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It is known that interval computations are NP-hard. In other words, the solution of many important 
problems can be reduced to interval computations. The immediate conclusion is negative: in the general 
case, one cannot expect an algorithm to do all the interval computations in less than exponential running 
time. 

We show that this result also has a bright side: since there are many heuristics for interval 
computations, we can solve other problems by redudng them to interval computations and applying 
these heuristics. 

BbWOAHa.'I CTOpOHa NP-cAO)KHOCTH 
m-ITepBaABHBIX Bt,IqHCAeHmT~: t4HTepBaAbHa,q 
~BpHCTHKa S npHMeHeHn~ K NP-3aAaqau 
B. TPE~OP,  B. l<emHOBW~ 

H 3 ~ n - a o ,  qTO a n ' r e p ~ a . a ~ e  B~at[HcAeHH~ NP-c_nomnra. ~DyrHMH CJIO~MH, pemeHHe MHOrHX Ba~KHMX 

3~lat l  Mo;KeT 6taTb C]~.~leHO K HHTepBa.qbHtaM BI~[HCYIeHHHM. FIepsoe oqeBH~IHOe CJIe~CTBHe 3TOVO 

di~alf.'ra Hera'rh'tBHO: B o6n.leM c.,a.ywae Mu He Mo,~r,.eM nocTpOl, tTb a.nroplrrM, KOTOpU~ m~tnoJ'IHR:l 6 ~  raze 

~tHTepmldlba1~e B~IHHC/leHH~ 6 b l ~ ,  qeM 3a 3K~IOHeHUH~/IbHOe BpeMH. 

I '~MH HOlf~t3aHO, q'ro 3TO C]~0HCTBO HMeeT H C.BOIO BIarO~H~IO CTOpOH~." HO~O~bKy ~LaH H H T e p ~  

H1h~r BM~CTdleHH~ CyI~eCTByeT MHoro 3Bp~Cr~X, ~pyrHe 3unaqH MOry'r 6UTb pemeH*a cBe~esHeM HX X 

HH'repBZJIM-I~M B~atlHcYleHH~M C ~aAbHeI~IHHM npHMeHeHHeM ~TI~r ~BpHCrHK. 

1. Introduction 
Before we start  ta lking about  the  bright  side, let us recall what  the p rob lem is, what NP-hardness  

means, and  what  exactly p rob lem is NP-hard.  

1.t.  Computing optimal interval estimates is one of the main 
problems of interval computations 

O n e  of  the  main  problems of  interval computat ions  is as follows: 

P rob lem 1. 

Given: 

�9 an a lgor i thm f ( z b . . . ,  Xn) that  takes n real numbers  and t ransforms them into a real  

number ;  

(~) B. Traylor, V. Kreinovich, 1995 



3 4 4  B. TRAYLOR, V. KREINOVICH 

* n intervals xx, �9 �9 x~. 

To compace: The range f ( x x , . . .  ,x~) = { f (z l  . . . .  ,z,~)lzl E x l , . . .  ,:rn E xn} of the_function f 
for a;i E xi. 

Comment. Usual estimates of interval computations (see, e.g., [14]) do not give the exact range; 
they give an interval that contains that range. The range itself is called an ~thnd interval 
estimate [6, 16, 17]. 

12. What does NP-hard mean? 
The fact that a problem 7 ~ is NP-hard means the following (see, e.g., [4]): If there exists 
an algorithm that solves all the instances of the problem 7 ~ in polynomial time (i.e., whose 
running time does not exceed some polynomial of the input length), then the polynomial-time 
algorithm would exist for practically all discrete problems (such as propositional satisfiability 
problem, discrete optimization problems, etc), and it is a common belief that for at least some of 
these discrete problems no polynomial-time algorithm is possible (this belief is formally described 
as P ~ NP). So, the fact that the problem is NP-hard means that no matter what algorithm 
we use, there will always be some cases for which the running t ime grows faster than any 
polynomial, and therefore, for these cases the problem .is intractable. In other words: no 
practical algorithm is possible that would always compute optimal interval estimates. 

Theorem [3]. For polynomial f ,  .the problem of computing optimal interval estimates is NP- 
hard. 
Comments. 

1. Several other problems of interval computations have been proved to be NP-hard, in 
particular, the problem of finding a solution of an interval linear system [10, 11, 15, 18]. 

2. The fact that the problem is intractable does not mean that we have to give up: it is well 
known that many particular cases of NP-hard problems can be solved by polynomial-time 
algorithms [4]. In. particular, many heuristics exist for interval computations (see, e.g., 
[14]). 

The dark side of NP-hardness is what we have already mentioned: one cannot expect an 
algorithm to do all the interval computations in less than exponential running time. 

The bright side of NP-hardness: In this paper, we show that this result also has a bright 
side: since there are many heuristics for interval computations, we can solve other problems by 
reducing them to interval computations and applying these heuristics. 

