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Computation of the stability radius of a 
Schur polynomial: an orthogonal projection 
approach 
Q.-H.  Wu and M. MANSOL~ 

The robust Schur stability of a polynomial with uncertain coefficients will be investigated. A formula for 
the stability radius of a Schur polynomial is established. The result is the counterpart of [1] for linear 
discrete-time systems 
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Id3y~taeTc~ po6acraan Ulypoea ycro;~qnBOCTb MnOroq~eHa c neonpeae~eHntaMn v, oaqbcibnunenTaMH. 2Ia- 
eTca qbopmyaa aaa paanyca cTa6nabnocrn Mnoroqaena IIIypa. Pe3yabTav aonoanaeT pa6ovy [1] aaa 
c;~yqaB fll4HefiHtaX CHCTeM /1HcKpeTHoro BpeMeHH. 

1. I n t r o d u c t i o n  

Given a polynomial  

~(z)  = (a .  + ~ ) z "  + (a~-i + 6~-~)z n-1 + . . .  + (al + 61)z + (~o + ~o) 

whose p a r a m e t e r  vector  a = [a,~ a,~-i . . .  a0] T E 7~ '~+1, the uncer ta int ies  rSi a re  real  and  within 
a hype r sphe re  

e~ +6L~ + . . .  + 6~ +~0 ~ < ~ 
u n d e r  the assumpt ion that  the nomina l  po lynomia l  

~ o ( Z )  = a,~z n + a , ~ - l z  "~-1 + . . .  + a l z  + ao 

is Schur  stable, i.e. the roots of  ~0(z)  are  all within the open unit  disc, we are  in teres ted  
in de t e rmin ing  the largest  ~5 so that  qo(z) remains  stable. In the p a r a m e t e r  space 7?. '~+1, 
the stability bounda ry  is descr ibed by (i) the n -d imens iona l  subspace T ( - 1 )  = 0, (ii) the n-  
d imensional  subspace qa(1) = 0, and  (iii) the (n - 1)-dimensional  hypersur face  9~(e j~ = 0 and  
3(e - j~  = 0 for 0 E [0, 7r] [2]. Denote  by rdl, rd2, and  re3, respectively, the dis tance f rom a 
to the stability boundar ies  (i), (ii), and  (iii), and  rd = min{rdl,rd2, rd3}. Since qo0(z) is stable, 
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~(z) will be stable if and only if 6 < rd. Since the distance from a point a to a subspace 
can always be calculated using the orthogonal projection approach (see [3]), the main problem 
is then how to identify the distance between a and the hypersurface, which, for a fixed 0, is 
also a subspace Xs of 7~ '~+1 with the basis vectors x/, i = 1, 2 . . . .  , n - 1. Denote by XN the 
orthogonal complement of  Xs with a basis xi, i = n, n + 1, then T4 n+l = X s G XN, and every 
a E T4 n+l can be uniquely decomposed as a = XN + iS ,  where XN ff XN and xs  E As. The 
distance from a to Xs is then the euclidean norm of XN, denoted by IIXNII2. raa is then the 
minimum of IIXNII2 which is a function of  0. In [3], XN is represented in terms of  the inverse 
of the gramian matrix of  the vectors ~ (i -- 1, 2 , . . . ,  n - 1), which is an (n - 1) x (n - 1) 
matrix, and [[Xun~ is determined in a quadratic form which involves this inverse matrix. The  
approach proposed by Sob et al. [4] is based on this mehtod. On the other hand, XN can be 
also represented as a linear combination of  the vectors xn and in+l ,  and this combination can 
be fully determined by the inverse of the 2 x 2 gramian matrix of x~ and x~+l. Hence, [fiN]f2 

can be determined in terms of  some real rational function HXN[[~ = q(x) In a recent paper ;(x)" 
[5], the polynomials p(x) and q(x) are determined in terms of  the Chebyshev polynomials 
G(x). 

n--1 

In this paper, we shall show that p(x) = ~'~(n - k)U~(x), q(x) = [IHa[[~, where H is the 
k=0 

skew-symmetric Toeplitz matrix (H)lm = Um-t- l(x) .  This will allow us to determine exactly the 
degrees of p(x) and q(x). Further, we shall find an orthogonal basis for Xn and the Pythagoras 
form for [[XN[[~. This establishes the counterpart of  the result in [1] for discrete-time systems. 

Throughout  this paper, j denotes the imaginary unit, i.e. j2 = - 1 .  For a square matrix 
A, adjA denotes its adjoint matrix, and det(A) its determinant. Given the vectors a~ E TC ~, 
i = 1, 2 , . . . ,  m with m _ n, span{a1, a 2 , . . . ,  an} is the linear span of ai over ~ ,  i.e. 

i=1 

where 7-~ in the field of real numbers. 

