
An 
of the solution of a linear 
equations with tridiagonal 
the interval sweep method 

Reliable C o m p u t i n g  1 (4) (1995), pp .  3 9 3 - 4 0 1  

estimate of the absolute value and width 
system of 
interval matrix by 

A. N. OSTYLOVSKY 

We consider linear systems of algebraic equations Su = f with tridiagonal interval matrix S and 
interval vector f An interval version of the sweep method allows us to find an interval vector 
u = ( u t , u 2 , . . . , u n )  T that contains the united set of solutions of the system. In the paper we 
present estimates of the absolute value and the width of the intervals ui, i = 1, 2 , . . . ,  ~z tinder certain 
assumptions on the elements of the matrix S that do not include the traditional condition of diagonal 
dominance. The width estimates are three orders of magnitude narrnwer, and the assumptions on the 
system's coefficients are weaker than those in works published so far. 

OlieHKa MOhya,*I I,I nll, tpHHbI perlleHl~ 
CI/ICTeMBI AHHelTIHBIX ypaBHeHnfi c 
TpexhHarosaabHOfi ~swepBaa~HOfi MawpHI~efi 
MeTOAOM HHTepBaAbHOITI IIpOrOHKH 
A. H.  OCTt, LaOBCK~ 

PacCMaTpHBaeTcfl CHCTeMa aHHefiH~X aare6paHqecKHx ypaBHeHH~ SU = f c TpexaHaroHaabHO~ nH- 
TepBaYlbHOfi MaxpHuefi S H ttHTepBadlbHIdM BeKTOpOM f.  HHxepmaat,Haa Bepcaa Mexoaa IIpOrOHKH 
no3Bo~aeT OTt,ICKaTb HHTepBaJlbHl,~fi BeKTop tl = (1.11 , 112, . . . ,  Un) T, coaep~KamHfi O~bellHHeHHoe MHO- 

xecr~o pemeHHfi ~TOfi OICTeMId. B pa6oTe npH HeKoTopux orpaHliqeHHHX Ha ::}JleMeHT~ MaTpHllhI S, 
He npeanoaaralotmrx TpanHLIHOHHOFO yCaOBHH aHaroHaBbHoro npeo6Ilaalatm.% rtalOTCa otleHKl, I a6COBIOT- 
Horo 3HaqeH14.r H mnpMHM HHTepBaaoB Lli, i = 1, 2 , . . . ,  ft. OIIeHKH mMpHH~ Ha TpH nop.qaKa Mere,me, 
a orpaHHqeHHJl Ha KO:~bHUHeHTIM CHCTeMIM caa6ee, qeM B paHee H3BeCTHMX Hy6dll4KallH-clX. 

Introduction 
In  m a n y  p r o b l e m s  o f  c o m p u t a t i o n a l  m a t h e m a t i c s ,  we n e e d  to solve a l i ne a r  sys t em o f  a lgebra i c  

e q u a t i o n s  

Su = f (1) 

which  has  t he  t r i d i a g o n a l  m a t r i x  S = tridiag(ai, bi, ci), i = 1 , 2 , . . . , n .  (We  f o r m a l l y  set 

a l  = ~ = 0.) U n d e r  t he  c o n d i t i o n  o f  so cal led strict diagonal dominance, 

]ai] + lci] _< ]bi[ - 6 ,  ~ > 0, i = l , 2 , . . . , n  (2) 
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the system (1) can be solved by the tridiagonal version of the Gauss algorithm, called the sweep 

method. This method involves sequential application of the three recursion relations: 

x0 = 0, xi  = - c ~ / ( b i + a ~ x i - 1 ) ,  al  = c ~ = O ,  

yo = o, y i  = ( s  - a~y,_~)/ (b~ + a~x~_~), i = 1, 2,...,,~, (a) 
u,~ = y,,, ui = Y i + X i U i + l ,  i = n - 1 , n - 2 , . . . , 1 .  

