
Reliable Compu t ing 1 (4) (1995), pp. 411 -419

Design of a parallel linear
verified computation
j. WOLFF VON GUDENBERG

algebra library for

In this paper we discuss design principles to implement a set of linear algebra subroutines in a portable
library for parallel computers. Our design supports reuse of code and easy adaption to new parallel
programming paradigms or network configurations.

The routines are supposed to be used in self-verifying algorithms. They therefore have to deliver
a validated result of high accuracy.

Pa3pa6oTKa IiapaaAeAbHOft
AnHefmo-aAre6paH~ecKoft 6H6An0TeKn
BepHqbmt)cpyeM~,IX BbI~mCAeHnft
IO. BOABr OOH F y A ~ B ~ r

AA,~I

O6cy~g.Ra~OTC~ npMHuHnr~ nocTpoeHHfl H peamf3au.- Ha6opa JiHHe~Ho-a:lre6paHqecK}lx uolmporpaMM
nepeHOCUMOfi 6HrJIHOTeKI4 ~Jl~l napannenba~x gOMnhloTepoB, rIoa~.epx<anaeTca nOBTOpHOe HCHOJU~-
3OBaHHe Ko;aa. rloanporpaMM~ MOryT ~erKo a/laUVMpOBaThC~ K HOB1AM napa~arMaM napa~eabHoro
nporpaMMHpOBaH~l~l I4 CeTeBhIM KOH~FypauH.qM.

l'loanporpaMMl, i npenHa3HaqeHH 2Lrl$1 HCnOJIb3OBaHI~.q B CaMOBepxOpHu.Hpyx)m~x aaropnTMaX, no-
3TOMy OHH ~alOT aOCTOBepHbm pe3y.~bTa'rta BhlCOKOI~I TOMHOCTI4.

1. Introduction
Basic Linear Algebra Subprograms (BLAS) heavily suppor t the construct ion o f efficient, por table

software for scientific computa t ion . Usually three levels are provided, concern ing vector /vector ,

mat r ix /vec tor or ma t r ix /ma t r ix operations, respectively. T h e routines cover genera l ized products ,

rank-one and rank-two updates as well as the solution o f t r i angu la r systems.

In [10] we in t roduced a four th level A which is manda to ry for ver i fy ing computa t ion and

consists of:

General ized mat r ix-vec tor products

[z] = flx + a ~ Av yu,
v=l ~=1

8

[z] = flx+aT~_,y~,.

@ J. Wolff von Gudenberg, 1995

412 J. WOLFF VON GUDENBERG

Generalized matrix products

I-

u=l ~=I

Interval matrix-vector multiplication

Ix] = [A][y].

Interval matrix multiplication

[C] --- [ALIBI.

Solution of triangular systems with interval right hand side

[x] =y-l[x].

Here a and fl denote scalars, x, y~, vectors, A , A ~ , . . . , D matrices and T a triangular
matrix. Intervals are indicated by brackets.

All these operations except for the solution of triangular systems can easily be performed
with maximum accuracy, i.e. the width of the intervals is less than or equal to 1 ulp (unit last
place) in case of point input data, if an updating optimal dotproduct algorithm with directed
rounding is available. This also holds for the levels 1 through 3. The corresponding algorithms
have been developed in [1, 7-9].

If we look at the typical structure of a self-verifying algorithm, we notice that it starts
with a floating-point approximation and then an interval defect iteration with high accuracy is
added for the verification. Hence our high accuracy requirements which considerably decrease
the performance may seem too severe for the standard levels, since these routines are mainly
used to compute approximations serving as input for level A procedures in the validation step.
We therefore provide two versions of level 1, 2, 3 - -one approximative, and the other highly
accurate. All level A routines, however, yield sharp, accurate, and guaranteed bounds for the
true result.

In a parallel or distributed environment the speed-up increases with the ratio of com-
putation over communication time, hence level 3 routines are preferred. In particular it is
not reasonable to distribute a ;single dotproduct computation. Therefore the following basic
arithmetic operations must be provided by each processor:

�9 interval operations;

�9 interval dotproduct;

�9 maximally accurate, accumulating dotproduct with directed rounding facility.

The last item means that a dotproduct computation can be divided into several steps, but
the full information has to be kept in a data structure like a "long accumulator".

2. Data distribution
The distribution of matrices or vectors crucially effects the performance of the algorithms on
parallel computers. From the algorithmic point of view vectors may be distributed as contiguous

DESIGN OF A PARALLEL LINEAR ALGEBRA LIBRARY FOR VERIFIED COMPUTATION 413

segments or scattered cyclically, and matrices may be considered as vectors of rows or vectors
of columns. Furthermore matrices may be distributed blockwise, or each block may be scattered
cyclically forming a grid pattern.