2. Background result 
As stated in previous section, for a polynomial q0(z) of degree n, the stability region in the 
parameter space TC ~+1 is bounded by 

$'1 : ~ ( - 1 ) = 0 ,  

v~ : ~ (1 )=0 ,  
Xs : ~(e j~ = 0  and 9~(e - j e ) = 0  for some 0 E [ 0 ,  Tr]. 

Denote by a the parameter vector of  a Schur polynomial ~0(z), by rd~, ra2, and rda the distance 
from a to Pl ,  7~2, and Xs respectively. Then the stability radius 6 is 

6 = min{rdl, rd2, rda}. (1) 

Since :Pl and P2 are hyperplanes, rdl and rd2 can be readily determined: 

ICpo(-l)] l~o(1)] (2) 
rdl = ~ , rd2 = v/-~+ 1 
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The  method to compute ra3 will be summarised in the following. 

Define the (n - 1) x (n + 1) matrix @d: 

1 0 0 . . .  0 
- 2 x  1 0 . . .  0 

1 - 2 x  1 "'. : 

0 1 "'. "'. 0 

" "'. " .  "'. 1 

: "'. "'. 1 - 2 x  
0 0 . . .  0 1 

423 

(3) 

where 

and 

x N  = [ ~  x.+~]. 

Then,  from the orthogonal projection approach described in [3], we obtain 

xN = X ~ G - l ( x ~ ,  X~+l)X~ra 

r~ 3 (~) = xT, x, ,  = ~ x , , c - '  (~, x~+~)x~a 

C(x"'x"+l) := x~x~ = [ x~x"x~+lx~ x~+ix~+~x~x"+l ] 
is the Gramian of  xn and Xn+l [3]. Since G(x, ,  x,,+x) is a 2 x 2 matrix,  (9) can be represented 

.,s a rational function 

= q(z) (lo) ~(~) v(~) 

(7) 

(8) 

(9) 

Define the matrix 

where :r = cos $ with 0 E [0, 7r]. Denote by xi,  i = 1, 2 . . . .  , n - 1, the column vectors of  @~, 
and by xn and xn+l a basis of  X N , - - t h e  zero space of  ~ ' .  Then,  

XS = s p a n { x l , x 2 , . . . , X n _ l } ,  

XN = span{ in ,  xn+l} 

and 7"C *+i = A's @ 2C'N. Let a E 7~. n+i, then a can be uniquely decomposed into 

a = XN + x s  (4) 

where XN E XN, and x s  E Xs. Xs is the orthogonal projection of  a on 2ds. It is readily 
verified that the length ]1.1[2 of  XN, defined as 

IIXNII~ := (XN, XN) := x r x N  (5) 

is the distance from a to Xs for a fixed x E [ - 1 ,  1]. Also, denote rd3(X) = [/x~cl/u. Then the 
distance from a to 2ds is given by 

min {rd3(X)}. (6) rd3 = zE{ -1 ,1 ]  
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with 
p(x) det G(xn ,  Xn+l) T T T T = _--_ X n X n X n + l X n +  1 - -  X n Xn+lX n Xn+l 

q(x) = aTXN x n + l x ~ + a - x ~ x ' ~ + l  XTa .  

The  following result is due to Wu and Mansour [5]. 

(11) 

Proposition 1. A basis for XN is 

xn = [U,~_t(x) Un-2(x) .. .  Ut(x) 1 0 IT, 

X,~+I = [ -U ,_2(x )  - U,~-3(x) . . .  - Uo(x) 0 1] T 

where Ua(x) is the Chebyshev polynomial of the second kind. 

We shall use this basis to define the matrix XN throughout the rest of this paper. From 
Proposition 1 and (11), we see that 

deg[p(x)] < 2 ( n - 1 ) + 2 ( n - 2 ) = 4 n - 6 ,  
(12) 

deg[q(x)] _< 2 ( n - 1 ) + 2 ( n - 2 ) = 4 n - 6 .  

Examples shown that there are cancellations in the coefficients of p(x) resp. q(x), and 2(n - 1) 
should be the degree for both p(x)  and q(x). We shall show in the following section that this 
is true. 