When condition (2) is satisfied, the sweep method is reasonably welt-studied [2, 4, 7]. 

For various reasons, the coefficients of the matrix S and the vector f in (1) should be 
considered imprecise. Then, instead of the system (1) we have to examine the system 

Su = f (4) 

which has the tridiagonal interval matrix S = tridiag(ai, bi, ci) and the interval vector f = 
(fl, f~ , . - - ,  f,,)r. The set 

SOL(S, f) = { u  e 1R '~ [ (3S e S ) ( 3 f  e f ) ( S u  = f )  } (5) 

is called the united solution set of the system (4).  The structure of this set may be very 
unusual. For instance, even for n --- 2 this set may be nonconvex [3]. It is obvious that 
finding and describing such sets presents serious difficulties and is unlikely to be easy. Within 
the scope of  interval computations, there emerges the problem of finding an interval vector 
u = (ul,  .u2, . . . ,  un) r such that 

u _~ SOL(S, f). (6) 

Let us introduce some notation. Let a = [_a, ~] be the interval ( a  < ~).  Then 

(a) is the closest distance from the points of the interval a to zero; 
d(a) = ~ - a is the u&/th of the interval a; 

(a), i f a > 0 ,  or 0 E a ,  
(a)0 = - ( a ) ,  i f ~ < 0 .  

Supposing that the matrix S of  the system (4) satisfies the condition 

0 r  i = l , 2 , . . . , n  

we denote 

' = [~,~]  = c i / ( b i ) o ,  a~ = [a~,~] = a~/(bi)0, b~ = b i / ( b i ) o ,  ci (7) 
f :  = f i / ( b i ) o ,  f = max[fl, i = t , 2 , . . . , n .  

Note that 
(b'i) = b' i = 1. (8) 

In [5], the sweep method under  the condition of strict interval diagonal dominance 

]a~[+[cti] < 1 - 6 ,  6"E(0,1) ,  i = 1 , 2 , . . . , n  (9) 

has been extended to the interval case (4). It was shown that under the conditions (9) the 
following sequence of interval recursion relations is realizable (that is, no division by intervals 
containing zero occurs): 

Xo = O, x i  = - c i / ( b i  + a i x ~ - l ) ,  al = c,~ = 0, (10) 
Y0 = 0, yi = ( f i - a i y ~ _ l ) / ( b ~ + a ~ x ~ - l ) ,  i = 1 , 2 , . . . , n ,  (11) 
u~ = y,~, ui = Yi+XiUi+l ,  i = n - l , n - 2 . . . , 1 .  (12) 
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This is called in [5] the interval analytic sweep method. Besides, the interval vector u = 
(uz, u 2 , . . . ,  un) T whose components are computed from (10)-(12) satisfies the condition (6). If  
the additional condition 

[a'~[ _< [c~] + 5 (13) 

is satisfied, then [5] gives an estimate d(u~) which does not depend on n, and is reducible to 
the form 

d(ui) < 3 f A / 6  T (14) 

where 
A = max{d(a!~), d(b!i), d(c!i), d(f~)}, i = 1, 2 , . . . ,  n. (15) 

It should be emphasized that the estimate (14) is not an estimate of SOL(S, f) itself. For- 
m,fla (14) presents an estimate of the vector u which has been found using (10)-(12) and 
which, as was noted, contains SOL(S, f). 

In this paper we weaken the conditions (9) and (13) and find some other conditions 
sufficient for the independence of  the absolute value lu~[ and width d(u~) on the order n of  
the system. The estimate of width d(ui) in our work has the order O(1/64), i.e. is three orders 
of magnitude smaller than the estimate (14). 

iI Sufficient conditions for boundedness of an interval 
continued fraction 

The recurrence relation (10) generates an interval continued fraction 

- - C  i x~ = (16) 
b~ - aici-1 

h i _  1 - 

"'" b2 - a2~1 
b l  

That is why it deserves a separate consideration. If  we use (7), we can write down (10) as 

