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Verification methods for inclusion disks 
LIILJANA D. PETKOVId and MIROSLAV TRAIKO'ad 

In circular complex arithmetic a problem of finding an including circular approxinmtion of some 
complex-valued range often arises. In this paper different approaches to verify the enclosure are 
considered. For each method an example is incorporated. 
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B KpyroBo~ KOMII.rleKCHOI:I apHqbMeTHKe qaCTO I~)3HHKaeT npofaeMa HaXOXCdleHH~I BKnloqatomeft Kpyro- 

BO~ aIIHpOKCHMaUHH HeKOTOpO~ KOMIIAeKCHO-3HaqHO~ o6BaCTH. OfcyYI(JlaIOTC~ pa3aHqH~e HOaXOLt~ K 

Bepn~agauaa TaKItX BKJIIOMeHH17L ,~JI,q gay/,aoro tt3 MeTOaOB npn~aeH npHMep. 

Introduction 

Let Z = {z : Iz - r < r} be a disk in the complex plane with the center ~" = mid Z E C and 
the radius r = rad Z > O, denoted shorter by parametric notation Z = {r r}. If  f is a closed 
complex function then the complex-valued set f (Z)  = { f ( z ) : z  E Z} is closed. In general, 
the range f (Z)  is not a disk, which is quite impractical in calculations. In order to remain in 
the realm of disks, it is convenient to introduce a circular including approximation, denoted 

by I ( f (Z) ) ,  which completely includes the range f (Z) ,  that is, I ( f (Z ) )  D f(Z).  The disk 

I ( f (Z ) )  is called a circular including approximation, or shorter, I-approximation. The practical point 
is to find an as good as possible /-approximation for given f and Z. 

Many authors have studied /-approximations, especially for elementary functions, polyno- 
mials, rational functions and analytic functions. For a given disk Z = {~'; r} and a function 
f let us assume that we have found (using some useful technique or an assumption based on 
geometrical construction) a disk {c; R}. Then the following important question arises: 

Does disk {c; R} completely contain the complex-valued range f (Z) ,  that is, is the enclos- 
ing condition 

[ f ( z ) - c  I < _ n  ( z e Z )  (1) 

valid? 
The checking of  the inequality (1) is often very difficult. In some cases a suitable 

approach or technique can solve this problem. This paper is devoted to some methods for the 
verification of  the enclosing condition (1). We present several such methods, together with 
illustrative examples (for demonstration). 

In the sequel, an inclusion disk of the form 

ic(s(z)) = (s(o; n} 2 :(z) 
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whose center is the image of the center of  the domain Z, will be called the centered form 
for f(Z). Obviously, among all inclusion disks with the centered form, the best enclosure is 
attained by the disk with the radius 

R = ~ = m a~ If(z)  - f ( ( ) l  = maX~r If(z)  - f ( ( ) t  

where F is the contour of  disk Z. This is the so-called optimal centered form, denoted by Io(f(Z)). 
Evidendy, the best I -approximat ion to the closed range f (Z) would be a disk with the 

diameter  equal to the diameter 

d = d i a m { f ( Z ) }  = max  I f (z t )  - f(z2)l (2) 
zI,z2EZ 

of the range f (Z)  under the condition that this disk contains completely f(Z). As it was 
proved in [5], if such a disk exists then it is unique and its center c (say) is the mean of 
the diametrical segment lines. This disk is called the diametrical including approximation or D-form 
for f(Z), denoted by Ia(f(Z)) = {c;d/2} (see [4]). The  enclosing condition is given by the 
inequality 

d (z e Z). (3) I f ( z ) -  c I ~_ -~ 

Inclusion disks I.(f(Z)) and Ia(f(Z)) with centered and diametrical form are shown in 
Figure I. 

h(f(z)) 

Figure 1. Centered and diametrical disks for the range f (Z) 

1D Method of extremum 
We find the maximum of the function [f(z) - el, z E Z, and show (according to (1)) that it is 
not greater than the radius R of the possible inclusion disk {c; R}. 

Example 1. Optimal centered form for the range Z '~, n E N. 

Let r '  be the contour of a given disk Z = {4; r},  ~" # 0 (the case ~ = 0 is trivial). Then  
an arbitrary point z E Z is given by 

z = r + ~ = r + p~"-~O = r + ; r  
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where 
T 

; = ~T'  ~ = arg (r  0 e [0, 2~ ) .  

Than for f(z) = z n we find the radius Ro of the optimal centered form: 

Ro = m a x l / ( z )  - / ( r  = maxlz '~ - CI = [C[ m0axl(x +Pei~ - 11 
zEF zEF 

= [ r  ( k )  Pkeik0--I  = '~nlmax ~ ( k )  pkeikO 
0 k=O 0 ' k = l  

- -  

k=l  

20 Circular arithmetic 
Since the absolute value of a disk W is defined as IWl := ]midWI + radW, we find 
I approximation I ( f ( Z ) -  c) and i'educe the enclosing condition ( 1 ) t o  the inequality 

I f ( z ) -  cl~ez < m a x  I f ( z ) -  c] < m i d I ( f ( Z ) -  c) + r a d I ( f ( Z ) -  c) < R. (4) 
- -  z E Z  - -  

Example 2. Diametrical form for log Z. 