The BIAS routines generally gain, if nearest-neighbor communication is fast, thus favoring
the linear segmentation, on the other hand the parallel solution of a given problem may be
better for scattered data. In table 1 we give an overview of the preferable distribution patterns
for conventional BLAS routines [7, 10]. It is obvious that the generalisations of level A follow
the same patterns.

A / T B x y C

x = f i x + a y - - arb arb
A = f l A + a B arb arb not not
& = riot + x T y -- -- not not
x = f i x + oty row wise segment broadcast
x = T y row scattered scattered broadcast
x = T - i x row scattered scattered
C = t i C + o t A B row block column block row block row block
B = T - 1 B row

Here we do not allow matrices to be broadcast. A row-wise scattered distribution of data
seems to be appropriate in nearly all cases, but note that the operations using the transposed
matrix are not included which in turn favor a columnwise partition.

If rectangular blocks are allowed, the block scattered distribution is a generalisation of
all those which are mentioned above. It turned out to be the most promising pattern for
non-verifying algorithms [2].

For matrix multiplication, two algorithms are considered, one distributes the blocks con-
sisting of full rows to a ring of processors, and the other deals with square blocks distributed
to a toroidal structure of processors.

3. Design principles
A library always may be regarded as a link between a user program and the underlying
hardware. Hence its design has to support the ease of use as well as the highly efficient
implementation of the algorithms. Portability of programs between different platforms and even
different structures of parallel or distributed computers shall be achieved by an appropriate
library design. In this paper we describe a way to obtain an at least partly portable library
itself.

The usual interface between a user program and a library is by call of a subprogram. The
parameters may be treated as abstract data types, since components may be accessed differently
in the user program and in the library. This means that we want to keep the representation
of matrices or vectors secret for this level of (end) user interface.

By a slight extension of the dotprecision expressions known from the XSC languages [5, 6]
BIAS routines may also be called as closed expressions thus enlarging the readability of the

program considerably.

The top library layer implements the algorithms for the abstract data types using access
to rows, columns or blocks of matrices as well as segments or slices of vectors. This layer still

414 J. WOLFF VON GUDENBERG

makes no cogent difference between serial and parallel computers, but various versions for each
algorithm regarding storing conventions or possible distribution should be provided in order
to gain efficiency.

The implementation of the subarray access routines, however, depends kon the actual
distribution of the data. The abstract data types are instantiated to distributed data types
which reflect the algorithmic structure. These data types provide access methods for their
corresponding substructures, hence make obvious the communication structure of the algorithm
and call for several communication primitives like broadcast or nearest-neighbor.

These routines and relations are finally implemented on top of the hardware.

So, over all, we have the following levels and interfaces:

1. comfortable user level

- dotprecision expressions

2. user level

- subroutine call

3. algorithmic layer

- subarray access

4. distribution layer

- communication primitives

5. hardware topology

The first two levels describe the user interface whereas the three bottom layers concern
the design of the library.

Different design principles may be pursued and shall be compared with respect to

�9 easy portability

�9 maximal reuse of code

�9 high efficiency

�9 adaptibility to new structures

�9 necessary language support

3.1. Modular design
The transition between the two user levels clearly will be accomplished by a precompiler
independent from the lower levels. Its specification will be described in a future paper.

Here we concentrate on the three library levels. By breaking the library design into levels,
we opened a way to obtain a portability similar to that of user programs for the algorithmic
layer. It usually can be written in high level languages like FORTRAN 90 or C++. For parallel
SIMD or SPMD computers High Performance Fortran or C* may be used to gain effidency.

DESIGN OF A PARALLEL LINEAR ALGEBRA LIBRARY FOR VERIFIED COMPUTATION 415

Some dialects of C++ or related languages supporting message passing may serve to implement
this layer for distributed computers.

Subarray access is thus either performed by a compiler or may otherwise be explicitly
implemented in standard C according to the data distribution and with the help of the
communication primitives which are in turn to be written in a low level language like Occam
or C again.

Note, however, that we have mentioned at least three implementations of each algorithm,
each using a different language, thus contradicting our goal of portability and easy maintenance.

We therefore try to use inheritance and other object oriented features to improve the
reuse of the software.

