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Design of a parallel linear 
verified computation 
j. WOLFF VON GUDENBERG 

algebra library for 

In this paper we discuss design principles to implement a set of linear algebra subroutines in a portable 
library for parallel computers. Our design supports reuse of code and easy adaption to new parallel 
programming paradigms or network configurations. 

The routines are supposed to be used in self-verifying algorithms. They therefore have to deliver 
a validated result of high accuracy. 
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nepeHOCUMOfi 6HrJIHOTeKI4 ~Jl~l napannenba~x gOMnhloTepoB, rIoa~.epx<anaeTca nOBTOpHOe HCHOJU~- 
3OBaHHe Ko;aa. rloanporpaMM~ MOryT ~erKo a/laUVMpOBaThC~ K HOB1AM napa~arMaM napa~eabHoro 
nporpaMMHpOBaH~l~l I4 CeTeBhIM KOH~FypauH.qM. 

l'loanporpaMMl, i npenHa3HaqeHH 2Lrl$1 HCnOJIb3OBaHI~.q B CaMOBepxOpHu.Hpyx)m~x aaropnTMaX, no- 
3TOMy OHH ~alOT aOCTOBepHbm pe3y.~bTa'rta BhlCOKOI~I TOMHOCTI4. 

1. Introduction 
Basic Linear  Algebra  Subprograms  (BLAS) heavily suppor t  the construct ion o f  efficient,  por table  

software for scientific computa t ion .  Usually three  levels are  provided,  concern ing  vector /vector ,  

mat r ix /vec tor  or  ma t r ix /ma t r ix  operations,  respectively. T h e  routines cover  genera l ized  products ,  

rank-one and rank-two updates  as well as the solution o f  t r i angu la r  systems. 

In [10] we in t roduced  a four th  level A which is manda to ry  for ver i fy ing computa t ion  and  

consists of: 

General ized mat r ix-vec tor  products  

[z] = flx + a ~ Av yu, 
v=l ~=1 

8 

[z] = flx+aT~_,y~,. 
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Generalized matrix products 

I- 

u=l ~=I 

Interval matrix-vector multiplication 

Ix] = [A][y].  

Interval matrix multiplication 

[C] --- [ALIBI. 

Solution of triangular systems with interval right hand side 

[x] =y-l[x]. 

Here a and fl denote scalars, x, y~, vectors, A , A ~ , . . . ,  D matrices and T a triangular 
matrix. Intervals are indicated by brackets. 

All these operations except for the solution of triangular systems can easily be performed 
with maximum accuracy, i.e. the width of the intervals is less than or equal to 1 ulp (unit last 
place) in case of point input data, if an updating optimal dotproduct algorithm with directed 
rounding is available. This also holds for the levels 1 through 3. The corresponding algorithms 
have been developed in [1, 7-9]. 

If we look at the typical structure of a self-verifying algorithm, we notice that it starts 
with a floating-point approximation and then an interval defect iteration with high accuracy is 
added for the verification. Hence our high accuracy requirements which considerably decrease 
the performance may seem too severe for the standard levels, since these routines are mainly 
used to compute approximations serving as input for level A procedures in the validation step. 
We therefore provide two versions of level 1, 2, 3 - -one  approximative, and the other highly 
accurate. All level A routines, however, yield sharp, accurate, and guaranteed bounds for the 
true result. 

In a parallel or distributed environment the speed-up increases with the ratio of com- 
putation over communication time, hence level 3 routines are preferred. In particular it is 
not reasonable to distribute a ;single dotproduct computation. Therefore the following basic 
arithmetic operations must be provided by each processor: 

�9 interval operations; 

�9 interval dotproduct; 

�9 maximally accurate, accumulating dotproduct with directed rounding facility. 

The last item means that a dotproduct computation can be divided into several steps, but 
the full information has to be kept in a data structure like a "long accumulator". 

2. Data distribution 
The distribution of matrices or vectors crucially effects the performance of the algorithms on 
parallel computers. From the algorithmic point of view vectors may be distributed as contiguous 
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segments or scattered cyclically, and matrices may be considered as vectors of rows or vectors 
of columns. Furthermore matrices may be distributed blockwise, or each block may be scattered 
cyclically forming a grid pattern. 

The BIAS routines generally gain, if nearest-neighbor communication is fast, thus favoring 
the linear segmentation, on the other hand the parallel solution of  a given problem may be 
better for scattered data. In table 1 we give an overview of  the preferable distribution patterns 
for conventional BLAS routines [7, 10]. It is obvious that the generalisations of level A follow 
the same patterns. 

A / T  B x y C 

x = f i x  + a y  - - arb arb 
A = f l A  + a B  arb arb not not 
& = riot + x T y  -- -- not not 
x = f i x  + oty row wise segment broadcast 
x = T y  row scattered scattered broadcast 
x = T - i x  row scattered scattered 
C = t i C  + o t A B  row block column block row block row block 
B = T - 1 B  row 

Here we do not allow matrices to be broadcast. A row-wise scattered distribution of data 
seems to be appropriate in nearly all cases, but note that the operations using the transposed 
matrix are not included which in turn favor a columnwise partition. 