Let 0 ~ Z = {~';r} and let p = r/[~i < 1. 
inequality has been derived in [8]: 

l + p  
I log Zl - log z2t _< log - -  

1 - p  

for all zt, z2 E Z. Therefore,  the diameter of the range log Z is given by 

d = diam{log Z} = m a x  I log z1 - log z21 = log 1 + p = log Ir + T 

~,,~2~z l - p Ir - r 

Using circular arithmetic the following 

(5)  

The  boundary of the range log Z is centrally symmetrical in reference to the two mutually 
perpendicular axes which are parallel to the real and imaginary axes (see B6rsken [2]). Hence, 
we can conclude that the equality in (5) appears for z~ = r + re iargr and z~ = ~ - re iargr 
which means that these points lie on the diametrical segment line. As mentioned previously, if 
a diametrical disk exists (that is, if the enclosing condition (3) is valid), then its center is the 
mean of the diametrical segment lines. Therefore,  the possible center of the diametrical disk 
for log Z must be the point determined by 

A = log z~ + log z~ =.log V/Ir 2 - r 2 + i arg r 
2 

Thus, the disk {A; d/2} will be the diametrical disk for the principal-value range log Z if the 
enclosing condition 

l l o g v -  AI = <  _d = _1 log 1 + p _ _  (P = r/lr (6) 
- 2  2 1 - p  

is fulfilled for all v E Z. 



406 LJ. D. PETKOVIC, M.  TRAJKOVIC 

Let v = r + re i~ 0 E [0, 2rr) be an arbitrary point belonging to the disk Z = {~'; r}. Then  
we have 

[ l o g v - A [  = l o g ( ~ + r e  ~~ [ ~ - r  2 - i a r g ~  
06 0,21r) 

1 log(1 - p2) ~o=8-argr = l o g ( l +  pei~) - ~ 

�9 dt 
= 1 + te ~-'---''-~ 

fP e i~ t 
< J0 i ~ + / - ~  dr. 

By circular arithmetic and (4) we estimate 

e '~ t 

I + te ~-----~ + 

so that 

< 1 {l?t} + 

- t (1  1 { 1 ; t }  {_0;t}_ 1 
- t~) t ( i - : ~ )  = t(1 - t~) = 1 - t 2  

0 p m 
[ l o g v - A [ <  1 ^ d r =  1 l + p  

- 1 - t z ~ l o g  1 - p  

Therefore,  the inequality (6) is valid so that the disk 

{ 1 Ir 
{A; d/2} = Id(logZ) = log V/Ir 2 - r 2 + i argr ~ log [(-~-L~_ r j 

is the diametrical disk for the range log{C; r}, [r > r. 

3g Method of normals 
In some examples the following theorem, established by the authors (see [8]), can be useful: 

Theorem 1. A disk D will completely contadn the region G with the boundary Fa i f  all points 
belonging to the boundary FG whose normals pass through the center of the disk D lie inside 
the disk D. 

Example 8. Diametrical form for the range Z Urn, 0 ~ Z, m E [~. 

Let Z = {(; r} and let us assume that the disk Z does not contain the origin, that is, 
p : :  r/[C[ < 1. As it was shown in [6], the construction of the diametrical disk for the range 
Z Um reduces to the following problem: 

Let D = {Uo; d/2} be the disk with the center 

(1 ..}_p)l/m q_ (1  --p)l/m 

UO : =  2 

and the radius 
d 

r 0 :~- -- = 
2 

(1 + p)l/m _ (1 - p)Um 
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and let G be the image (one of m) of the disk {1;p}, p E (0,1), under w = z 1/m with 
a rgz  1/m E [ _ 1  arcsinp,  ~a rc s inp ] .  The question arises whether G is completely contained 
inside the disk D. 

V 
r~  

U 

Figure 2. 

Let H(u, v) be an arbitrary point on the contour "7 whose normal passes through the 

center u0 of the disk D. From Figure 2 we can find the modulus of the radius vectors O H  ~ 
__-..+ 

and OH, 
sin ~ / 2 

R H , H '  = 11"0 COS ~ • U0 sin rn~p V P - sin2 m~.  (7) 

Using the polar coordinate system (R, ~) the contour FD of the disk D can be written as 

R 2 - 2Ruo cos cp + (1 - p 2 ) i / m  = 0. (8) 

Let $1 and $2 be the points of  intersection of the circle FD and the straight line OH. Then  
from (8) we find the distances Rsl and Rs2 of the intersection points 5'1 and 5'2 (see Figure 2) 
from the origin, 

Rs~,s l  = ~0 0os ~ + ( u 0  ~ cos2 ~ - (1 - ; 2 ) 1 / . , .  (9)  

