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The paper deals with numerical methods using defects The defects are used to sm(x~th numerical 
SOhltions, to cons t ruc t  a postericwi e r r o r  es t imates  a n d  d i f f e r e n c e  schenles,  to correc t  ~hl t i t )ns .  

MeTOAbI, 
b C. AoseoHzu 

HClIOAb3ylOrnl/te HeBYI3KH 

B pa6ote paccMalprt~lR)rc.q Merollbl, HCllO/lb3ylOlllHe HeB~I3KH HeB~[3Ktt IIpHMeH~IIOICM ltJIM CI"Ia)KHBa- 

HIIH qHcdleHHblX pellleHi.tfl, II(~TpI)~:HI.IH allOCTepl.lOpHblX OlteHOg IItH'peLIIHOCTH, yToqHeHH.q pelileHllfi H 

llOCTpoeHll~l pa3HoCaHblX CXeM 

Introduction 
Let R n be the space of n-dimensional vectors. In what follows, we denote interval numbers 
a = [_a, ~] with bold font: a, b, c, f, wid(a) = ~ -  _a, R '~ is the space of  n-dimensional interval 
vectors, H t (f2) denotes the usual L2-Sobolev space of order I. Finally, we denote by H~ (f2) the 
space all u E Hi(f2) with u = 0 on Of 2 (in the sense of trace). 

1. Approximation of numerical solutions by finite 
elements of high degrees 

Let us consider the Dirichlet problem: 

L u  = f ,  x E  f2, 

u( z )  = O, z ~ O f  2 

where f2 is a bounded open convex domain in R 2, with piecewise smooth boundary 0K, 

L u = - ~ - ~ - 2 -  - ai u + q u .  

We assume that the coefficients ai C C l(f~), q, f E C(f~) and that 

a ~ > c > O ,  q>_O, z E  ft. 

Let Th be a partition of  ~ comprised of elements T and 

= UiT~, Ti M Tj = 0, or common edge, or common corner, i # j.  

(1) 

(2) 
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a h  = {Xi}iN-_l are the nodes of the partition and u h = uh(x~), i = 1 , . . . ,  N are the values 
of some numerical solutions of the problem (1), (2). 

If  Th is a triangulation, then the finite element space oc~ is defined by introducing a 
piecewise-polynomial basis on a Th: 

S~t = { s (x ) t s  E Ht (Q)  N H01(~), SIT e "P", T e Th} (3) 

where 7 vn is the set of polynomials of degree n. In the case that Th is a rectangular partition 
the subspace 5'/~ is defined by piecewise Hermite polynomials of degree n [4, 14]. 

Consider the problem of approximation of u h by s E S~, k _> 3, such that 

IIS[]L2(OH ) <_ K h  ~'1, 
[[Ls--  f][L2(n) <_ K h  a2' for some appropriate ezl,~2_>O. 

In order to construct finite elements of high degree [4, 14] we need some subset of  the 
values of  s (x) ,  i+j O~,j s (x) ,  i , j  = 0 , 1 , 2 , . . .  for some points x E ~ .  Let x0 = (xO.l,xo,2) be one 
of such points. 

For this purpose consider a local grid Z,,6,d = {z~d}, z~,j = (zi,j,1, zi,j,2): 

= s ign( i )abs ( ib )" /d+ Xo.1, 
= s ign( j )abs ( j6 )" /d  + Xo,2, i, j = O, 4-1, + 2 , . . .  

Zi,j,1 

Zi,j,2 

where r, 6, d are parameters  and r > 1, 5 > 0, d > 0. 

Define p as a polynomial p = ~P=oa~r - Xo) such that 

n 1 r$2 

y~ oq]p(v:) - uh(v~)[ 2 + y~/3,1Lp(v~) - f (v~) l  2 --~ min (4) 
i = 1  i = 1  

where r are given linearly independent functions. Let, for definiteness, 

r  = 1, el(X) = xl,  r  = x2, r = x ~ , . . . ,  r = x~, n ,  = (n + 2)(n + 1)/2 

{ l l , U  and {v~2}~___2 1 be the nodes of the auxiliary grid, disposed in the neighborhood of the Vi J i = l  

point x0. Here v~ E ~2h, V 2 E Zr,6,d, n l  + n2 >_ n p +  1, nl  >_ 2n + 1, 

= p(v~ ,  z o )  + , 

/~i 2 n -  1 z-1/(p(v,,zo) + 

where p ( x , y )  is a distance between the points x, y; a - i , / 3 - ,  is expressible in terms of the 
accuracy of the numerical solution uh: 

~-2 ~ hllu-uNIL~<a,,>. 

