1}{2}+1}\right]=U_{0}(x) \equiv 1$. Hence, the matrix $U_{\frac{n+1}{2}, \frac{n+1}{2}+1} V_{1}$ is always nonsingular, and $\left[\begin{array}{l}\mathrm{h} \\ \mathrm{g}\end{array}\right]$ forms a basis for \mathcal{X}_{N}. It remains then only to show that h and g are orthogonal. From Corollary 1, we get

$$
P\left[\begin{array}{ll}
\mathbf{h}_{i} & \mathbf{h}_{n+1-(i-1)}
\end{array}\right]=-\left[\begin{array}{ll}
\mathbf{h}_{n+1-(i-1)} & \mathbf{h}_{i} \tag{24}
\end{array}\right]
$$

frif $j=1,2, \ldots, \frac{n+1}{2}$. Hence, $\mathbf{h}_{\frac{n+1}{2}+1}=-P \mathbf{h}_{\frac{n+1}{2}}$. From (23) we get further

$$
\mathbf{h}=\frac{I+P}{2} \mathbf{h}_{\frac{n+1}{2}}, \quad \mathbf{g}=\frac{I-P}{2} \mathbf{h}_{\frac{n+1}{2}} .
$$

Since $(I+P)(I-P)=0, \mathbf{h}^{T} \mathbf{g}=\frac{1}{4} \mathbf{h}_{\frac{n+1}{2}}^{T}(I+P)(I-P) \mathbf{h}_{\frac{n+1}{2}}=0 . \mathbf{h}$ and \mathbf{g} are orthogonal.
The proof for $n=$ even can be completed in the same way, except that we have to show that the matrix $U_{\frac{n}{2}, \frac{n}{2}+2} V_{2}$, where

$$
V_{2}=\frac{1}{2}\left(\begin{array}{cc}
-1 & \frac{1}{x} \\
1 & \frac{1}{x}
\end{array}\right)
$$

is nonsingular for all x since

$$
\begin{aligned}
{\left[\begin{array}{ll}
\mathbf{h} & \mathbf{g}
\end{array}\right] } & =\left[\begin{array}{ll}
\mathbf{h}_{\frac{n}{2}} & \mathbf{h}_{\frac{n}{2}+2}
\end{array}\right] V_{2} \\
& =\left[\begin{array}{ll}
-\mathbf{x}_{n+1} & \mathbf{x}_{n}
\end{array}\right] U_{\frac{n}{2}, \frac{n}{2}+2} V_{2}
\end{aligned}
$$

From (21) and the recursive form of the Chebyshev polynomials, we get

$$
\begin{aligned}
U_{\frac{n}{2}, \frac{n}{2}+2} V_{2} & =\frac{1}{2}\left[\begin{array}{rr}
U_{n-1-\left(\frac{n}{2}-1\right)}(x) & U_{n-1-\left(\frac{n}{2}+1\right)}(x) \\
-U_{n-2-\left(\frac{n}{2}-1\right)}(x) & -U_{n-2-\left(\frac{n}{2}+1\right)}(x)
\end{array}\right]\left[\begin{array}{rr}
-1 & \frac{1}{x} \\
1 & \frac{1}{x}
\end{array}\right] \\
& =\left[\begin{array}{rr}
-T_{\frac{n}{2}}(x) & U_{\frac{n}{2}-1}(x) \\
T_{\frac{n}{2}-1}(x) & -U_{\frac{n}{2}-2}(x)
\end{array}\right] .
\end{aligned}
$$

Hence, the matrix $U_{\frac{n}{2}, \frac{n}{2}+2} V_{2}$ is well-defined for all x. To show that this matrix is also nonsingular for all x, we just recall Corollary 2. Then, from $\operatorname{det}\left(V_{2}\right)=-\frac{1}{2 x}$, we get $\operatorname{det}\left[U_{\frac{n}{2}, \frac{n}{2}+2} V_{2}\right]=-1 \neq 0$. This completes the proof.
Remark. For $n=$ odd, we have chosen $V(x)=P_{1} U_{\frac{n+1}{2}, \frac{n+1}{2}+1} V_{1}$, while for $n=$ even, $V(x)=$ $P_{1} U_{\frac{n}{2}, \frac{n}{2}+2} V_{2}$. In both cases, $V(x)$ are unimodular polynomial matrices. Hence, $V(x)$ is nonsingular for all x.

4. Conclusion

In this paper, we have done the following. First, we have determined the degrees of the polynomials $p(x)$ and $q(x)$. This result is useful in numerically computating the minimum of $r_{d_{3}}^{2}(x)$. Further, using the basis vectors \mathbf{x}_{n} and \mathbf{x}_{n+1} given in [5] and a 2×2 nonsingular matrix $V(x)$, we have found an orthogonal basis for \mathcal{X}_{N} and hence a Pythagoras form for $r_{d_{3}}^{2}(x)$. This is the counterpart of the result in [1] for discrete-time systems.

References

[1] Bhattacharyya, S. P. Robust stabilization against structured perturbations. Lecture Notes in Control and Information Sciences 99, Springer-Verlag, Berlin, 1987.
[2] Fam, A. T. and Meditch, J. S. A canonical parameter space for linear systems design. IEEE Trans. Auto. Contr. AC-23 (1978), pp. 454-458.
[3] Gantmacher, F. R. The theory of matrices. Chelsea Publishing Company, N.Y., 1959.
[4] Soh, C. B., Berger, C. S., and Dabke, K. P. On the stability properties of polynomials with perturbed coefficients. IEEE Trans. Auto. Contr. AC-30 (1985), pp. 1033-1036.
[5] Wu, Q.-H. and Mansour, M. On the stability radius of a Schur polynomial. Systems \& Control Letters 21, pp. 199-205.

Received: May 20, 1994
Revised version: March 2, 1995

Automatic Control Laboratory
Swiss Federal Institute of Technology
ETH-Zentrum, CH-8092 Zürich Switzerland

[^0]: (C) $\mathrm{Q}-\mathrm{H}$. Wu, M Mansour, 1995