2. Main idea 

2.1. How are NP-problems reduced to interval computation 
problems? 

Before we start exploiting the reduction to interval computadon problems, let us first describe 
how this reduction is done, i.e., how Gaganov's theorem is proved. We will present a slightly 
modified version of his proof. 
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To prove that the problem of computing the range of  a polynomial is NP-hard, we will 
prove that if it were possible to solve it in polynomial time, then it would be possible to solve 
in polynomial time a problem that is already known to be NP-hard: the so-called satisfiability 
problem for 3 - C N F  (see, e.g., [4]). Let us describe this problem in formal terms. 

Definition 1. 

�9 Let an integer n ~_ 1 be given, and let the finite set V = { v l , . . . ,  vn} with n demen t s  
be given. Elements o f  this finite set V will be called Boolean variables. 

�9 By a literal, we mean either a variab/e vi, or an expression vi that is called the r~gation 
o f  the variable vi. 

�9 By  a 3-disj~a~tion D,  we mean an expression o f  the  type a V b, or a V b V c, where a, b, 
and c are//terals, and corresponding variables are different. 

�9 By a prqOmitiond formula in B -CNF (3-conjunctive normal form), we mean an expression 
o f  the type D I ~ z " ' ~ z D d ,  where each Dj  is a 3-disjunction. 

Comments. 

1. In our definition, we excluded disjunctions that contains literals originating from the same 
variable. The reason for this exclusion is that such disjunctions can be easily handled: 

�9 the disjunction vi V vi V . . .  is equivalent to vi V - . . ;  

�9 the disjunction vi V vi V . . -  is equivalent to vi V -- .; 

�9 the disjunction D = vi V ~i V - - -  is always true and therefore, a formula F = 
D ~ z D I & . . .  that contains such a disjunction is equivalent to D I & . - "  

In all three cases, we can easily reduce or eliminate such disjunctions. Therefore, it 
makes sense to assume that such disjunctions are already excluded. 

2. We restricted ourselves to propositional formulas in a 3 - C N F  from, i.e., to formulas with 
no more than 3 literals in a disjunction. This restriction is the simplest from which 
satisfiability problem is still NP-hard: e.g., there exists a polynomial-time algoridam that 
solves satisfiability problem for so called 2 - C N F  formulas, i.e., formulas in which every 
disjunction contains at most 2 literals (see, e.g., [4]). 

Definition 2. By an n-dimensional Boolean vector, or a Boolazn array t, we mean a function 

from the set V into the set o f  truth values (0, 1} (where 1 stands for ~a'ue; and 0 stands for  

"false"). The  value t(vi) is called a truth value o f  the  variable vi. 

Definition 3. Let t be a Boolean vector. Then: 

�9 The  truth value o f  a literal vl is defined as ~ ( v i ) .  

�9 The  truth value o f  a disjunction D = a V . . .  V c is denned as t (D)  = t(a) V . . .  v t(c). 

�9 The truth value o f  a 3 - C N F  formu/a F = D l g z . " & D d  is defined as t ( F )  = 

~ , (D , )& . .  . & t ( D , ) .  

I f  t (F )  = 1, we say that the Boolean vector t sat/sf~ the formu/a f .  

Definition 4. We say that a 3 - C N F  formula is sadsfiable i f  there exists a Boolean vector that 

satisfies it. 

We can now formulate satisfugrility problem for 3 - C N F  formulas: 
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Problem 2. 

G/yen: a 3 -CNF formula F .  

To check: whether a formula F is satisfiable, and, if it is satisfiable, to Irma the Boolean vector t 
that satisfies F. 

Com~nents. 

1. This problem is known to be NP-hard. 

2. The  interval computation problem is reduced to satisfiability as follows: 

Definition 5. Assume that an integer n >_ 1 is given. Let us take n real variables x i , . . .  ,an,  

and for every variable vi, literal vi, disjunction D, or 3 - C N F  forrnu/a F,  let us define a 

polynomial M(vi) ,  M(Oi), M ( D ) ,  or M ( F )  with n ,var/ables xi as follows: 

�9 M(vi)  = xi; 

�9 M(fli) ----- 1 - xi; 

�9 For D = a V . . .  V c, we define M ( D )  = M(a)  x . . .  x M(c);  

�9 For F = D a & ' "  &Da, we detine M ( F )  = M ( D i )  + . . .  + M(D~).  

Example. Let's take F = ( v i V v 2 ) & ( v i V v 2 ) .  Here, r/ = 2"; /c = 2, D f  = ' v i V v 2 ;  and 
D~ = vl v ~ .  We have  M ( v d  = 2 .  M ( ~ )  = 1 - 22, M ( D ~ )  = 212~, M ( O ~ )  = 2~( i  - 2~), 

and M ( F )  = xix2 + x1(1 - 22)- 
Proposition 1 [3]. A 3 - C N F  formu/a F is satisfiable i f f  the range f([0,  1 ] , . . . ,  [t3, 1]) o f  the 

polynomial f = M ( F )  contains O. 