/ l t I / X o = 0 ,  x i = - c i / ( b i + a i x i - 1 ) ,  a 1 = c ~ = 0 ,  i = 1 , 2 , . . . , n .  (1T) 

Theorem 1. Let the coefScients a~,b~ ~ 0 ,  i =  1 , 2 , . . . , n ,  ci ~ 0 ,  i =  1,2 . . . .  , n - 1  in (17) 
satisfy the condition 

{ r2la~]+[c~[_<r,  i = 1 , 2 , . . . , n - 1 ,  (18) 
]a~] < 1/r  

for some r > 0. Then 

! 1 o g', > 0, where g~ = [g-'i, ~ ]  = b; + a , x , _ l ,  

2 ~ x ~ C [ - r , r ] ,  i = l , 2 , . . . , n ,  

3 ~ the estimating interval I -r ,  r] in (19) and the condition (18) are the 
best, i.e. 
(a) there exists a recurrece relation of  the form (17) satisfying (18) 

for which the estimate (19) is achievable, i.e. xi = [-r ,  r] for some 
i < _ n - 1 ,  

(19) 
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(b) for any pair o f  intervals (a', c'), c r # 0 not satisfying the condition 
(18) it is possible to f ind a formula o f  the form (t7) such that for 
all i = 1, 2, . . . ,  k - 1 < n - 1 the condition (18) is satisfied and for 
a'k = a', c'k = c' the inclusion (I9) does not hold. 

Proof For i = 1, from (8), (17), and (18) imply 

]x l l  ' ' ' ' = I c l J / ( b l )  lol l  < r .  I q / b  d = _= 

Let xi-1 _C t - r ,  r]. Then  
xi C_ c{/(b'i + I - r ,  r]a'i). (20) 

From (8) and the theorem's hypothesis we have 

s _> ~ -la'~llx,-~l _> 1 - la',lr > I<l /r  > o 

which proves t ~ From (20) we have 

Ix, I _< [c'~l/(b'~ + [ - r , r ] a ' i ) =  I < 1 / ( 1 -  rla'~l). 

This, together with (18), implies 

Ixd _< r]c'il/(r - r2[a'i]) -< r l c ' ~ l / ) < l  = r 

which proves 2 ~ . 

To  prove 3~ let us take (17) with 

a~' = O, ai' C_ ( - t / r ,  1 / r ) ,  i = 2 , 3 , . . . , n ,  (21) 
%' = 0, c i' = [ - r+r2]a~ i ,  r2 - rJa : ] ] ,  b : = l ,  i = l , 2 , . . . , n - 1 .  

Then  r21a~l + Ic~] = r, i.e. the condition (18) is satisfied. It is easy to see that x~ = [ - r , r ] ,  
i = 1 , 2 , . . . , n -  1. 

Now let us prove 3~ For i = 1, 2 , . . . ,  k - 1 <_ n - 2, the coefficients a~, b~, c~ can be 
' = c'. Then  borrowed from (21). Let's take a~ = a', b~ = 1, c k 

x~ = - c ' / ( 1  + a ' [ - r ,  r]) .  

If 1 - r [ a r [  < 0 then 0 E 1 + a r [ - r , r ] ,  and (19) is evidently not satisfied. Let t - r [ a '  l > 0. 
Then Ix~l _ Ic'1/(1 - , - larD,  and condition (18)is necessary for 2 ~ to hold. [] 

Comment I. Condition (18) can be interpreted geometrically as follows. An interval "point" 
(a', b ')  can be represented in the coordinate system a ' O d  by a rectangle with its vertices at 
the points (a ~, b'), (a_ r, b'), (g', b__'), (~,  b'). Consider the rhombus v(r )  defined by the inequality 

~qa'l + Ic'l _< ~. 