Further, it should be noted that the basis of XN given in Proposition 1 is not an orthogonal 
one. However, since for any nonsingular 2 x 2 matrix V(x), the vectors 

[y,  yn+l ] = XNV(~) (13) 

also form a basis for XN, we can choose the matrix V(x) such that the resulting y,~ and Y,~+I 
are orthogonal, i.e. T YnYn+l = 0. It is clear that r]3(x ) is independent of the choice of  the basis 
of XN. Hence, r~a(x ) can be represented in the Pythagoras form: 

r 2 { y T a  ~2 T 2 
( Y~+la ~ (14) 

d3(x) = \[[Y,~[[2] + \HY--~+I[[:] 

by choosing a suitable V(x) to orthogonalize the basis. In the following section we shall show 
how to choose the matrix V(x).  

3. The main results 
Let us first define U-k(x)  for k = 1, 2 , . . .  

V -~ - l (x )  = 2xU_k(x) - U-~+i(x).  

It is readily verified that U-k(x) satisfies the recursive form for Uk(x): 

= 2 u_k(x) - 

(15)  



COMPUTATION OF THE STABILITY RADIUS OF A SCHUR POLYNOMIAL.. .  425 

Hence, U_k(x) extends the definition of the Chebyshev polynomials for negative indices. We 

claim that 

Ideed, for k = 1, 2, 3 we have 

U_~(z) 
U-dx)  
U - a ( z )  

If we assume 

[}h I1 

U-k(x) = --Uk-2(x). (16) 

= 2~Uo(x )  - u ~ ( ~ )  = o, 

= 2 x U _ , ( . )  - U o ( x )  = - U o ( ~ ) ,  

= 2=u_=(~ )  - u _ , ( ~ )  = - u , ( ~ ) .  

U-k(X) = --Uk-2(x) and U-k-t(x) = -Uk+l -2 (x )  

u_~_~(~) = 2~u_~_~(~)-u_~(x)  

= -2~u~_~(x)+U~_~(~)=-u~(~)=ul~+~)_~(~).  

With this extension, XN T can be represented as 

xT= [ U,~-l(x) Un-2(x) ...  U-l(x) ] ( U n - l - ( i - 1 ) ( x ) )  
-u._~(z)-u._~(z) ...-u_~(z) = :  -u._>(,_,)(~) ,=~,~,...,.+~ 

Proposition 2. For Chebyshev polynomials of the second kind, there holds 

u . ( z ) ~ _ ~ ( z )  - U,,+~(z)u,~_l_~(x) = udz) .  

Proof. From U,~+l(x) = 2xU,(x) -- U,~-l(x), we get 

uo+~(x)u._>~(~) = (2~u.(~)- u._~(x))uo_>,(~) 
= 2 x u . _ ~ _ , ( x ) u o ( ~ )  - u._~(x)u._,_,(~) 
: u.4z)(u~_~(~) + u~_~_dx)) - u~_,(~)g~_~_~(z) 

and 

u,~(x)u._i(z) - U,~+l(X)u,~_l-dz) = U,~-~(x)u.-1-dz) - U . (x )u ._>, ( z )  

= u._~(x)U,,_>~(x) - U.+>~(z)u,~_M_i(x). 

Repeating this process, we obtain 

where k = 0, 4-1, 4 -2 , . . .  Setting k = n - 1 - i, we get finally 

u . ( ~ ) g . _ , ( ~ )  - g . + ~ ( ~ ) y . - x - ~ ( ~ )  = g~+~(x)u~(x) - g~+2(z)Uo(x) 
= 2 ~ u ~ + l ( z )  - u , + 2 ( z )  = u , ( ~ ) .  

Now, let us define the matrices 

/ '1 = - 0 ' 

Up = X~PlX~. 

Based on Proposition 2, the matrix Hp can be determined. 

[] 

(17) 
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Corollary 1. The matr i x  Hp de f ined  in (I 7) is g iven by 

H ,  = 

0 Uo(X) Ul(X ) . . .  Un_l(X) 
- U o ( ~ )  o Uo(z)  . . .  u . _ : ( z )  

- u ~ ( x )  - u o ( x )  o . .  : 

: : ".. "'. uo(~)  
- g . _ , ( ~ )  - u . _ ~ ( ~ )  . . .  - u o ( ~ )  o 

Proof T h e  (l, m)-th element of  Hp is 

( H . h . ,  = u , ,_ :_ ,_~) (~)u ._~_( , , ,_~) (z )  - u , ._~_(~_l) (X)u._:_( . ,_~)(z)  

= u,_~_~(z)u,,_~_~_(m_~_~)(x) - u ._~(z)u._~_~_( . ,_~_~)(x)  

= U ~ - t - l ( X )  l , m = l , 2 , . . . , n + l .  

