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An estimate of the absolute value and width
of the solution of a linear system of
equations with tridiagonal interval matrix by
the interval sweep method

A. N. OsryLovsky

We consider linear systems of algebraic equations Su = f with tridiagonal interval matrix S and
interval vector f An interval version of the sweep method allows us to find an interval vector
u = (ug,uy,...,u,)7 that contains the united set of solutions of the system. In the paper we
present estimates of the absolute value and the width of the intervals u;, ¢ = 1,2,...,n under certain
assumptions on the elements of the matrix S that do not include the traditional condition of diagonal
dominance. The width estimates are three orders of magnitude narrower, and the assumptions on the
system’s coefficients are weaker than those in works published so far.

OLeHKa MOAYASL ¥ IIMPUHBI PeIIeHyL
CUCTEMBI AMHENHBIX YpaBHEHWMI C
TPEXAMArOHAABHOM MHTEPBAABHOM MaTpuIlen
METOAOM MHTEPBAABHOM IIPOIOHKU

A. H. Ocrsiaoscxion

PaccvaTpusaercst cuCTeMa /IMHeRHbiX ajrefpanueckux ypasHenwin Su = f ¢ Tpexamaromansuok uu-
TepBaIbHOR MaTpuueh S M HHTepBaibHBM BektopoM f.  lHTepBanbHas BepcHs METOAa NMPOrOHKH
NO3BOJISET OTHICKATH MHTEPBAIBHLA BexTop U = (U, Uy, .. ., u,.)T, COAEPXKALIHHA OOBEANHEHHOE MHO-
XECTBO PeHIEHHA 3TOM CHCTeMbi. B pafOTe NMPH HEXOTOPHIX OTPAaHHYEHHAX HA 3/IEMEHTH MaTpuun S,
HE MPEANO/ATaIOMHX TPAAHILHOHHOIN) YCIOBHA AMATOHAJBHOTO Mpevb1anaHus, NAIOTCA OUEHKH abconioT-
HOTO 3HA4EHMA M HIMPHUHBLI HHTEpBAoB W, ¢ = 1,2,...,n. OUCHKH IUMPHHLI HA TPH MOPANKA MEHBIUE,
a OTrpaHHYeHHMs Ha KO3PGUMUHMEHTH CHCTEMBbI C1abee, 4eM B PaHEE H3BECTHBIX Ny6IMKalHMsIX.

Introduction

In many problems of computational mathematics, we need to solve a linear system of algebraic
equations

Su=f (1)

which has the tridiagonal matrix S = tridiag(a;, bi,¢i), 1 = 1,2,...,n. (We formally set
a1 = ¢, = 0.) Under the condition of so called strict diagonal dominance,

la) + |ci| < bl —¢, €>0,i=1,2,...,n 2)
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the system (1) can be solved by the tridiagonal version of the Gauss algorithm, called the sweep
method. This method involves sequential application of the three recursion relations:

zo = 0, i = —c¢if(bi + aiziy), ay = ¢, =0,
o =0 w = (fi—ay-1)/(bi+azia), i = 1,2,...,n, 3)
Un = Yn, Ui = Ui+ Tiligr, t = n-1L,n-2...,1

When condition (2) is satisfied, the sweep method is reasonably well-studied [2, 4, 7].
For various reasons, the coefficients of the matrix S and the vector f in (1) should be
considered imprecise. Then, instead of the system (1) we have to examine the system

Su=f (4)

which has the tridiagonal interval matrix S = tridiag(a;, b;, ¢;) and the interval vector f =
(f1,£2,...,£,)7. The set

SOL(S,f) = {uec R" | (3S € S)(3f € £)(Su=f)} (3)

is called the united solution set of the system (4). The structure of this set may be very
unusual. For instance, even for m = 2 this set may be nonconvex [3]. It is obvious that
finding and describing such sets presents serious difficulties and is unlikely to be easy. Within
the scope of interval computations, there emerges the problem of finding an interval vector
u = (uy,uy,...,u,)" such that

u O SOL(S, f). (6)
Let us introduce some notation. Let a = [a, @] be the interval (¢ < @). Then
(a) is the closest distance from the points of the interval a to zero;
d(a) = a-—a is the width of the interval a;
{(a), fa>0,or0€a,
(@) =
—(a), ifa<0.