Condition (18) defines the interval points (a~, c~) that tie entirely inside v(r ) .  Condition (9) for 
1 - 6 = r defines interval points that lie entirely inside the square #(r )  given by the inequality 
la'l + I~'1 _< r. For r < 1 we have , ( r )  C_ H " )  and [xi[ < r, i = 1 , 2 , . . . , n - 1 .  Thus, condition 
(18) is a generalization of (9). Note that the area of the rhombus v(r )  does not depend on r, 
and equals 2, whereas the area of the square/~(r) equals 2r 2 < 2. 



AN ESTIMATE OF MODULE AND WIDTH OF THE SOLUTION.. .  397 

Comment 2. For rl  r r2 none of the rhombi v(rl) ,  v(r2) lies inside another. Consider two such 
rhombi, for example, v(0.5) and v(0.7). It is easy to imagine a set of interval points (a~, c~) 
that lie in v(0.5) but not in v(0.7). Then, for the corresponding formula (17), Theorem 1 does 
not allow us to suppose that all Ix/I <_ 0.7. On the other hand, however, it is this Theorem 
that guarantees that all [xi[ < 0.5. 

Comment 3. We may consider the reciprocal problem for the rhombus v(r):  Find the condition 
to apply to the set {(a~, c~) ] i = 1,2 . . . .  , n -  1} which is necessary and sufficient for all 
(a~, c~) to belong to a rhombus v(r) ,  and then estimate i n f r  in the class of formulae of the 
form (17) satisfying the condition found. The  solution to this problem can be follows from 
material in [6]. 

Analogously to Theorem 1, we can prove the following two theorems. 

Theorem 2. Let the coefficients a~,b~ ~ 0, i = 1 , 2 , . . . , n ,  c~ ~ 0, i = 1 , 2 , . . . , n  - 1 in (17) 
satisfy the condition 

{ < c [0,fl, 
2--! r a ~ + ~ _ < r ,  i = l , 2 . . . , n - 1 ,  (22) 

g (-o~, 1/~) 
for some r > O. Then 

I - - / ]  I I 1~ g-'i > O, where g~ = g-i' 9i = bi + a~xi-l ,  

2 ~ x i C [ - r ,  0], i = 1 , 2 . . . , n ,  

3 ~ the estimating interval f - r ,  0] in (23) and the condition (22) are the 
best (just as in Theorem I). 

(23) 

I Theorem 3. Let the coefticients a~, b~ ~ 0 ,  i =  1 , 2 , . . . , n ,  c i ~ 0 ,  i =  1 , 2 , . . . , n - 1  in (17) 
satisfy the condition 

{<  c f-r,0], 
2 , _ ~ _< i 1 , 2 , . . . , n -  1, (24) - - r  a i  _ r~ = 

a~ G ( - l / r ,  oo) 

for some r > 0 .  Then 

/ - - I  ] I ! 1~ g-'i > O, where g~ = gi, g~ = bi + a,x~_,, 

2 ~  i = 1 , 2 , . . . , n ,  

3 ~ the estimating interval [0, r] in (25) and the condition (24) are the 
best. 

(25) 

2. Boundedness conditions and estimation of the width 
of the components of the vector u produced by the 
interval analytical sweep method 

T h e o r e m  4. Let the coefficients a~, bi, ci o f  the matrix S o f  the system (4) satisfy the condition 

or" one o f  the Theorems I - 3  (see (7)). 
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T h e n  

1 ~ the principal minors o f  any matrix S E S never become zero; 
2 ~ the interval vector u -- (ul,  u 2 , . . . ,  un) -r that is found using (10)-(12) 

satisfies condition (6). 

Proof. It is easy to show using induction on i that the principal minors Ai of  the numerical 
matrix S = tridiag(ai, bi, ci) E S satisfy the relation 

A o = l ,  A i = b i ,  A i = b i A i - i - a i q - l A i - 2 ,  i = 2 , 3 , . . . , n .  (26) 

Suppose that 
Ai-a  = (b~-i + a~-lz i -2)A~-2 (27) 

where x~ is defined from (3). Note that b~-I + a i - l x i -2  7s 0 from one of the Theorems 1-3.  
From (26), (27), and (3) mathematical induction gives 

A i - i  
Ai = biAi-1 - aica-1 bi-1 + a i - l x i -2  = (bi + a i x i - 1 ) A i - 1 ,  i = l ,  2 , . . . ,  n. 

