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Matrix computation of subresultant
polynomial remainder sequences in integral
domains

Auaviabis G. Akritas, Eveenia K. Akritas, and Genapn I. Mavrascaonok

We present an improved variant of the matrix-triangularization subresultant prs method [1] for the
computation of a greatest common divisor of two polynomials A and B (of degrees m and n, respectively)
along with their polynomial remainder sequence. It is improved in the sense that we obtain complete
thevretical results, independent of Van Vieck’s theorem [13] (which is not always true {2, 6]), and, instead
of transforming a matrix of order 2-max(m, n) [1], we are now transforming a matrix of order m +n.
An example is also included to clarify the concepts.
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Tpencrar/ien y1y4iNeHHbI BAPHAHT MATPHYHO-TPHAHI YAAPHIAHOKHOLO CYGPE3YJILTAHTHOTO METOAA 10~
JIHHOMMAJIBHBIX  NtocesosatensHocteR octatkos (TTTTO) [1] ans suuncienns HanGosbiero obuero je-
AHTEAs aByx MHorowieHos A u B (cTeneneit M ¥ T COOTBETCTBEHHO) € OIHOBPEMEHHBIM HAX(XICHHEM
ux [OML  Yaydinenne 3akI0H4€TCH B8 TOM, 4TO HOJYHEHBl 3aKOHYECHHBIE TEOPETHYECKHE DE3YAbTATH,
HE3aBHCUMBIE 0T Teopembt Ban Biexa {13] (xotopas me scerna cnpasemmusa, oM [2, 6] Kpowme Toro,
BMECTO NPenBpasuBaHus MaTpHubt nopsuaka 2-max(m,n) (1] Teireps upeoSpasyetca MaTpHia HopAnKa
m + n. [IpencrasneH YHCACHHBIA 1IPHMEP LIS WLIIOCTPAIMH 3THX HOJOXKEHHH.

Introduction

Let I be an integral domain, and let

m
Ai = Z Cij$m~1
j=1

where ¢;; € I,1=1,2,...,n; then

mat(A;, As, ..., 4,)

denotes the matrix (a;;) of order n x m. Moreover, let A, B € I[z], deg A =m, degB =n

and let

M = mat(z"*714, V%24, .. A g™ B, 2™ %2B,...,B), 0<k < min(m,n)
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be the matrix of order (m +n — 2k) x (m +n — k), where Mg is the well-known Sylvester’s
matrix. Then, kth subresultant polynomial of A and B is called the polynomial

k
Sk = Z M,z.’l,'i
1=0

of degree < k, where M;} is a minor of the matrix My of order m + n — 2k, formed by the
elements of columns 1,2,...,m+n - 2k — 1 and column m + n — k — 1. Habicht’s known
theorem [7] establishes a relation between the subresultant polynomials Sp, 1, ..., Smin(mn)-1
and the polynomial remainder sequence (prs) of A and B, and also demonstrates the so-called
gap structure. (For a surprisingly simple proof of Habicht’s theorem see Gonzilez et al [6])

According to the matrix-triangularization subresultant prs method (see for example Akritas’
book [2] or papers [1, 3]) all the subresultant polynomials of A and B can be computed within
sign by transforming the matrix (suggested by Sylvester [12])

rna[(‘,L_max(m,n)—IAy l,ma.x(m,n)—lB‘ :L.ma.x(m,n)-2AY xmax(m,n)—237 o A, B)

of order 2-max(m,n), into its upper triangular form with the help of Dodgson’s integer
preserving transformations [5]; they are then located using an extension of a theorem by Van
Vieck {1, 13]. (We depart from established practice and we give credit to Dodgson, and not
to Bareiss [4], for the integer preserving transformations; see also the work of Waugh and
Dwyer [14] where they use the same method as Bareiss, but 23 years earlier, and they name
Dodgson as their source-differing from him only in the choice of the pivot element ([14],
p. 266). Charles Lutwidge Dodgson (1832—1898) is the same person widely known for his
writing Alice in Wonderland under the pseudonym Lewis Carroll.)

Below we propose a matrix-triangularization subresultant prs method allowing us to exactly
compute and locate the members of the prs (without using Van Vleck’s theorem [13]) by applying
Dodgson’s integer preserving transformations to a matrix of order m + n.