Supposing that the matrix S of the system (4) satisfies the condition

0¢b;, i=12...,n

we denote
a; = [a, @] =ai/(b)o, Db = bi/(bi)o, ¢ = [¢,T]=ci/(bi)o, (7)
f! = f£/(bi)e. f = max|f|, i = 1,2,...,n.
Note that
b)=b =1 ®)

In {5], the sweep method under the condition of strict interval diagonal dominance
lal] +]ci] < 1-6, 6€(0,1),i=12,...,n 9)

has been extended to the interval case (4). It was shown that under the conditions (9) the
following sequence of interval recursion relations is realizable (that is, no division by intervals
containing zero occurs):

X = 0, xi = —¢/(bi+axi-1), ay = ¢, =0, (10)
Yo = 07 y: = (ft - aiyi—l)/(b'i + a’ixi—l)r i o= 17 2a LT (11)
W = Yoo Wi = ¥it XUy, t = n—-1,n-2...,L (12)



AN ESTIMATE OF MODULE AND WIDTH OF THE SOLUTION... 395

This is called in [5] the interval analytic sweep method. Besides, the interval vector u =
(3,1, ...,1u,)" whose components are computed from (10)—(12) satisfies the condition (6). If
the additional condition

|aj] < lci| +6 (13)
is satisfied, then [5] gives an estimate d(ui) which does not depend on 7, and is reducible to
the form

d(w) < 3fA/67 (14)

where

A = max{d(a}),d(b}),d(c}),d(f)}}, i=1,2,...,n. (15)
It should be emphasized that the estimate (14) is not an estimate of SOL(S,f) itself. For-
mula (14) presents an estimate of the vector u which has been found using (10)—(12) and
which, as was noted, contains SOL(S, f).

In this paper we weaken the conditions (9) and (13) and find some other conditions
sufficient for the independence of the absolute value |u;| and width d(u;) on the order n of
the system. The estimate of width d(u;) in our work has the order O(1/6%), ie. is three orders
of magnitude smaller than the estimate (14).

1. Sufficient conditions for boundedness of an interval
continued fraction

The recurrence relation (10) generates an interval continued fraction

x; = ac, . (16)
bi _ i—1

b;_1—

That is why it deserves a separate consideration. If we use (7), we can write down (10) as
X0 =0, x;=-c/(bi+alx;;), aj=c, =0, i=12,...,n (17)

Theorem 1. Let the coefficients al, bl #0,i=1,2,...,n, ¢; #0,i=1,2,...,n—=1 in (17)
satisfy the condition

rPlall +ci| <7, i=1,2,...,n-1
T 1l — k) 3 b b 3 (18)
{ lal| < 1/r
for some r > Q. Then
1° g >0, where g/ = [g,,7}] = bl + ajx;_1,
22 x; Cl-rr], t=12,...,m, (19)
3° the estimating interval [—r, 7] in (19) and the condition (18) are the
best, ie.
(a) there exists a recurrece relation of the form (17) satisfying (18)
for which the estimate (19) is achievable, ie. x; = [~r,7] for some

1<n-—-1,
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(b) for any pair of intervals (a’,c), ¢’ # 0 not satisfying the condition
(18} it is possible to find a formula of the form (17) such that for
all i=1,2,...,k~1<n—1 the condition (18) is satisfied and for
a, = a/, ¢, = ¢ the inclusion (19) does not hold.

Proof. For i =1, from (8), (17), and (18) imply
1] = [c}/b)| = ||/ (by) =ej} <

Let x;_1 C [-7,7]. Then
x; C c;/(b]+[-r r]a}). (20)

From (8) and the theorem’s hypothesis we have
g; 2 b — lafllxia] 21— Jaylr > [ci|/r > 0
which proves 1°. From (20) we have
il < leil/ (b} + [, rla) = |eil/ (1 - rlai]).
This, together with (18), implies
x| < rlefl/(r = r*a]) < rlejl/lei =7

which proves 2°.

To prove 3°(a) let us take (17) with

o~

C (=1/r1/r), i=2,3,...,n,

all = 0, a ’
= [-r+ral], rP-rlal]], bi=1 i=12...,n-1

¢, =0, c (21)

AN

Then r2jal| +|c}] = r, ie. the condition (18) is satisfied. It is easy to see that x| = [—r,7],
i=1,2,...,n—1

Now let us prove 3°(b). For i =1,2,...,k—1 < n -2, the coefficients aj, b}, ¢} can be
borrowed from (21). Let’s take aj, = a’, bj, =1, ¢ =¢’. Then

xg = —¢'/(1+a'[-r,7]).

If 1 —rja’] <0 then 0 € 1+ a'[-r,7], and (19) is evidently not satisfied. Let 1 —r]a’| > 0.
Then |xi| < |c’|/(1 —r|a’]), and condition (18) is necessary for 2° to hold. =
Comment 1. Condition (18) can be interpreted geometrically as follows. An interval “point”
(a',b') can be represented in the coordinate system a’Oc’ by a rectangle with its vertices at
the points {a’,¥), (a’ ,5’), (@, b), (Ef,y)‘ Consider the rhombus v{r) defined by the inequality

ra|+ || <.