Hence, again applying induction, we obtain 1% 

Let us prove 2 ~  virtue of  the principal theorem of interval arithmetic [1, 5], if xl,  Yl 
are found from (3) then xl E xl ,  Yl E Yx. Suppose that xi-1 E xi-1,  Yi-1 E Yi-1. Then, by 
the same theorem, from (3), (10), (11) and induction we have xi E xi, Yi E Yi, i = 1, 2 , . . . ,  n. 
In particular, Un = Yr, E Yn = un. Further, from the principal theorem of interval arithmetic 
mathematical induction gives u~ E ui, i = n, n -- 1 , . . . ,  1. [] 

We will use the notation A from (15). For the value of r from Theorems 1-3,  we 
set r = 1 -  5 for some ~ E (0, 1). Applying additional constraints in the hypotheses of  
Theorems 1-3,  we obtain the following three theorems. 

Theorem 5. Let the following conditions on the interval coefficients ai, bi ~ 0, i = 1, 2 , . .  , n, 
ci, i = 1, 2 , . . . ,  n - 1 o f  the system (4) be satisfied (see (7)): 

(i - ,~)~la~l + I<1 <_ i - r (28) 

1 - 6  
[a~l < a~ . -  I + (i - ~ ) ~ '  i = 1, 2 , . . . ,  n. (29) 

Then the following estimates hold for the components o f  the interval vector u = 
( u l ,  u ~ , . . . ,  ~ ) T  that is found from (10)-(12): 

[u d < 2 f / ~  2, (30) 

(20I i2f 2 ) 
d(u,) _ \ 54 + - ~ - + ~  A, i = l , 2 , . . . , n .  (31) 

These estimates do not depend on n. 

Proof. From (28) and Theorem 1 it follows that [xi[ _< 1 - 6 and g'~ > 0, i = t, 2 , . . . ,  n. Using 
the properties of the function d [1], we obtain a recurrence relation for d(x~). We have 
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d(a) - c ,  < d(r + Ic',I d < d ~ + ,  _ 
a i x i  - 1 

(1 + Ix~-~l)~x + la~ld(x~-l)  

A [c~l (1 + [x/_ll)A [c~] ta~[d(xi_l) 

<- ~ + <g,--5 <gd + <g,--~ <g,> 

A 
- <g,> + I~l  1 + [xi-ll A + ]xil lati[ - ,  , 

(gi) (gi---~ a(x'-l)' 

3 - 36  + 62 (1 - 6)la~l 
d(xi) _< (gi) A +  (gi) d(X~_l), i = 1 , 2 , . . . , n -  1. (32) 

Now we obtain recurrence relations for [Yd and d(yi). From (11), we have 

f [a~l [yi] < ~ -~ -+  ~ - y i _ l [ ,  i = 1 , 2 , . . . , n .  (33) 

Further, 

d(yi) _< [ f [ _ a ~ y i _ l l d ( 1 ) + d ( f / _ a ,  y i _ l ) 1  

< If[ - a~yi_l] d(g__._)) + A + Alyi-1] + ]a~[d(yi-1) 
- <g,> <g,> <g,> 
< ]ydA+A[x~_l[+la~[d(x~_~) A+AIY~_~[ [a~[ (gi) + (g/) + ~ d ( y i _ , ) ,  i = 1 , 2 , . . . , n .  (34) 

Finally, from (12) we have 

[u-I = [Y,d, [ud _< lyd+lxdlu i+l [ ,  (34') 
d(u,~) = d(y,) ,  d(u,) < d(yd+d(xdlu,+ll+lxdd(u,+l), i=l,2,...,n. (34") 

From (29) and (8), it follows that 

[a[!, < a6 - 1 - 6 ,  
(g/) - I - a 6 ( I - 6 )  
<gi) > i - a 6 ( I - 6 )  = i / [ I + ( i - 6 )  2 ] >  1/2, i = 1 , 2 , . . . , n .  