2. Our method and its theoretical justification
We assume that deg A = m > deg B =n and we denote by M the following matrix
M = mat(z™'B,z™*B,..., 2" 'B, 1" !4, "B, z"%A,..., B, A)

of order m + n with elements a;; (j,7 = 1,2,...,m + n). (This matrix can be obtained from
Sylvester’s matrix My after a rearrangement of its rows.)
Dodgson’s integer preserving transformations (which can be easily proved using Sylvester’s

identity (S) below)

k ok k ok
kel (a’ija'kk - aikakj) (D)
Gy =7 %1
Gk—1k-1
(see [4, 5, 9, 14]) where we set a3, = 1 and it is assumed that af, # 0, k =1,2,...,m+n, are

applied to the matrix M = (a;;) and transform it to the upper-triangular matrix Mp = (b;;),
(4,7 =1,2,...,m+n), where
{ 0 fori>j
by =

ai; fori<j
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and, in general,

an .. Qrk-1 ayj
ok =
Ag-11 -+ Qk-1k-1 Qk-1;3
aq1 s Q5 k-1 Q5

with 1<k<m+n,and k<t,j<m+n.
The following two theorems can be used to locate the members of the prs in the rows of
Mp. The correct sign is computed.

Case 1: If none of the diagonal minors of the matrix M is equal to zero, then we
have:

Theorem 1. Dodgson’s integer preserving transformation will transform matrix M to the
upper triangular matrix Mp, which contains all n subresultants (located in rows m +n — 2k,
k—-=0,1,2,...,n-1)

k
S/c = Z M,ixi
i=0

where
i _ o(k) ,m+n—2k
Mk: - (_1) Amin—2kmin—k-i
and

(m—n+1)+...+(m_k)= (n"'k3)(2’fn—‘l’),-—k)-{‘*l)7

2
k = 01,....n—-1

=X
=
I

Proof. It is easy to see that the submatrix located in the upper left corner of the matrix M
{(where the matrix M was defined in the beginning of this section) and having m +n — 2k rows
and m+n — k columns (k =0,1,...,n — 1) will be

M! = mat(z™*1B, ...,z 1B z" k1A, g7 5 2B 1 F 24, B, A).

M differs from matrix My (mentioned above) only in the arrangement of the rows. That is,
in order to obtain M} from M it is necessary to rearrange
n—k)2m-n-k+1)

2

ok)=(m-n+1)+-+(m~k)=

adjacent rows.
Therefore we have
Mg = (=1)"Papin i ks
where i =0,1,...,kand k=0,1,...,n- 1. )
Before we proceed further, we state Sylvester’s determinant identity [11] which is needed
in the proof. If we set 85, =1, Sylvester’s identity can be expressed as

det Dy(B) = (detB) - (B211,.,)" ", 1<p<r (S)
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64 ; Ivi4
p.p pp+l p,T
. 1 Bp+1 +1 p+1
p+lp Fp+lp ©o Mplr
Dy(B) =| """ AR
14 P D
TP rp+1 co T,
of order r—p+1,and A7, {p,i,5 =1,2,...,r) are minors {just like a*; defined above) obtained
i ij

from matrix B by adding row i and column j to the (upper left) corner minor of order p—1
(see for example Malaschonok’s work [9}; [10], pages 30—35; [4]; or [8]).

Case 2: If not all diagonal minors of the matrix M are nonzero, then we have the
following theorem {the term bubble pivot, used below, means that, after pivoting, row
ip is immediately below row j,):