This proposition, in its turn, is based on the following Statement: 

Proposition 2. A Boolean vector t satisties a 3 - C N F  formula F if[ f ( x i , . . . ,  x , )  = 0 for 

z,  = 1 - t(vi). 

Comment. For reader's convenience, all the proofs are placed in the last section. 

2.2.  Application of interval heuristics to NP-problems: the main idea 
We have just shown how an NP-problem (namely, propositional satisfiability problem for 3 - C N F  
formulas) can be reduced to the problem of computing the range of a polynomial f ( x l , . . . ,  x,,) 
for xi E [0, 1]. So, if we have a heuristic method of solving interval problems, we can apply 
this method to M ( F )  and thus get a method of solving satisfiability problem. In the following 
sections, we will describe several heuristic algorithms based on this idea. 

The  importance of solving satisfiability problem for 3 - C N F  formulas follows f rom the fact 
that this problem is NP-hard and therefore, many other discrete problems can be reduced to 
it in the sense that the task of solving these other problem can be reduced to solving several 
one or several satisfiability problems for 3 -CNF formulas (for a description of such reductions, 
see. e.g., [4]). Therefore,  if we have a good algorithm that solves the satisfiability problems for  
reasonably many 3 - C N F  formulas, then we automatically get a tool to solve other problems as 

well. 
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3. An algorithm based on the simplest possible interval 
computations heuristic 

3.1. Description of the simplest possible interval computation 
heuristic 

In practice, how do people estimate the range of a function f ( x l , . . . , X n ) ?  This problem 
,~ften occurs in practice in so-called indirect measurements. Suppose that we are interested in the 
value of  some physical quantity y that is difficult or impossible to measure directly. Instead of  
measuring y, we measure several other quantities x~, and use the known relationship between 
xi and y (i.e., known algorithm f such that y = f ( x t  . . . .  , xn) )  to transform the results i:i of  
measuring x~ into an estimate ~ = f ( 5 c l , . . . ,  xn) .  

In many cases, the only thing that we know about the measuring devices that we use to 
measure xi  is their accuracy. In other words, we know the values Ai such that the difference 
Ax~ = ~i -- xi between the measurement result 5:i and the actual value xi  does not exceed A~: 
[Axd _< Ai. So, the only thing we know about the actual values xi  is that they belong to an 
interval [xi - Ai, ari + A i ] -  The  problem is: what are the possible values of y? I.e., what is the 
range of  f for xi 6 [xi - Ai, xi + Ai] ? 

Since zi = 5:i - A x i ,  we can reformulate this problem as follows: what are the possible 
values of  f ( x t  - A X l , . . . ,  xn - Ax,~) when [Axi[ <_ Ai? 

For non-linear f ,  as Gaganov has proved, we have an NP-hard problem. Usually, however, 
the errors Axi are relatively small. So, we can expand f into a Taylor series, and neglect the 
terms that are quadratic or of higher order. As a result, we get the following approximate 
expression: f ( x l  - A x l , . . . , x , n  - A x n )  ,~ [1 - f, lAXl . . . . .  f ,  n A x n ,  where we denoted 

= f (Yzb. - . ,  :~,~) and 
Of (~:~, 

f 'i = -~zi . " ' "  ~'~ ) " 

In view of  this approximate formula, we can estimate the range of the values of  

f ( x l , . . . ,  x.)  = f(:f:t - A z t , . . . ,  k ,  - Ax,~) 

by finding the biggest and the smallest possible values of  the expression [ I - f a A x l  . . . . .  f , ,~Ax~ 
when - A i  < Ax~ _< A i. 

It is easy to show (see, e.g., [9]) that the smallest possible value of  this linear function is 
attained when Ax~ = - A  i - s ign( f , i ) ,  and this smallest value is equal to t ) -  ~ ]f,~lA,. Similarly, 
the largest value is attained when Axi = Ai-  s ign( f , i ) ,  and it is equal to ~ + • If, d~,. 

3.2. How to apply this heuristic to satisfiability problem: an idea 
To check whether a 3 - C N F  formula F is satisfiable, we must check whether 0 belongs to 
the range f([0, 1 ] , . . . ,  [0, 1]) of  the polynomial f = M ( F ) .  According to our construction, for 
xi E [0, 1], the polynomial f = M ( F )  is always non-negative. So, to check whether its range 
contains 0 or not, it is sufficient to check whether the minimum value of  this polynomial is 0 
or not. According to the above-described heuristic, the minimum of this polynomial is attained 
for xi = 5:~ - A i - sign(f,i). 
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For our function, the interval [~ - A~, 5h + A~] is equal to [0, 1]. Therefore, :~ = A~ = 0.5. 
Hence, the coordinates of  the minimizing point can be computed very easily: 

* if f,i < O, then zi = 0.5 + 0.5 = 1; 

�9 i f f ,  i > 0 ,  then z i = 0 . 5 - 0 . 5 = 0 .  