The  problem (4) is reduced to the solution of the system of linear algebraic equations 

B a  = d  



NUMERICAL METHODS USING DEFECTS 385 

where 
Tip 

B = {bij}ij=o, 
a = (ao, al ,a2, . . . ,a ,~p),  

7I 1 ?2 2 

bij = ~ a , r  - Xo)r - Xo) + ~ , Z , L r  - xo)LCj(v~ - Zo), 
/=1 1=1 

d~ = ~ a,uh(v~)r -- XO) + ~_,fl, f(v~)Lr - Xo). 
/=i I=I 

We can put S(Xo) p(xo), i+j i+d = = oL, 
Theorem 1 [7]. Let u E C4(f~) be the exact solution, f~h is a uniform rectangular grid and 
~r is the numerical solution o f  problem (1), (2) by a certain difference scheme [12], s E S 3 
t ol,structed as above and Sa2 is the piecewise Hermite polynomials subspace. Then 

I J u -  uhllL~(n.) _< K h  2, 
IlsllL (on) _ K h  4, 

IlLs - f[Inoo(n) < K h  2 

where h is the meshsize, K is a constant independent o f  h. 

2a A posteriori error estimate 
Let us consider the use of  an approximation of numerical solutions by finite elements of  high 
degrees for an a posteriori error  estimate of boundary value problems for elliptic equations. 
The  base of  this method is the principle of monotony [2, 3, 15]. 

Let u h be a numerical solution of the problem (1), (2) obtained by a certain difference 
scheme [12] and s E S~ constructed as above. We can use the defect 

~ ( x , s ) = L s - f ( x ) ,  x E f ~ .  (5) 

We solve numerically the additional problem 

LUl = 1, x in ft, (6) 

ul (x)  = O, z on 0~.  (7) 

and also build sl in an analogous way. As a consequence of Theorem 1, for sufficiently small 
h > 0 the inequalities 

Lsl  > I - K A  2 > 0  on O~ 

hold. Then the interval solution has the form 

where 
~ = m_ax( -~ /Ls l ) ,  a_ = m'_m(-~o/Lsl), 

f~ n 

= mnax ( - G s l - s , O ) ,  /3 = m i n ( - a s l - s , O ) .  
- -  0 1 2  - -  

Theorem 2 [7]. Assume that the assumptions o f  Theorem 1 hold. Then 

IIwid(u)llL~(n) _< K h  2 

where h is the meshsize, K is a constant independent o f  h. 
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3. Defect correction method 

B. S. DOBRONETS 

Defect correction method is the common name of  special discrete Newton's method [1, 9, 13]. 
In this section we consider the defect correction method for problem (1). We will use the 
finite element method only with linear elements, but the final solution will have accuracy 
corresponding to cubic elements. 

The solution of (1) is understood in the following weak sense: find a function u ff H01(f~) 
such that 

c(~ ,  ~) = (f ,  v), w c ~ ( a )  (8) 

where (.,-) is the inner product in L2, 

v) = f s  
.I f t  

2 

a~cgiu&v + quvd~.  
i=1 

We define the finite element solution U h of the problem (1) as a function from S t that satisfies 
the equation 

Z:(u '~, v")  = ( f ,  vh), VV h e S,1, (9) 
u h = 0, o,1 OfL 

Further, using the finite element solution u h we construct s E $3(~) according to Section 1. 

Consider the identity 

s  V v E H ~ ( ~ )  (10) 

where ~ - (f, v) - E(s, v). Subtracting (10) from (8) we have: 

s  Vv E H0~(ft). (11) 

Denoting ~ = u - s we write the equation for r in the weak form 

s : ~, Vv E H(}(~). (12) 

Further, let ~h be an approximate solution to the problem (12) by the finite element method 
in S~. Then the corrected solution is 

8cor ---- 8 -F" ~h. 