Theorem 2. Dodgson’s integer preserving transformations with bubble pivet and choice of
the pivot element by column, will transform matrix M to the upper triangular matrix Mp,
and at the same time will compute all subresultants Si; if, in the process, s row replacements

take place, namely row j; replaces row iy, jo replaces ia,...,js replaces is, (and after each
replacement row i, is immediately below row jp, p = 1,2,...,5), then (a) Sy = 0, for all k
such that T¥2=%) > g > 2h) and for all p=1,2,....5. (b) for all p=1,2,...,5, if
k= (_’L‘_tle:lﬁ is an integer number not in (a), Sy is located in row i, before it is replaced by
row jp. (€) for the remaining k, (k =0,1,...,n — 1 and those not in (a) or (b)) Sy is located

in row j =m+n — 2k.
Moreover, in (b) and (c) the subresultant Sy = %, Miz*, is located in row j in such a

way that _ o
M; = (_l)d(k)+a(J)a_J1,j+k—i

where
-k —-n—-k+1
(k) = n—k)(2m-n + )’
2
s $
o) = Y o= D tp Jp<Jiip <
p=1 p=1

Proof. It is elear that the first m —n +1 diagonal minors are not equal to zero because ags, for
s=1,2,...,m—n+1, is the leading coefficient of B; therefore

al, ={a1)*#0, s=12,...m-n+1l
Suppose now that for some s > m —n + 1 we have a$, = 0, with a$_},_; # 0. In this
case we have the following two subcases:

I o}, =0, foralli=s,s+1,....m+n.

. _ -1 .
Here, making the correspondence af; — f7;, af; < det B, and aiZi ey > Bb1,1 in Sylvester’s
identity, we see that af, = 0 for 1 = 5,5+ 1,...,m -+ n if and only if the first column of
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D,(B) is 0, and hence det B = 0; that is all minors of the form afj (k>s,1>s,j>s)are
equal to zero, and therefore Sy = 0 for all k& < i—"-l-t;;sl

II a} =0, foralli=s,s+1,...,p—1; al, #0.

In this subcase, using again Sylvester’s identity, we see that all minors afj =0(s<k<p-1,
i > s, 7 > 8). Therefore, Sy = 0 for all £ such that M{:———Q >k > gu",;—?ﬂ. However it
is necessary to continue the computation of the remaining subresultants Sk, k£ < Q—"—tzﬁ_—p); in
order to do this we use bubble-pivot to replace row s by row p, where a;; # 0 plays the role
of the corner mirror, and we now can continue Dodgson’s integer preserving transformations.
Such an interchange of rows results in all minors a¥; (k > p) being multiplied by (1)),
that is, all subresultants Si, k =0,1,...,k; (k; < (m—+2";p-)) are being multiplied by (=1)P=9),
Dodgson’s transformations may be continued further, as long as situations I or II are not
encountered. , 4
Note that in cases (b) and {c) Theorem 2 reduces to Theorem 1 in the case of a complete

pr~ and due to the fact that rows above row j change places, the sign changes by a factor
( _1)0(.7').

3. Example

As in [1], it should be noted that if |P|s, represents the maximum coefficient in absolute value
of a polynomial P over the integers, then the theoretical computing time of this method is

O(n°L(Jple)?)

where |ploo = Mmax(|Alco, |Bloo). Below, we present an example that helps clarify the method
introduced above.
Example. 1f we triangularize the matrix M, of order 7, corresponding to the polynomials [2,
Example 2, p. 270]

A = 22 +525+522 -2z +1 and

B 328 + 322 +3x -4

we obtain the following matrix:

3 -4 0 0

9 9 -12 0
2t 21 27 =36

0 —-63 135 0

0 0 147 -315 O

0 0 0 3411 -588

0 0 0 0 15683

OO OO OO W
O OO OO O W
oo oo

along with the information that one pivot took place and row 3 was replaced by row 4.

The obtained polynomial remainder sequence is incomplete, and we only have the re-
mainders —63z + 135 and 15683, of degree 1 and 0 respectively. However, we still have
to determine the signs of these remainders; since pivoting took place, we are going to use
Theorem 2 above.
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In Theorem 2 we see have that we have to compute the quantity (~1)7®+7) for k =0,
and 2, and j = 4, by which the two remainders are going to be multiplied. By the formula
stated in the theorem, and given that the degrees are m = 4 and n = 3, we see that

e o(0)=(3-0)(2:4—3-0+1)/2=09,
e d(2)=(3-2)(2-4-3-2+1)/2=2,
e o(4)=4-3=1.

9+1

Therefore, 15683, the remainder of degree 0, is multiplied times (—1)**! = 1 whereas,

S, = —63zx + 135, the remainder of degree 1, is multiplied times (—1)3*1 = —1.
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