Since these values are equal to 0 or 1, the value of f for these zi can be computed using 
Proposition 2: f = 0 iff the vector t(vi) = 1 - z~ satisfies the formula' F.  

To apply this idea, we must be able to compute f,i. This computation can be done as 
follows: 

Definition 6. Let F be a 3 - C N F  Formula. Then, For every i From 1 to n, and For every 
l = 2, 3, we use the Following denotations: 

�9 By Nt+(vi), we mean the total number  o f  disjunctions o f  length I that contain a literal vi. 

�9 By NF(vi  ), we mean the total number  o f  disjunctions o f  length I that contain a literal ~i. 

�9 Br  N(vd ,  we mean the difference N?(v i )  - N l ( v i  ). 

Proposition 3. For an arbitrary 3 - C N F  Formula F,  the derivative 

f,, = f f ( 0 . 5 , . . . , 0 . 5 )  

of  the Function f = M ( F )  is equal to (1 /4)(N3(v , )  + 2N2(vi)). 

Coronary.  f,i > 0 iFF N3(vi) + 2N2(vi) > O. 

Now, we are ready to describe the resulting ~gori thm:  

3.3. First heuristic algorithm for solving 3-CNF problems 
Given: a 3 - C N F  formula F .  

Do: 

�9 Compute N2(vi) and N3(vi) for all i from I tO n. 

�9 If  N3(vi) + 2N2(vi) > 0, then choose t(v~) = t, else t(vi) = O. 

�9 Substitute the resulting values t(vi) into the formula F.  

- If  for this Boolean vector, F is true (i.e., it" t (F)  = 1), then F is satisfiable, and t is 
its satisfying vector. 

- ff  for this Boolean vector, F is false (i.e., t (F)  = 0), then we have not found a 
satisfying vector (and therefore, if for some practical purposes, we are required to 
decide whether the formula should be treated as satisfiable or not, we will treat the 
formula F as practically unsatisfiable). 
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Comment. 

�9 If  t(F) = 1, then, of  course, the formula F is satisfiable. 

�9 On the other hand, if t(F) = 0, it may mean that we have missed the satisfying vector. 
The reason for that possibility is that satisfiability problem for 3 - C N F  is NP-hard, so 
probably only an exponential-time algorithm can always find a solution. Our  algorithm is 
linear-time (its number of steps is limited by a linear function of  the length of  n) and 
therefore, it cannot be always correct. 

Example. For F = (vl V v2)&(vl V ~ ) ,  we have: 

�9 N ; ( u 1 )  = 2, N2-( 'O l )  = 0, N 2 ( U l )  : 2 - 0 = 2, 

�9 N ; ( v ~ )  = i ,  N ; ( v 2 )  = i ,  N 2 ( v ~ )  = i - i = o; 

* N3(vi) = 0, because there are no disjunctions of  length 3. 

Here, N2(vi) + 2N2(Vl) = 4 > 0, and N2(v2) + 2N2(v2) = 0, so, t(v,) -- 1 and t(v2) = 0. I f  we 
s u b s t i t u t e  V 1 - - " t r u e "  and v2 = "false" into F ,  we get t(F) = "true". So, F is satisfiable. 

4. Modified partial derivatives estimation and its 
application to checking satisfiability 

4.1. Main idea 

The above-described heuristic was based on the possibility to approximate the expression f ( x l -  
AXl, . . . ,c~n - A z n )  by the sum !) - f, lAx l  . . . . .  f, nAxn of the first order terms in the 
Taylor expansion of  this expression. In other words, it was based on the possibility to neglect 
quadratic and higher order terms in the expansion 

f ( ~ l  - A z l , . . . ,  ~ , ,  - A x , , )  = 

t Of n n 02f  -- -- 

For functions of  one variable, we only have one quadratic term (1/2)fn(5:)Ax 2, and from 
practical viewpoint, it is either negligible or not. For functions of  several variables, it can 
happen that each second order term is negligible, but there are many of  them (~ n2), and so 
their sum is not negligible any more. In thb  cases, we cannot neglect all quadratic terms and 
approximate the function f by the sum of its linear terms. However, if we can still neglect 
some of  the quadratic terms, then we can still have a reasonable minimization procedure. Such 
a procedure has been proposed by E. Hansen in [5]. In this Section, we briefly describe the 
main idea of this procedure, and how it can be applied to satisfiability. 