Theorem 3 [5]. Let u E H4(~) ,  ~h be a uni[orm grid. 

Then 

I[u - scorIG(~) _< Kh4fl~tl..(~) 
where h is the meshsize, K is a constant independent o f  h. 

If  we take the initial solution u n = 0 and So = O, then the correction procedure should 

be done several times: 
s~+ 1 = s t + s~, i = O, 1 , . . .  

where s~ E ,S'I 1 is the approximation of r 
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4. The cell approximate solution method 
387 

In this section, we present a method for the construction of difference schemes for the problem 
(1) on nonregular  grids. 

Choose the node x0 �9 ~h and let x l ,  �9 �9 �9 xn �9 ~h be nodes that lie in the neighborhood 
of x0. We define the cell Q0 as a minimal convex polygon, such that ~0 9 xi, i = 0, 1 , . . . ,  n. 
We will seek an approximate  solution s = p in ~0 by the process (4), with nl  = n, v~ = x~ 
(i = 1 , . . , n ) ,  and with u h = uh(xi)  (i = 1 , . . . , n )  as parameters.  Put u h = s(xo) and 

s -- s ( x , u } , . . . , u ~ ) .  

"1 l~en we obtain 
n 

~0 ~ = E ~,u, ~ + F0 h~ (I3/ 
l = l  

where 7z, F0 are constants, depending on the coordinates of the points xi, i = O, 1, 2 , . . . , n  
al~d coefficients of the problem (1), h is the diameter  of ~0 �9 If  we take Xo equal to each point 
oi the mesh ~h,  then we obtain a difference scheme for u h. 

The precision of the difference scheme (13) depends on the precision of the approximate  

solution s. Assume, that ui = u(x i )  and the inequality 

Mx0) - s ( x 0 , ~ , . . . , ~ , ) l  ~ Ch  ~ 

is fulfilled. Then,  following [12], we have 

lu(x) - uh(z)J < Ch '-k, x �9 ~ .  

Observe that in the general  case 1 = n + 1 and k = 2 for s �9 P~. Following this method 
we can construct practically all known difference schemes for elliptic and parabolic equations. 
Taking s in the form of  the generalized polynomial, we can construct some difference schemes 

with given properties. 

4.1. 

Consider 

T w o - p o i n t  b o u n d a r y - v a l u e  p r o b l e m s  

L u  =- dx p u + q u = f ,  x � 9  1) (14) 

u(0) = u(1) --- 0. (15) 

Suppose 
p(z) > el > 0, q(~-) > 0, 
q, f �9 cr[0,1], ; �9 cr+~[0,1] 

tbr some integer r > 0. 
For the interval [0, 1] we choose the mesh points 

x e (0,1), 

~h={0=ZO<Zl<' ' '<ZN=I} ,  N_>2. 



3 8 8  B . s .  D O B R O V e r s  

Consider the cell f~ = [zi-1, z,+l]. Let 7~n[xi_~, xi+l] be the set of polynomials of degree n on 
the interval [xi-l ,xi+l].  We will seek the approximate solution s E 7 ~n in the cell f~i of the 
form 

s = ~ a l ( x - x i )  t 
/=0  

and require that for s the conditions 

s(xi_l) = u}_l, s(xi+l) = u}+i (16) 

be valid. In the cell ~i, we choose the knot sequence 

mi = {z~-i < z l  < - - -  < z , ~ - i  < z i + l } .  

In order to construct s we use the methods of Section 1 with n t = 2, vl = xi_ l, v21 = xi+ l, 
n2 = n -  l ,  v~ = zi: 

r s ( z z ) = f ( z t ) ,  l = l , . . . , n - 1 .  (17) 

Thus to determine s we have to solve the system of linear algebraic equations 

Ba  = d 

where the vector d has the form: 

(,&,<,,s(z,),S(z,),...,s(zo_,l). 
Note that /3 is invertible. Let /~-I be the inverse matrix to /3. Then we have 

n + l  

/=1 

and the difference scheme 
u h = ",huh_, + "72uh+1 + Fih 2 (18) 

where Fi are linear combinations of  f ( z l ) , . . . ,  f ( z ,~- t ) .  