If  rectangular blocks are allowed, the block scattered distribution is a generalisation of  
all those which are mentioned above. It turned out to be the most promising pattern for 
non-verifying algorithms [2]. 

For matrix multiplication, two algorithms are considered, one distributes the blocks con- 
sisting of  full rows to a ring of  processors, and the other deals with square blocks distributed 
to a toroidal structure of  processors. 

3. Design principles 
A library always may be regarded as a link between a user program and the underlying 
hardware. Hence its design has to support the ease of  use as well as the highly efficient 
implementation of  the algorithms. Portability of programs between different platforms and even 
different structures of  parallel or distributed computers shall be achieved by an appropriate 
library design. In this paper we describe a way to obtain an at least partly portable library 
itself. 

The usual interface between a user program and a library is by call of  a subprogram. The  
parameters may be treated as abstract data types, since components may be accessed differently 
in the user program and in the library. This means that we want to keep the representation 
of matrices or vectors secret for this level of (end) user interface. 

By a slight extension of  the dotprecision expressions known from the XSC languages [5, 6] 
BIAS routines may also be called as closed expressions thus enlarging the readability of the 

program considerably. 

The top library layer implements the algorithms for the abstract data types using access 
to rows, columns or blocks of matrices as well as segments or slices of vectors. This layer still 
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makes no cogent difference between serial and parallel computers, but various versions for each 
algorithm regarding storing conventions or possible distribution should be provided in order  
to gain efficiency. 

The  implementation of the subarray access routines, however, depends kon the actual 
distribution of the data. The  abstract data types are instantiated to distributed data types 
which reflect the algorithmic structure. These data types provide access methods for their 
corresponding substructures, hence make obvious the communication structure of  the algorithm 
and call for several communication primitives like broadcast or nearest-neighbor. 

These routines and relations are finally implemented on top of the hardware. 

So, over all, we have the following levels and interfaces: 

1. comfortable user level 

- dotprecision expressions 

2. user level 

- subroutine call 

3. algorithmic layer 

- subarray access 

4. distribution layer 

- communication primitives 

5. hardware topology 

The  first two levels describe the user interface whereas the three bottom layers concern 
the design of the library. 

Different design principles may be pursued and shall be compared with respect to 

�9 easy portability 

�9 maximal reuse of  code 

�9 high efficiency 

�9 adaptibility to new structures 

�9 necessary language support 

3.1. Modular design 
The  transition between the two user levels clearly will be accomplished by a precompiler 
independent from the lower levels. Its specification will be described in a future paper. 

Here we concentrate on the three library levels. By breaking the library design into levels, 
we opened a way to obtain a portability similar to that of  user programs for the algorithmic 
layer. It usually can be written in high level languages like FORTRAN 90 or C++. For parallel 
SIMD or SPMD computers High Performance Fortran or C* may be used to gain effidency. 
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Some dialects of C++ or related languages supporting message passing may serve to implement 
this layer for distributed computers. 

Subarray access is thus either performed by a compiler or may otherwise be explicitly 
implemented in standard C according to the data distribution and with the help of the 
communication primitives which are in turn to be written in a low level language like Occam 
or C again. 

Note, however, that we have mentioned at least three implementations of  each algorithm, 
each using a different language, thus contradicting our goal of  portability and easy maintenance. 

We therefore try to use inheritance and other object oriented features to improve the 
reuse of the software. 

3.2.  Object-oriented design 
The first approach is to define a hierarchy of matrix and vector structures, i.e. a matrix 
is a data structure with indexing operator, a row-matrix implements or refines a row access 
m, thod, a scattered-row-matrix is a row-matrix with a specific distribution information and 
so on. Furthermore we may define a hierarchy of  distribution topologies ranging from the 
general distinction of  serial, SPMD or MIMD models over specific topologies, like hypercubes 
or rings, to explicitly stating the interconnection network. 

The combination of  these two hierarchies together with a parametrization with the com- 
ponent type leads to the following structure. We use C++ for the implementation, but here 
we only quote fragments of  the code. 

template <class Type> class collection 
{ first(), last(), next(), // iterate through collection 

Type value(), put_value (Type v), 
apply (f), reduce (f) 

} 

template <class Type> class Matrix : collection <Type> 
{ int m,n; // m x n matrix 

nextcol(),nextrow(); // advance to next row resp column 
Matrix (int m, int n); // construct matrix 

// General matrix multiply 
void matmul Type alpha, Type beta, Matrix A, Matrix B) 
{ //assert matrices match 

A.first(); B.first(); first(); 
for (i=l; i<--m; i++) 

for (j=l; j<=B.n; j++) 
{ dotprecision D (Type(0.0)); 

for (k=l; k<=A.n; k++) 
{ D.dotadd (A.value(),B.value()); 

A.nextcol(); B.nextrow(); 
} //exact scalar product 
D.dotmul (alpha); 
D.dotadd(beta,value()); 
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p u t _ v a l u e ( D . r o u n d ( ) ) ;  
n e x t ( ) ;  

// component El,j] 