We want to find the minimum of a function f ( x b . .  �9 an) on a set 

[~:~ - % ,  :h  + % ]  x . . -  x [~,, - A , ,  ~ ,  + A , ] .  
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Instead of immediately trying to minimize over all variables, let us first pick one variable xi, 
and try to minimize over that particular variable. In this case, 

f ( z l , . . . ,  : c~-1 ,  ~:~ - A z ,  z ~ + t , . . . ,  z , ~ )  = 

_ ~ 0 / ( z l ,  , z , , )Az~ + 21 0 5 / .  2 I ( z l , . . . ,  x,_, ,  x,, x~+i , . . . ,  ~ )  - . . . ,  x,+l, ~,, ~,+1,... ~ a x ,  + . . .  

Expanding the derivative O f / a x i  in Taylor series, we get 

/ ( z l , . . . ,  z , -1 ,  ~ - n z i ,  z ,+ l  . . . .  , z,~) = 

Of _ 1 '~ 02 /  A x ~ A x ;  + . . .  f ( ~ , . . . ,  z~_,, ~,  ~,+~,..., ~ )  - b-~ ( ~ , . . . ,  ~, , . . . ,  ~)az~ + OxiOzj 

So, if we neglect only n quadratic terms (as opposed to n 2 in the simple method, described in 
the previous Section), we can conclude that 

/ ( x t ,  . . . , z ~ - l ,  ~:~. - A z ~ ,  z i + l ,  . . . , z , d  

0 / _  
f(Xl,...,Xi-l,:~i, Xi+l,...,~n)-- ~x/(Xl , - . . ,~Ci , . . . ,Xn)AX, 

and therefore, that the minimum of this function is attained when xi = x~ - Ai" sign(Li). 

We have only found one coordinate of a point in which the minimum is attained. To  get 
other coordinates,pwe must: 

�9 substitute the value xi into our function, thus getting the function of n - 1 variables; 

�9 apply a similar technique to the resulting function of n -  1 variables, thus finding one 
more coordinate of the desired minimum point, etc. 

The  only remaining question is: which variable xi should we choose? In general, we can 
neglect quadratic terms if the corresponding linear term is large enough. So, to be on the safe 
side, we will choose the variable xi for which the linear term [Li]Ai is the largest. 

4.2. D e s c r i p t i o n  of  a n  a l g o r i t h m  

Let us now describe the resulting algorithm: 

Given,: 

�9 a function : of  n real variables; 

�9 n real numbers S:i, t < i < n, and 

�9 n positive real numbers Ai. 

To estimate: the interval [y-,  y+] of  possible values of f for x~ E [5:~ - A~, S:~ + A~]. 

Algarithrn: we will explain this algorithm on the example of y - .  

�9 First, we compute ~ = f(971,...,~,~) and the values f,i of the partial derivatives in the 
point (:Cl, . .- ,  S:,~). 
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�9 T h e n ,  we choose i for which If, i]A~ is the biggest possible. 

he,, = ~ _  A i .  sign(f,~). Then ,  we substitute x~ = x~ eW �9 For this i only, we take x i 

into f .  As a result, we have a new funct ion  f ~ e w ( X l , . . . , x i - l ,  x s + l , . . . , x , ~ )  = 
�9 x new x . . . ,  x,~) with n - i variables. f (  x l ,  "~Xi--1, i ~ i+1,  

�9 For this new funct ion,  we repeat  the same procedure  (i.e., reduce it to a funct ion of  
n -  2, n -  3 , . . .  variables), until  we get a constant  f .  

['his constant  is the desired estimate for a m i n i m u m .  

Example.  Let's show that  this method  can lead to bet ter  results than the method  described in  

the previous section. Indeed,  let us take f ( x l ,  x2) = x~ + xlx2, ~I = ~2 = 1, A1 = A2 = 0.2. 
For this problem, we know the exact value of  the lower b o u n d  of  f :  since f is monoton ic  in  
both xl  a n d  x2, the lower b o u n d  is a t ta ined when both x l  and  x2 take the smallest possible 
values 0.8. For  x l  = x2 = 0.8, f ( x l ,  x2) = 1.28. 

�9 T h e  me thod  f rom the previous section leads to the following estimate: ?~ = t ~- + 1 . 1  = 2, 

Of/Oxl  = 2 x l + x 2 ,  Of/Ox2 = xt,  hence f,1 = 3, f,2 = 1. As a result, we have 
9 - Z t/.,]zx, = 2 - 3 . 0 . 2  - 1 . 0 . 2  = 1.2. 

�9 Let us now apply the above-described Hansen 's  a lgori thm. Since If, l lA1 = 0.6 > If,2IA2 = 
0.2, we first choose x l  = 1 - 0.2 = 0.8. After  that,  we have a funct ion of  one variable 
fnew(X2) = 0.82 + 0.8 �9 x2. For this function,  ~j = 0.82 + 0.8 �9 1 = 1.44; the derivative is 

0.8, therefore,  f,2 = 0.8, and  the result ing estimate is ~ - If,2JA2 = 1.44 - 0.16 = 1.28. 