3.2. Object-oriented design
The first approach is to define a hierarchy of matrix and vector structures, i.e. a matrix
is a data structure with indexing operator, a row-matrix implements or refines a row access
m, thod, a scattered-row-matrix is a row-matrix with a specific distribution information and
so on. Furthermore we may define a hierarchy of distribution topologies ranging from the
general distinction of serial, SPMD or MIMD models over specific topologies, like hypercubes
or rings, to explicitly stating the interconnection network.

The combination of these two hierarchies together with a parametrization with the com-
ponent type leads to the following structure. We use C++ for the implementation, but here
we only quote fragments of the code.

template <class Type> class collection
{ first(), last(), next(), // iterate through collection

Type value(), put_value (Type v),
apply (f), reduce (f)

}

template <class Type> class Matrix : collection <Type>
{ int m,n; // m x n matrix

nextcol(),nextrow(); // advance to next row resp column
Matrix (int m, int n); // construct matrix

// General matrix multiply
void matmul Type alpha, Type beta, Matrix A, Matrix B)
{ //assert matrices match

A.first(); B.first(); first();
for (i=l; i<--m; i++)

for (j=l; j<=B.n; j++)
{ dotprecision D (Type(0.0));

for (k=l; k<=A.n; k++)
{ D.dotadd (A.value(),B.value());

A.nextcol(); B.nextrow();
} //exact scalar product
D.dotmul (alpha);
D.dotadd(beta,value());

416 J. WOLFF VON GUDENBERG

p u t _ v a l u e (D . r o u n d ()) ;
n e x t () ;

// component El,j]

}

}

class Node

{ static int p; //number of processors

int my_proc_no;

send (Node to);

receive (Node from);

};

template class Gridnode : Node

{ send_north(); ...

receive_west();
}

template <class Type> class DistMatrix :

Matrix <Type>, Node

The library is a class library where matrices and vectors are descendants of a general
collection type which provides abstract methods to iterate through all elements, set and retrieve
their values, apply operations to all elements with or without combining the results. A similar
approach has been described in [4], whereas [3] explicitly declares matrices and vectors. The
BLAS routines can be formulated for the abstract types Matrix or Vector and the various
specific versions are obtained by instantiating the general methods for different substructures�9
This design is extensible in the sense that a new distribution strategy can be introduced, and, if
it contains specializations of the general matrix methods, the BLAS routines are automatically
available�9

We have separated the matrix operations from the distribution information. For the
latter we defined a general class Node which provides necessary attributes for each processor
in the network as well as abstract methods to send and receive data. Its subclass Gr idnode
describes the specialization for two-dimensional processor g r ids - - the most relevant for matrix
algorithms. The actual implementation of the communication routines is obtained by a call of
an appropriate method from the actual hardware configuration which, in turn, is realized as a
separate object.

The class DistMatrix thus inherits serial matrix operations from Matrix and commu-
nication primitives and distribution information from Node. Hence parallel algorithms can
be implemented. Optimized versions for specific structures may be obtained by inheritance
or instantiation. Thus a class R ingMat r ix which only uses the send_eas t , r e c e i v e _ w e s t

communication can be derived.

DESIGN OF A PARALLEL LINEAR ALGEBRA LIBRARY FOR VERIFIED COMPUTATION 417

For the

template <class Type> class RingMatrix :
DistMatrix <Type> , Ring

{
constructor performs scattered row distribution
into local matrices
�9 . .}

the following multiplication algorithm can be implemented:

Distribute B by columns, broadcast/3 and o~. Each processor receives ~ full rows of C, A
and ~ full columns of B.

Repeat the following two steps p times.

Compute n2/p 2 dotproducts to obtain the corresponding (~ x ~) block of the result
matrix C.

�9 Rotate matrix B to east.

template <class Type> void RingMatrix :: matmul
(Type alpha, Type beta,RingMatrix A, RingMatrix B)

{ B.columnwise();
broadcast (alpha); broadcast(beta);
for (i=l; i<=p; i++)
{ Matrix::matmul(alpha,beta,A,B);

// serial matrix mult in each node updates local matrix
B.send_east;
B.receive_west; // buffered rotation

}

This design has the following advantages:

�9 Separation of algorithmic distribution and hardware configuration.

�9 Extensible for new distribution strategies.

�9 Distribution transparent for the user, but sophisticated users may use specialized versions.

�9 Encapsulation of hardware characteristics..

�9 Completely written in C++.

�9 Trade-offs between efficiency and portability may be solved by the user or system inte-
grator.

418

4. Interface
J. WOLFF VON GUDENBERG

The modular design provides a conventional library interface by call of subroutines. If all
method calls are, encapsulated in global functions, also the class library can be furnished with
such a traditional interface even for C programmers [6]. But we want to exploit the extensibility
and reuse facilities of the class library and therefore provide the full object-oriented interface.