Condition {18) defines the interval points (a}, c}) that lie entirely inside v(r). Condition (9) for
1 — 6 = r defines interval points that lie entirely inside the square p(r) given by the inequality
la'| +|c| < r. For r < 1 we have u(r) C ¥(r) and [x;| <7,i=1,2,...,n—1. Thus, condition
(18) is a generalization of (9). Note that the area of the rhombus v(r) does not depend on r,
and equals 2, whereas the area of the square u(r) equals 2r® < 2.
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Comment 2. For 71 # 5 none of the rhombi v(r1), v(rz) lies inside another. Consider two such
rhombi, for example, ©(0.5) and v(0.7). It is easy to imagine a set of interval points (al, c}
that lie in ©(0.5} but not in ¥(0.7). Then, for the corresponding formula (17), Theorem 1 does
not allow us to suppose that all |x;| < 0.7. On the other hand, however, it is this Theorem
that guarantees that all |x;} < 0.5.
Comment 3. We may consider the reciprocal problem for the rhombus v(r): Find the condition
to apply to the set {(aj, c})|¢=1,2,...,n — 1} which is necessary and sufficient for all
(a}, cf) to belong to a rhombus v(r), and then estimate infr in the class of formulae of the
form (17) satisfying the condition found. The solution to this problem can be follows from
material in [6].

Analogously to Theorem 1, we can prove the following two theorems.
Theorem 2. Let the coefficients a}, b #0,i=1,2,...,n, ¢, #0,4=1,2,...,n—1 in (17}
satisfy the condition

, 1=12...,n-1, (22)

for some r > 0. Then
rg>Qmerﬂgﬁ=u+anm
22 x; C[-r,0], i=1,2...,n, (23)
3° the estimating interval [—7,0] in (23) and the condition (22) are the
best (just as in Theorem 1).

Theorem 3. Let the coefficients a}, b, #0, i =1,2,...,n, ¢, #0,i=1,2,...,n—1 in (17)
satisfy the condition

c; C [-r0,
-rlal —d<r, i=12,...,n-1, (24)

for some r > 0. Then

1° g; > 0, where g; = [gg,gf;] =bl + alx;_;,

2°x,C[0,r], ¢=1,2,...,n, (25)
3° the estimating interval {0,7] in (25) and the condition (24) are the
best.
2. Boundedness conditions and estimation of the width

of the components of the vector U produced by the
interval analytical sweep method

Theorem 4. Let the coefficients a;, b;, ¢; of the matrix S of the system (4) satisfy the condition
of one of the Theorems 1—3 (see (7)).
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Then

1° the principal minors of any matrix S € S never become zero;
2° the interval vector u = {u;, u,.. .,un)T that is found using (10)—(12)
satisfies condition (6).

Proof. It is easy to show using induction on % that the principal minors A; of the numerical
matrix S = tridiag(a;, b;, ¢;) € S satisfy the relation

AQ = l, Al = b1, Ai = biA,'_l - G,iCi_lAi_Q, 1= 2, 3, s, N (26)

Suppose that
Dicy = (bic1 + ais1xi-2)Aig (27)

where z; is defined from (3). Note that b;_; + a;_1%;-2 # 0 from one of the Theorems 1—3.
From (26), (27), and (3) mathematical induction gives

JAVIY

A; =bA_ | — a6 ——L
1 1=i-1 iCi 1bi—1+ai—11i—2

= (b, +ai$i—1)Ai—la i=1,2,...,n.
Hence, again applying induction, we obtain 1°.

Let us prove 2°.'By virtue of the principal theorem of interval arithmetic [1, 5], if z1, 1
are found from (3) then x; € X3, ¥1 € ¥1. Suppose that z;_; € X;_;, ¥i-1 € ¥i-1. Then, by
the same theorem, from (3), (10), (11) and induction we have z; € x;, y; € yi, t = 1,2,...,7n.
In particular, 4, = Yn € Yn = Un. Further, from the principal theorem of interval arithmetic
mathematical induction gives u; € u;, ¢t =n,n—1,..., 1. a

We will use the notation A from (15). For the value of r from Theorems 1-3, we
set 7 = 1 —§ for some § € (0,1). Applying additional constraints in the hypotheses of
Theorems 1—3, we obtain the following three theorems.