On  this example,  we can see that Hansen 's  a lgor i thm takes more  computa t ion  time, bu t  leads 
(at least sometimes) to a bet ter  estimate. 

4 . 3 .  A p p l i c a t i o n  t o  s a t i s f i a b i l i t y  

Comment. T o  apply Hansen 's  a lgor i thm to 3 - C N F ,  we have to compare  the values If, ilAi. In  
our  case, A s = 0.5 does not  depend  on i, therefore, it is sufficient to compare  the values If, il- 

Then ,  we must  fix the value of  the variable xi for which this value is the largest. This  is 
equivalent  to f ixing the t ru th  value of  the cor responding  Boolean variable vs. Then ,  we repeat  
the procedure  again,  with the new formula  /'new, etc. So, we arrive at the following algori thm: 

Given- a 3 - C N F  formula  F .  

Do: 

Compute  N2(vi) an d  N3(vi) for all i f rom 1 to n .  

Choose i for which tN3(vi) + 2N2(vi)l  is the largest�9 

For this i, take t(vi) = 1 if Na(vi) + 2N2(vi) > 0, a n d  0 else. 

Substitute this t ruth  value vi into F .  As a result, we get a new 3 - C N F  formula  Fnew 
with n - 1 Boolean variables. Apply the same procedure  to Fnew unti l  we end  up  with 
a constant.  If  this constant  is 1 ( 'true"), then  the or iginal  formula  F is satisfiable. I f  this 

constant  is 0 ("false"), t hen  we have not  found  a satisfying vector (and therefore, if for 
some practical purpises, we are required to decide whether  the formula  should be treated 

as satisfiable or not, we will treat the formula  F as practically unsatisfiable). 
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Comment. It can happen that after we substitute the truth value into a formula F ,  one of  the 
disjunctions will be left with only one literal. These cases are easily dealt with: if D = a is a 
disjunction of  F ,  then F can only be true when a is true, so, we automatically have a truth 
value of  one more variable. This procedure can be repeated until we get a 3 - C N F  formula 
(i.e., a formula in which each disjunction has 2 or 3 literals in it). 

Example. For F = (vi V v~_)&(vl V ~2), we have: 

�9 [N2(vl) + 2N2(vl)] = 4, and 

�9 IN2(v2) + 2N2(v2)[ = 0. 

Therefore, the largest value is attained for i = 1. For this i, N2(vl)+ 2N2(vl) > 0, and 
therefore, we take t(vl) = 1. The resulting new formula with one Boolean variable v2 is 
identically true, so we can choose an arbitrary value of v2. 

4.4. These algorithms are reasonably efficient 
The algorithms described in these two sections are similar to the ones proposed first by S. Maslov 
[12] (see also [2, 7, 8, 13]). The  only difference is that Maslov and others use different weights 
(~ 2) for expressions with only two literals, and they use different heuristics to justify this 
method. Experimental [12, I3] and theoretical [2, 7, 8] considerations prove that such methods 
are very efficient for randomly chosen propositional formulas. 

We also performed our own experiments (with our weight = 2), and these experiments 
show that this choice of  the weight is not worse than the previous ones. 

5. Application of naive interval computations to 
satisfiability 

5.1. Main idea 
In order to solve satisfiability problem for a 3 - C N F  formula F, we must be able to estimate 
the range of  a polynomial f = M ( F ) :  if this range contains 0, then the formula is satisfiable. 

We showed that the application of the simplest heuristic from interval computations leads 
to an interesting and non-trivial algorithm for solving satisfiability problems. This makes us 
believe that applications of other heuristics can lead to even better algorithms for satisfiability 
(and/or other NP-hard problems). 

Let us first try naive interval computations to estimate the range of  the polynomial f .  
After we get an estimate [y-,  y+], there are two options: 

�9 The  lower bound y -  of  this estimate is > 0. Since interval computations lead to a 
guaranteed estimate for the function's range, this means that 0 is not in the range of f 
and thus, the formula F is not satisfiable. 

�9 9 -  < 0. In this case, it is possible that 0 belongs to the range of the function f ,  and 
thus, it is possible that the formula F is satisfiable. How to find the satisfying vector? 
Let's find it coordinate after coordinate. To find out whether we can take vi = "true", 
we can do the following: 
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-- substitute this value into the formula F ;  

- find a polynomial M(Fnew) that corresponds to the new formula (i.e., to the result 
of this substitution); 

- apply naive interval computation to estimate the range of this polynomial. 

We can apply the same procedure for vi = "false". 

- If for both cases (vi = "true" and vi = "false") the resulting ranges do not contain 
0, then the formula F cannot have satisfying vectors neither with vi = "true", nor 
with vi = "false". Thus, the formula F is not satisfiable. 