The arithmetic datastructures for vectors and matrices are both derived from the abstract
collection class. The class for triangular matrices which is derived from Matrix provides
specialized nex t methods. All structures are parameterized with their component type which
is supposed to support the usual arithmetic operations as well as a dotproduct.

For the level A routines interval vectors and matrices are obtained by instantiating each
type with an interval template providing two attributes of component type and an interval
rounding method.

template <class Type> class Interval
{ Type left,right;

Interval (dotprecision<Type> C); }

template <class Type> class IntMatrix :
Matrix<Interval<Type>>

A further step of inheritance can hide the complex structure of the library from the end
user and provide ~standard data types" Matrix and Vector.

For these types the usual matrix / vector operations are given as infix operators. The
updating BLAS routines are provided as methods with the following interfaces. Note that
because of overloading we do not have to distinguish all routines by their names.

Class Level
Vector 1 update

2 matvecmul
2 operator *
2 trisolve

Matrix 1 update
3 matmul
3 operator *
3 trisolve

Vector <Interval> A matvecmul
A trivecmul
A operator *
A trisolve

Matrix <Interval> A matmul
A operator *

Name Parameters
Type a, fl; Vector y
Type a, fl; Matrix A; Vector y
Triangular T; Vector y
Triangular T
Type c~, fl; Matrix B
Type ce, fl; Matrix A; Matrix B
Triangular T; Matrix B
Triangular T
interval a , fl; Matrix All; Vector y[], x
interval a, 13; Triangular T; Vector y[]
Matrix <Interval> A; Vector <Interval> y
Triangular T
interval a , 13; Matrix A~; Matrix B[]
Matrix <Interval> A, B

Acknowledgement
The library is currently being implemented for a workstation cluster under PVM.

DESIGN OF A PARALLEL LINEAR ALGEBRA LIBRARY FOR VERIFIED COMPUTATION

References
419

[1] Bohlender, G. and Wolff von Gudenberg, j. Accurate matrix multiplication on the array pro-
cessor AMT-DAP. In: Kaucher, Markov, and Mayer (eds) "Computer Arithmetic, Scientific
Computation and Mathematical Modelling", IMACS Annals on Computing and Applied
Mathematics 12, Bahzer, Basel, 1992.

[2] Choi, J., Dongarra, J., and Walker, D. LAPACK working note 57: PUMMA: parallel universal
matrix multiplication algorithms on distributed memory concurrent computers. University of Tenessee,
TR CS-93-187, 1993.

[2] Dongarra, J., Pozo, R., and Walker, D. LAPACK working note 6I: an object oriented design for
high performance linear algebra on distributed memory architectures. University of Tenessee, TR
CS-93-200, 1993.

[4] J~ztquel, j. M., Bergheul, F., and Andre, F. Programming massively parallel arcitectures with
sequential object oriented languages. FGCS 10 (1) (1994), pp. 59-70.

[5] Klatte, R., Kulisch, U., Neaga, M., Ratz, D., and Ullrich, Ch. PASCAL-XSC--language
reference z~ith examples. Springer, Berlin, 1992.

[6] Klatte, R., Kulisch, U., Lawo, C., Rauch, M., and Wiethoff, A. C-XSC, a C++ class library
for extended scientific computing. Springer, Berlin, 1993.

[7] Reith, R. Wissenschaflliches Rechnen auf Multicomputern--BLAS-Routinen und die Lb'sung linearer
Gleichungssysteme mit FehlerkontroUe. Dissertation, Universidit Basel, 1993.

[8] Wolff von Gudenberg, J. Modelling SIMD--type parallel arithmetic operations in Ada. In:
Christodoulakis, D. (ed.) "Ada: The Choice for '92", LNCS 499, Springer, Berlin, 1991.

[9] Wolff von Gudenberg, J. Accurate matrix operations on hypercube computers. In: Herzberger, J.
and Atanassova, L. (eds) "Computer Arithmetic and Enclosure Methods", North-Holland,
Amsterdam, 1992.

[10] Wolff yon Gudenberg, J. Parallel accurate linear algebra subroutines. Reliable Computing 1 (2)
(1995), pp. 189-199.

Received: June 7, 1994
Revised version: November 10, 1994

Lehrstuhl ffir Informatik II
Universitit W/irzburg

Am Hubland
D-97074 W/.irzburg

Germany
.E-maih wolff�9 uni-wuerzburg, de