(35) 

(36) 

Expanding (32) and taking (35), (36) into account, we obtain 

6 " 66 + 262 A 
d(xi) <_ 

2 - 6  ? 

For ~ E (0, 1), this implies 

d ( x i ) < 4 A / 5 ,  i = l , 2 , . . . , n - 1 .  (37) 
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This estimate is of independent importance, since it presents an estimate of the width of the 
continued fraction (16). Analogously we obtain 

lYe[ 

d(y~) 

< 2f  + (1 - 6)1Yi_11 _<..- < 2f/J1 - (1 - 6)] = 2f /6 ,  (38) 

- 6 2 - 6 +  +2A 1 +  + (1 - 6) d(y~_~) 

(12/ 12/ ) 
<- k 62 + - T + 2  A + ( 1 - 6 ) d ( y i - 1 )  

< \ 6a + - - f i - +  A=:LA,  i = t , 2 , . . . , n  (39) 

from (33), (34), (35), and (36). Finally, from (34'), (34"), (38), and (39), we obtain 

lu, I < ~ + (1 - 6)[ui+11 
2 f  < . . .  < 

- -  - -  - -  - -  6 2 

4A 2f  
d(ui) _< LA + T "  6 --T + (1 - 6)d(ui+l) 

<_ \Ts -+-g -+  ~, i=n ,~- l , . . . , 1 .  

[] 

Theorem 6. Let the following conditions be satisfied for the interva/coefficients ai ~ O, bi ~ O, 
i = 1, 2 , . . . ,  n, r r O, i = 1, 2 , . . . ,  n - 1 of  the system (4) (see (7)): 

r r [0, 1-6] ,  (40) 
( 1 - 6 ) 2 4  + c-~ _< 1 - 6 ,  (41) 

' C [ - 1 + 6 ,  1 -6  ] a i _ 1 + ~ - _ - 6 )  2 , i=1 ,2 , . . . , n .  (42) 

Then the estimates (30) and (31), which are independent of  n, hold for the components o f  the 
interval vector u = (ub u2 , . . . ,  u , )  that is found from (10)-(12). 

Proof. By virtue of Theorem 2, 

I<1 < J" I-<1, for a'i < 0, 
(gi> - [ ~ / [ 1 - ~ ( 1 - 6 ) ] ,  for_a' i > 0 .  

This together with (42) implies (35) and (36). Then, if we repeat the proof of the previous 
theorem, merely changing the method of obtaining the estimates (35) and (36), we obtain the 
estimates (30) and (31). 7] 

Analogously we can prove 
Theorem 7. Let the following conditions be satisfied for the interval coefficients ai ~ O, bi ~ 0, 
i = 1, 2 , . . . , n ,  ci 7 ~ 0, i = 1,2 . . . . .  n -  1 of  the system (4) (see (7)): 

c' i C [ - 1 + 6 ,  0], 

- (1 -6 )2_a ' i - c '  i <_ 1--6, 

< c [1 -(1-6) 1-6] - 7 ( i 2 ~ ) ~ '  �9 

(43) 
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Then the estimates (30) and (31), which are independent of  n, hold for the components of  the 
interval vector u = (ul, u2 , . . . ,  Un) T that is found from (10)-(12). 

Comment 4. The hypotheses of any of Theorems 6, 7 include the estimate (37). 

Comment 5. As in [5], we do not consider )~ small and suppose that A and 6 are independent 
from each other. Under the condition of strict interval diagonal predominance (9) for A < 6/6, 
the estimates of the kind (30), (31) can be found in [2]. 
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