- If in one case (say, for vi = "true"), the estimate for the range contains 0, and for 
the other case, it does not contain 0, then we know that vi must be equal to "true" 

if we want F to be satisfied. So, we substitute this value of vi into F ,  and get a 

new formula with n - 1 variables. 

- If both estimates for the range contain 0, then it is possible that a satisfying vector 
will be found in both cases. The  lower the estimated y - ,  the more reasonable it is 
to believe that the actual lower endpoint  of the range is 0. Therefore, we choose 

t(vi) = 1 or t(vi) = 0 depending on which estimate is smaller. As a result, we also 

get a formula with n - 1 variables. 

Now, we apply the same procedure to the resulting formula with n - 1 variables, etc. 

What i should we choose? In making this choice, we can use the same argument  that 
we used when we decided whether to choose vi = 1 or vi = 0: we choose i for which the 

lower bound y -  of the interval estimate is the smallest (and for which, therefore, it is the most 

reasonat~le to expect the actual lower bound of the range to be the smallest). 

To apply this idea, we must describe the result of applying naive interval computation to 

f = M ( F ) .  

Definition 7. Let D be a disjunction and vi be the variable. Let us define the notion o f  

occurrence and a function s as follows: 

�9 We say that a variable vi occurs positively in D i f  D contains vi; we will denote it by 

s(vi, D) = +1. 

�9 We say that a variable vi occurs negatively in D i f  D contains vi; we will denote it by 

s(vi, V )  = - 1 .  

�9 We say that a variable vi does not occur in D i f  D contains neither vi, nor f;i; we will 

denote it by s(vi, D) = O. 

�9 We say that variables v i , . . . ,  vj occur positively in D i f  s(vi, D) x . . .  x s(vj,  D) = +1. 

�9 We say that variables v i , . . . , v j  occur negatively in D i f  s(vi, D) x . . .  x s ( v j , D )  = - 1 .  

Example. Variables vl and v2 occur positively in vl V v2 V v3 and vx V v2 V v4. The same set 

of variables occurs negatively in vl V v2 V v4. 

Definit ion 8. Let F be a 3 - C N F  formula. Then, for every i, j ,  k from 1 to n,  and for every 

I = 2, 3, we use the following denotations: 
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�9 By Nl, we mean the total number  o f  disjunctions oF length l. 

�9 By N ~ ( v i , . . . ,  vj), we mean the total number  o f  disjunctions o f  length l in which the 
variables v~, . . . , vj occur positively. 

�9 By N[- (v i , . . .  ,v j ) ,  we mean the total number o f  disjunctions o f  length l in which the 
variables v i , . . . ,  vj occur negatively. 

�9 By N t ( v i , . . . , v j ) ,  we mean the difference N ~ ( v i , . . . , v j ) -  N t - ( v i , . . . , v j ) .  

Proposi t ion 4. For an arbitrary 3 - C N F  formula F,  we have 

M ( F )  = 1 1 ~ N2(v~)Ax~ + ~ N2(v~, v j ) A x i A x j +  ~ g ~ + ~  
i = l  i<j 
7% 

i = 1  i < j  

Na(vi, vj, v k ) A x i A x j A z k  
i<j<k 

where Axi  = xi -- 0.5. 

Here, Axi  E [ -0 .5 ,  0.5], so, the result of  applying naive interval computat ion to this 
formula is as follows: 

Corollary.  The result oF applying naive interval computation to the formula (1) is [y-, y+], 
where fl 

y -  = z~N,~ - � 88  - �88 
(2) 

~/v - ~ - ~ [ N 3 ( v , ) l -  }~-~[Na(v~, v~)l - ~ ~ IN3(v,, vj, vk)l. g 3 
z = l  i<j i<j<k 

5.2. Resulting algorithm 
Given: a 3 - C N F  formula F .  

Do: 

�9 Compute expression (2). If  it is > 0, then the formula F is not satisfiable. If  it is <_ 0, 
then do the following: 

�9 For each i f rom 1 to n, and for each t = 0, 1, do the following: 

- substitute t(vi) = t into the formula F ,  

- compute the value (2) for the resulting formula  Fiv,=r, 

and then choose i and t for which the resulting lower bound y -  is the smallest. 

�9 Choose Fnew = FIv~=t for the selected i and t as a new formula with n - 1 Boolean 
variables. Apply the same procedure  r Fnew until we end up with a constant. I f  this 
constant is 1 ("true"), then the original formula F is satisfiable, t f  this constant is 0 
("false"), then we have not found a satisfying vector (and therefore, if for some practical 
purposes, we are  required to decide whether the formula should be treated as satisfiable 
or not, we will treat  the formula F as practically unsatisfiable). 
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Example.  For F = (Vl V v2)&(vl V v2), we have: 

.N2=2 ,  N~=0; 

�9 X ; ( v ~ )  = 2, N~-(v l )  = 0, X~(~I) = 2 - 0 = 2; 

�9 N + ( ~ )  = 1, N ~ - ( ~ )  = 1, lV~(~)  = 1 - 1 = 0; 

�9 N; (Vl ,  V2) = 1, Nf(Vl ,V2)  = 1, N2(Vl,V2) = 1 - 1 = 0 ;  

�9 N3(vi . . . . .  vj)  = 0, because there are no disjunctions of length 3. 