The  last equation follows from Proposition 2. The  equality (Hp)mt = - ( H p ) t m  follows from 
(16). [] 

Note that Hp is a skew-symmetric Toeplitz matrix, and P H p  = - H p P ,  where P is the 
rotation matrix such that a T p  = [ao al . . .  an] for all a = [an an-1 . . .  ao] T, i.e. the elements 
on the secondary diagonal of  P are all equal to one, and the other elements are all zero. 

We are now in a position to determine deg~o(x)] and deg[q(x)]. 

n-I 
T h ~ r e m  1. p(x )  = ~_,(n - k )U~(x) ,  and q(x)  = IrHpall~. Hence 

k=O 

deg[p(x)] = deg[q(x)] = 2.  deg [Ur,-I(X)] = 2(n -- 1). 

Proof It is clear that 

q(x)  

= x ~ x ~ + l x ~ + ~ -  x~+lX~X,+~ 

= x~(x,  xL1 - X~+l~)X~+, 
T T = x; ,X~vPxXNX,~+l = xTHpxn+I, 

= aTX~t  �9 adj C(x~, x~+l) - X T a  

--_ aTXN[  X~+IXn+I_X~Xn+ 1 --X~+IXn ] X T a X ~ X n  

= a T ( x N P ,  x T ) T ( x N P I X T ) a  

= t tH, a~il 

Consider (18). From Corollary 1 follows 

(18) 

k=O i= l 

where x~ and Yt are, respectively, the i-th and the l-th entry o f x n  and Xn+l. Since xi  = Un- i ( x ) ,  

y, = - u , - 1 - , ( ~ ) ,  

xiyi+k+ 1 -- Xi+k+lY i .= -Vn_i(~c)gn_l_i_k_l(X) + Un-i-k-l(X)Vn_l_i(z) 
= v , , , ( z ) v ~ _ ~ ( z )  - U~+~(Z)Um-I -~ (Z)  = V~(z) .  
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Hence, 

p(~)  = ~ u~(z)  uk(x  
k=O 
n-1 

= ~ ( , ~ -  k)u~(x). 
k=0 

[] 

Remark. The  above equation gives a recursive form for p(x) .  Indeed, if we rewrite the distance 
function rd3(X) of a polynomial ~0(z) of degree n as 

v ~ ( = )  = q(") (=) 
v(")(z) 

then 
p(")(x)  = p("-l ) (x)  + [Ix~ll~. 

In the rest of this section, we shall find an orthogonal basis for ,'YN by choosing a suitable 
V(x ) .  Let us first introduce the 2 x 2 matrix U~,i+k composed of the i- and (i + k)-th columns 
of x T :  

Uii+k = [ U,~-l-(i-1)(x) U,,-1-(i+k-x)(X) ] (19) 
' -Un_2_(i_l)(X ) --Un-2-(i+k-1)(X) 

where k -- 1, 2 , . . . ,  n + 1 - i. The  following result can be also obtained using Proposition 2. 

Corollary 2. For k = 1, 2 . . . .  , n + 1 - i, det (Ui,i+k) --- Uk- l (x) ,  and 

(Ui,i+kP1)' (PlUi,i+k) r = Uk-l(X)" 12. 

Proof. The  first part follows directly from Proposition 2, since 

det (Ui.i+k) = Un-l-( i+k-1)(z)Un-2-(i_l)(X) - Un-l-( i -1)(x)Un-2-( i+k-1)(z)  
= u . _ , _ l _ r  - u . _ , ( ~ ) u . _ , _ 2 _ ( ~ _ , ( z ) .  

To prove the second part, we consider the matrix product A P 1 A T p ~  for any 2 • 2 matrix A. 
Obviously, P I A T p  T is nothing else the adjoint matrix of A. Hence, A P 1 A T p  T = det (A) .  I2.O 

Denote by hi the i-th column vector of the matrix Hp, and define 

h = g (h~_.~ - h-__~+l ) n = odd 
1 (  ~ 

h~+2 - h n = even, (20) 

g (h-_~_2~ + h%_~_+1 n = odd 

g = ~ (h~+2"+ h~ )  n = even. 

Proposition 3. For n = even, we have 

h ~-~ [ T ~ ( x ) T ~ _ l ( X )  . . .  r0(2~ ) . . .  r ~ _ x ( X  ) r.~(x)] T ,  

g = [u~_~(~)  u~_2(~)  . . .  u _ i ( ~ )  . . .  - u~_~(~)  - U~_ l (~ ) ]  ~ 

where Tk(x) is the Chebyshev polynomial o f  the first kind: Tk(cosO) = cos kO. 
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Proof. It is clear that the i-th element of g, denoted by (g)i,  is given by 

(g), U~-2-(~-l)(z) + U~_(~_l)(z) 
2x 

= U.~_l_(i_l)(z). 