Consider the accuracy of the scheme (18). Let p E 7~"[xi-1, xi+1], u E C'~[xi-1, xi+l]. If  p 
interpolates u, then 

Ip(z)  - ~(~)[ < K h  "+~, �9 e [~-~ ,  x,+~]. 

Hence, it follows from [12] that 

lu(z)  - uh(z) l  < Ch ~-~, z ~ Clh 

where K is a constant independent of h. 

This scheme is similar to the "exact" difference scheme [12]. But this approach does not 
require the exact solution of problem (14) and is applied here, in particular, to boundary-value 
problems with small parameter ~ > 0, ~ << 1. 

Consider 

L u  - dx  e2 u + q u = f ,  x E ( 0 , 1 ) ,  (19) 

u(O) = u(1) = O. (20) 
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We will seek the approximate  solution in the cell f~i of the form 

8 = iOq(Z--Xi)  l q-O%+lexp(.~o(X)/;~ ) q-Oln+2exp()~l(X)/g ). 
/=0 

The  functions A0, At are solutions of the initial value problems 

e ~,'g + (,Vo 7 - q = o, 

,Xo(Z~-l) = O, 

~ i '  + ( ~ i )  ~ - q = o, 

~ l ( z i + l )  = O, 

z ~ ( z i < ,  z~+l) 

~ 'o (X i -1 )  = 
x ~ (xi-1, xi+l) 

389 

As a numerical example, we consider the problem [8] 

- ~2u" + u = - cos~(Trx) - 2e2r~ 2 cos(Zrrx), (21) 

u(0) = u(1) = 0. (22) 

The  exact solution is 

u(x) = (exp ( - - ( 1 -  x)/r exp(-x/e))/(1 + e x p ( - 1 / e ) ) -  cos2(Trx). 

The  problem (21) can be solved on uniform grids ~h with some meshsize h, n = 2. Numerical 
results are presented in Table 1. 

1.0 
0.1 
0.01 
0.001 

I h = 0 . 2  h = 0 . 1  h = 0 . 0 5  
2 .65E-3  1.71E-3 1.40E-3 
7 .90E-4 7 .64E-5  5 .10E-6 
4 .58E-5  8 .70E-6  3 .21E-7  
5 .36E-7  1 .78E-7 5 .96E-8  

Table 1. Errors max~en h lu(z) - uh(x)l 

4.2. Elliptic partial differential  equations 

The subject matter  of this section is the application of CASM to elliptic partial differential 

equations. 

To construct a difference scheme we use polynomials p E 794 on a nonuniform grid. The  
convergence order  for this finite difference scheme is k = 3 [6]. 

Consider the model problems 

Aui = fi in 12i, 
u~ = 0" on 0fli  

where 

f l  

k 

f3 
f h  = f h  

= -(i - exp(l - r2))r2/cos2(xlx2) - 8 exp(l - r 2) tan(x,x2)xlx2 

+ 4 exp(l - r2)(l - r 2) in (cos(xlx2)), 

= (-lO/r + I00) e x p ( - 1 0 r ) ,  

: =  {z~ > 0, x2 > 0, x~ + x~ < 1}. 

(23) 
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The exact solutions to these problems for i = 1, 2 are: 

ul = ( 1 -  r) sin(xlx2), 

and for i = 3 is: 

u3 = exp(-lOr)-exp(-lO), r =  ~ + x ~  

Numerical solutions are obtained by using grids with the number of nodes from 16 to 256. 
The grid were optimized with respect to minimizing the defects. 

Number of problem l I" IlL= I1" I 
1 4.40 3.41 
2 4.95 4.21 
3 5.67 4.28 

Table 2. Convergence order 

Since polynomials p smooth numerical solution, we have the effect of superconvergence, 
and the convergence order of finite difference schemes for problems 1-3 is greater than the 
theoretical estimate. 
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