} 

} 

class Node 

{ static int p; //number of processors 

int my_proc_no; 

send (Node to); 

receive (Node from); 

}; 

template class Gridnode : Node 

{ send_north(); ... 

receive_west(); 
} 

template <class Type> class DistMatrix : 

Matrix <Type>, Node 

The library is a class library where matrices and vectors are descendants of  a general 
collection type which provides abstract methods to iterate through all elements, set and retrieve 
their values, apply operations to all elements with or without combining the results. A similar 
approach has been described in [4], whereas [3] explicitly declares matrices and vectors. The 
BLAS routines can be formulated for the abstract types Matrix or Vector and the various 
specific versions are obtained by instantiating the general methods for different substructures�9 
This design is extensible in the sense that a new distribution strategy can be introduced, and, if 
it contains specializations of  the general matrix methods, the BLAS routines are automatically 
available�9 

We have separated the matrix operations from the distribution information. For the 
latter we defined a general class Node which provides necessary attributes for each processor 
in the network as well as abstract methods to send and receive data. Its subclass Gr idnode  
describes the specialization for two-dimensional processor g r ids - - the  most relevant for matrix 
algorithms. The actual implementation of the communication routines is obtained by a call of 
an appropriate method from the actual hardware configuration which, in turn, is realized as a 
separate object. 

The  class DistMatrix thus inherits serial matrix operations from Matrix and commu- 
nication primitives and distribution information from Node. Hence parallel algorithms can 
be implemented. Optimized versions for specific structures may be obtained by inheritance 
or instantiation. Thus a class R ingMat r ix  which only uses the send_eas t ,  r e c e i v e _ w e s t  

communication can be derived. 
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For the 

template <class Type> class RingMatrix : 
DistMatrix <Type> , Ring 

{ 
constructor performs scattered row distribution 
into local matrices 
�9 . .} 

the following multiplication algorithm can be implemented: 

Distribute B by columns, broadcast/3 and o~. Each processor receives ~ full rows of C, A 
and ~ full columns of B. 

Repeat the following two steps p times. 

Compute n2/p 2 dotproducts to obtain the corresponding (~ x ~) block of the result 
matrix C. 

�9 Rotate matrix B to east. 

template <class Type> void RingMatrix :: matmul 
(Type alpha, Type beta,RingMatrix A, RingMatrix B) 

{ B.columnwise(); 
broadcast (alpha); broadcast(beta); 
for (i=l; i<=p; i++) 
{ Matrix::matmul(alpha,beta,A,B); 

// serial matrix mult in each node updates local matrix 
B.send_east; 
B.receive_west; // buffered rotation 

} 

This design has the following advantages: 

�9 Separation of algorithmic distribution and hardware configuration. 

�9 Extensible for new distribution strategies. 

�9 Distribution transparent for the user, but sophisticated users may use specialized versions. 

�9 Encapsulation of  hardware characteristics.. 

�9 Completely written in C++. 

�9 Trade-offs between efficiency and portability may be solved by the user or system inte- 
grator. 
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4. Interface 
J. WOLFF VON GUDENBERG 

The modular design provides a conventional library interface by call of subroutines. If  all 
method calls are, encapsulated in global functions, also the class library can be furnished with 
such a traditional interface even for C programmers [6]. But we want to exploit the extensibility 
and reuse facilities of the class library and therefore provide the full object-oriented interface. 

The arithmetic datastructures for vectors and matrices are both derived from the abstract 
collection class. The class for triangular matrices which is derived from Matrix provides 
specialized nex t  methods. All structures are parameterized with their component type which 
is supposed to support the usual arithmetic operations as well as a dotproduct. 

For the level A routines interval vectors and matrices are obtained by instantiating each 
type with an interval template providing two attributes of component type and an interval 
rounding method. 

template <class Type> class Interval 
{ Type left,right; 

Interval (dotprecision<Type> C); } 

template <class Type> class IntMatrix : 
Matrix<Interval<Type>> 

A further step of inheritance can hide the complex structure of the library from the end 
user and provide ~standard data types" Matrix and Vector. 

For these types the usual matrix / vector operations are given as infix operators. The 
updating BLAS routines are provided as methods with the following interfaces. Note that 
because of overloading we do not have to distinguish all routines by their names. 

Class Level 
Vector 1 update 

2 matvecmul 
2 operator * 
2 trisolve 

Matrix 1 update 
3 matmul 
3 operator * 
3 trisolve 

Vector <Interval> A matvecmul 
A trivecmul 
A operator * 
A trisolve 

Matrix <Interval> A matmul 
A operator * 

Name Parameters 
Type a, fl; Vector y 
Type a, fl; Matrix A; Vector y 
Triangular T; Vector y 
Triangular T 
Type c~, fl; Matrix B 
Type ce, fl; Matrix A; Matrix B 
Triangular T; Matrix B 
Triangular T 
interval a ,  fl; Matrix All; Vector y[], x 
interval a,  13; Triangular T; Vector y[] 
Matrix <Interval> A; Vector <Interval> y 
Triangular T 
interval a ,  13; Matrix A~; Matrix B[] 
Matrix <Interval> A, B 
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