Further ,  we claim that 
xUk+l(x) - Uk(x) = Tk+2(x). 

Hence, the i-th element of  h is 

u~_(,_l) (~) - u~_:_(~_l)(z) 
(h)~ = 

2 
U~-( i -D(x)  + U~-2-( i -D(x)  - 2U~_2_(i_D(x) 

2 

2 (xU.~_ l_ ( i_ l ) (X)  -- V~_2_(i_i)(~))  
= 2 = T~-( i -1)(x) .  

To verify the claim, it suffices to show 

(21) 

(22) 

G ( x )  - Tk(x) = ~Uk-l(~).  

Indeed,  from 

we see that 

U o ( x )  = 1, u ~ ( x )  = 2x ,  u ~ ( x )  = 4 x  = - 1, 

T o ( z )  = 1, T l ( z )  = z ,  T ~ ( z )  = 2 z  ~ - 1 

Ul(X) - Tl(X) = x = xUo(x) and U2(x) - T2(x) = 2x 2 = XUl(X). 

Let us assume that (21) holds for k - 1 and k, i.e. 

Uk_l(X) - -  T k _ I ( X  ) = xUk_2(Z) and Uk(x) - Tk(x) = xUk- l (x) .  

Then,  for k + 1, we get 

G+I  - Tk+1 = 2 ~ u , ( ~ )  - u , _ , ( x )  - ( 2 ~ T ~ ( ~ )  - T ~ _ , ( x ) )  

The  proof  is thus completed. [] 

Equipped with the notations above, we are" now in a position to find a Pythagoras form 

for r~3(x ). 

Theorem 2. The vectors h and g defined in (20) form an orthogonal basis for XN. Hence, 

G ( ~ )  = k II--aT] + 
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Proof. We prove only the first part of the theorem, since the second part then follows directly. 

Let us first complete the proof for n = odd. In this case, we get from (17), (19), and (20) 

[h g] = [h.-_~ h%_~o_+,]V1 
(23) 

= [ -x .+ l  x . l U . + , - + , . l V l  
2 ' 2 - - -  

where 1(11) 
V~=~  -1 1 " 

From Corollary 2, we get d~t [U~,~+I] = U0(~) = 1. Hence, the matrix U~,~+lVl is 

ah~ays nonsingular, and [h g] forms a basis for 2(N. It remains then only to show that h and 
g are orthogonal. From Corollary 1, we get 

f,.~ j = 1, 2, "",-E-"~+I Hence, h.2__~+ 1 = -Ph.+~.T From (23) we get further 

h = Ph%_~, g - P h . + ~ .  
2 2 T 

1 T P ) ( I -  P)h,2.~ ~_ = 0. h and g are orthogonal. Since (I + P)( I  - P) = O, hTg  = ah,+_.__~l ( I  + 

The proof for n = even can be completed in the same way, except that we have to show 
that the matrix U~,~+2V2, where 

1 
- 1  - 

1 x 
V2=~  I 

1 - 
2; 

is nonsingular for all :r since 

= [ - x . + l  x .]U~,~+~�89 

From (21) and the recursive form of the Chebyshev polynomials, we get 

U~,~+2V2 = 2 -Un-2-(~-l)(Z) -Un-2-(~+l)(x) 

[ -r~(~) U~_~(~) 
r~_,(~) -U~._~(~) ] " 

- 1  

1 

1 

X 

1 

X 

Hence, the matrix U~,~+2�89 is well-defined for all x. To show that this matrix is also 

nonsingular for all x, we just recall Corollary 2. Then, from det(V2) - 1 2z' we get 

det [U~,~+2�89 -'- - 1  ~ 0. This completes the proof. [] 

Remark. For n = odd, we have chosen V(x) = P1U~,.~L+IV1, while for n = even, V(x) = 
P1U~,~+2V2. In both cases, V(x) are unimodular polynomial matrices. Hence, V(x) is 

nonsingular for all x. 
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4. Conclusion 

Q.=H. WU t M. MANSOUR 

In this paper, we have done the following. First, we have determined the degrees of the 
polynomials p(x) and q(z). This result is useful in numerically computating the minimum of 
r~3(z ). Further, using the basis vectors xn and xn+l given in [5] and a 2 x 2 nonsingular 
matrix V(x), we have found an orthogonal basis for ,-EN and hence a Pythagoras form for 
r~3 (z). This is the counterpart of the result in [1] for discrete-time systems. 
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