Theorem 5. Let the following conditions on the interval coefficients a;, b; 0,1 =1,2,...,n,
¢, 1=1,2,...,n—1 of the system (4) be satisfied (see (7)):

(1-6)%laf] +]e] <14, (28)
1-6

<as = ————— i=1,2,...,n. 2
[az|——a6 1+(1_6)27 1 ) &y y (9)

Then the following estimates hold for the components of the interval vector u =
(up,uy,...,u,)" that is found from (10)—(12):

| < 2f/8, (30)
d(w) < (%?—4’(+1§—3f+%>,\, i=1,2,...,n (31)

These estimates do not depend on n.
Proof. From (28) and Theorem 1 it follows that |x;| <1~6 and g >0,¢=1,2,...,n. Using
the properties of the function d [1], we obtain a recurrence relation for d(x;). We have
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Now we obtain recurrence relations for |y;| and d(y;). From (11), we have

£ 14l .
iS +—LYi— ) 7'=112y-'-1
¥ <gi> <gi>| !
Further,
/ 7 1 ! ! 1
dly:) < |ff —ajyiald = +d(f; — ajyi-1) =
I — 2iyioa| d(gs) | At Ayl + [ald(yio1)
- (gi) (8:) (8:)
)\ + /\Ixi_ll + |a;|d(}q_1) A + /\IYi—ll
< |y +
v (&) <gi) (gi)

Finally, from (12) we have

[ua| = lyal, wl <yl + Ixif i,
dun) = dlyn), dw) < d(yi) +d(x) sl + xild(ui),
From (29) and (8), it follows that
|ag as
— —— =1-4,
(8:) 1-as(1-6)
(g) = 1-as(1-6) =1/1+(1-6%>1/2, i=12,...,n
Expanding (32) and taking (35), (36) into account, we obtain
6 ~65+252 A
Vg ST 2
dx) < =553

For 6 € (0, 1), this implies

d(x;)) <4)/6, i=1,2,....n—1.

n.

7
+ Lat‘ld()’i—l):

399

i=1,2...,n (34)

1=12,...,n.

(34)
(34")

(37)
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This estimate is of independent importance, since it presents an estimate of the width of the
continued fraction (16). Analogously we obtain

|yl 2f + (1= O)lyimal -~ <2f/1 = (1 = 8)] = 2f/5, - (38)

d(y:) if;—* (2 6+ %) +2 (1 + %) + (1= ) dlyes)

12 12
(Tﬁzl + Tf + 2) A+ (1-8)d(yi-1)

12f 12 2), o
(753_ -32—4-5)/\—.[,/\, i=1,2,...,n (39)

A

IA

IN

from (33), (34), (35), and (36). Finally, from (34), (34”), (38), and (39), we obtain

2 2

wl < Zra-duals s 5,
4\ 2

d(u,-) S LA—}‘T&—{‘F(I—(S)d(UH.I)

20f 12f 2

(74‘*‘?*33

IN

)A, i=nn-1,...,1.

O

Theorem 6. Let the following conditions be satisfied for the interval coefficients a; ¥ 0, b; # 0,
i=1,2,...,n,¢#0,i=1,2,...,n—1 of the system (4) (see (7))

¢, ¢ [0,1-8, (40)
(1-67a + ¢ < 1-6 (41)
1-46
rCo |- i =1,2,...,7n.
a; C [ 1-i-6,1+(1_(5)2 , 1=1,2,...,n (42)

Then the estimates (30) and (31), which are independent of n, hold for the components of the
interval vector u = (13, g, ..., Uy) that is found from (10)—(12).

Proof. By virtue of Theorem 2,

lail < ial], for @ < 0,
(g:) a@./[l—al(l—-96)], for a>0.

This together with (42) implies (35) and (36). Then, if we repeat the proof of the previous

theorem, merely changing the method of obtaining the estimates (35) and (36), we obtain the

estimates {30) and (31). O
Analogously we can prove

Theorem 7. Let the following conditions be satisfied for the interval coefficients a; # 0, b; Z 0,

i=1,2,...,n, ¢ #0,i=1,2,...,n—1 of the system (4) (see (7))

M

¢, C [-1+34, 0],
—(1-6)% ¢ 1-86, (43)
(-8
1+(1-6)2

IN

1-46}.

N

!
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Then the estimates (30) and (31), which are independent of n, hold for the components of the
interval vector u = (uy, Uy, ..., U,)" that is found from (10)—(12).
Comment 4. The hypotheses of any of Theorems 6, 7 include the estimate (37).

Comment 5. As in [5], we do not consider X small and suppose that A and & are independent
from each other. Under the condition of strict interval diagonal predominance (9) for A < §/6,
the estimates of the kind (30), (31) can be found in [2].
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