To prove that disk D contains the region G, according to the Theorem 1 it is necessary 
and sufficient that the point H belong to the interior of Fc,  denoted by intFD. From Figure 2 
we see that H E int FD if and only if the inequalities R& < RH, and RH <_ R& hold. Taking 
into account (7) and (9), the two last inequalities reduce to the inequality 

s i n ~  ~u02 cos2 ~p _ u0 . V/p u - sin 2 rn~p < (1 - p2)11~. 
sin rmp 

After a short rearrangement  and some manipulations presented in [8], this inequality becomes 

{arcsinp'~ 
(1 + v ) " "  - (1 - p)vm > [(1 + ; ) i /m + (1 - p ) ' ' ]  

I 

This inequality was proved in [8]; therefore, the disk D completely contains the closed region G. 
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4. Analytical inequalities 
In some suitable cases the inequality (1) can be proved directly using some particular inequalities 
in the complex plane. 

Example  4. Optimal centered form for the range e z. 

As mentioned above 

z = ( + r e  it = ~ + zl ,  

m ra~x I f ( z )  - f ( r  

We have 

z~ = r e "  ~ n : =  {~ : lvl = r} .  

zEF zl E~ 

oo 1 1 
= [eel max,~ea ]e"l - 1] = leVI m a~ ~ =  ff.lzf. - 

= leClmax <_ leCl 
a16~  = k = l  

= ler - 1 = [ e C l ( e  ~ -  1 ) .  

Since If(O) - f(~)[  = leCl(er - 1), the above maximum is always reached at the point z = 0 so 
that we have optima/ centered form {er l e r  - 1)}. 

51 Method of curvature 
We use the following Blaschke's result [2]: 

Theorem 2. f f  the curvature o f  the simple dosed smooth boundary w(O) o f  a region G is 

strictly positive and has exact/)" 2A ex t reme  points, then the contour w(O) has at most  2A 
intersections with any circle. TangentiM intersections are counted as double intersections. 

Sometimes, Theorem 2 enables us to check (1) in an elegant and simple way proving that 
the curvature of the curve w(0) is greater than the curvature of a possible inclusion disk. 

Example  5. Diametrical centered form for log Z: 

Let Z = {1;p} be a disk in z-plane, and let G be the image of disk Z under  w = logz.  

Obviously, boundary FG of G is given by 

w(O) = log(1 +pei~  8 e [0, 27r). 

Let D denote the disk Iw - c[ < R with 

1 1 l + p  
c = ~ l o g ( 1 - p 2 ) ,  R = ~ l o g  l _ p .  

The  mapping w = logz  sends points z = 1 4-p  to the points w = log (1 4- p) = c + R, so that 
G can not have diameter  less than 2R. We shall prove in the same manner  as in [3], that disk 
D is diametrical form for tog Z. 

FG is tangential to the circle D in the points c + R. T o  prove that F c  lies inside D we 
compute its curvature. 
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The curvature k of the curve w(O) in the complex plane is given by 

where dots denote differentiation with respect to 0. For w(O) = logz(0) with z(O) = 1 + pe i~ 
we compute 

ipe ~o pe io 
~b(O)- z(O) and @ ( 0 ) =  z(0) 2. 

Hence 
k(O) = 1 + p c o s O  

plz(O) l 
wherefrom we see that the curvature is strictly positive; therefore the domain G is strictly 
convex. Further, we compute 

Jc(0) = - p  sin O(p + cos 0) 

tz(0)L 3 

We see that k(0) has precisely four simple zeros in [0, 27r), at 0 = 0, lr and 4-arccos ( -p ) .  
Since circle D is tangential to w(O) in two points there are no more points of  intersection. 
Hence w(O) lies either completely inside or completely outside D. 

It remains to show that in the point c + R the curvature of  w(O) is greater than the 
curvature 1/R of D. Thus we want to show that k(O) > ~, or 

1 + p > 2p (10) log 1 - p 

for 0 < p < 1. Let h(p) = l o g ~ - 2 p .  Since h(0) = 0 and h'(p) = 2 p 2 / ( 1 - p 2 )  > 0, for 
0 < p < 1, we conclude that the inequality (10) holds and the proof is completed. 

Regarding the domain Z = {~'; r} with p = r/[([ it is easy to construct the diametrical disk 
for the range log {~'; r}. Of  course, the result is the same with that established in Example 2. 

6. Conclusion 
In this paper we have considered the problem of the complete covering of the exact range f (Z)  
by a circular region (assumed or calculated) which leads to checking the enclosing condition 
(1). This is often a difficult problem and there is no a unified approach to solving it. For that 
reason we were forced to develope various methods for checking procedure. In this way, we 
have formed a base (certainly not complete) for solving problems of this kind. Which procedure 
should be employed depends on the form of the considered function f .  One should also have 
in mind that for a given range f (Z),  inclusion disks are not all the same being of the centered 
form, diametrical form, etc (see Figure 1). So if one procedure is not successful we can still try 
with another. 
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