As a result, the formula (2) gives (1 /4 ) .  2 - ( 1 /4 ) .  2 - ( 1 /4 ) .  0 = 0. Since the range estimate 
contains 0, we continue by trying to reduce our problem to the formula with n - 1 variables. 
kccording to the algorithm, we have to pick i and t. Here, we have 4 options: i = 1, 2, and  

t = 0 , 1 :  

�9 For 7 = 1 and t = O, substituting Vl = 0 makes the formula identically false. 

�9 For i = 1 and t = 1, substituting Vl = 1 makes the formula identically true. 

So, we are done (and we do not have to continue with i = 2). We can now add any value of  
v2 and get a satisfying vector. 

Comments. 

. 

. 

Our  (preliminary) experiments with these formulas did not show convincing average 
speed-up or  any other advantage over algorithms presented in Sections 3 and 4. However, 
some formulas that were not handled by those algorithms are now handled.  So, we hope 
that this new algori thm is also useful for solving NP-problems. 

Instead of  using naive interval computations, we can apply more sophisticated interval 
estimation techniques. For  example, we can apply a mean-valued form, in which the 
range of  a function f is approVal/hated as 

{ v - , v  +] = I ( ~ i , .  , ~ . )  + ~ o f  _ 
,= ,  + / , , ]  . . . .  , _ + a . ] ) { - A .  A,] .  

. 

4. 

It turns out, however, that for f = M ( F ) ,  this form leads to worse range estimates than 
naive interval computations (see Section 7). 

We also hope that other, more sophisticated techniques, can help. Polynomials that  we 
are building have a special structure:, each of them is a sum of monomials, and each 
monomial is a multi-linear function of total degree _ 1 (i.e., each monomial  can only 
contain the first degree of each variable). This specific structure can be used to design 

specific (and more efficient) range estimation algorithms. 

The  main ideas of  this section were proposed by one of the referees, to whom we are  

most grateful. 
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6. Bistr0mathics: a science-ficti0n case when interval 
computations help to solve general problems 

It is interesting to mention that the idea of using interval computations to solving generic 

complicated computat ional  problems has already been proposed in science fiction. Namely, in 
Chapter  5 of  [1], a new mathemathics called bistromathics is described as a tool to solve such 
problems. Bistromathics is based on the fact that "numbers written on restaurant  checks . . ,  do 
not follow the same mathematical  laws as numbers written on any other piece of paper  in any 
other parts of  the Universe." So, automata  that simulate waiters in the restaurants turn out to 
be useful in solving complicated problems. 

To figure out how bistromathics is related to interval computations, let us recall why and 
how it is possible to cheat on a restaurant  check (and cheating, although not as universal as 
[1] claims, does happen once in a while). The  correct sum on the restaurant  check can be 
obtained by adding,  subtracting, and multiplying several numbers, such as the cost of  a meal, 
the restaurant  tax, the current  exchange rate for a certain currency (if the payment  can be 
done in several different  currencies), the discounts that have been promised by this restaurant,  
the percentage of  tips, etc. As a result, the correct sum is a polynomial of  several variables 
f ( a h , . . . ,  xn). The  possibility to cheat is based on the fact that customers usually do not 
remember  the exact values of  these variables (the exact cost of the meals, the exact exchange 
rates, etc). At best, they remember  the intervals [x'~, x +] of possible values of these variables. 
The  walter must announce the value that is convincing to the customer, i.e., that belongs to 
the range [y- ,  p+] = f ([x~,x '~], . . . ,  [x~,x+]). His goal is to get as much money from the 
customer as possible. Therefore ,  his ideal solution is to request the biggest convincing total, i.e., 
the upper bound y~- of the range. So, the "perfect" waiter (perfect in the above sense: to cheat 
as much as possible without being caught) must be able to compute the exact interval range 
for a polynomial. 

So, in view of Gaganov's  theorem, this "perfect" walter will be able to solve an NP-hard 
problem. By definition of NP-hardness it means that, using this "perfect" walter as a par t  of 
our computations, we will be able to solve an arbi trary complicated discrete problem. This is 
exactly what bistromathics is about. 

7. Proofs 
Proof  of  Proposi t ions 1 and  2. Let us prove that a formula F is satisfiable iff the range  of 
the polynomial f = M ( F )  for z~ E [0, 1] contains 0. In the course of proving it, we will also 
prove Proposition 2. 

If the formula is true for some values vi, thdn for every i,  take xi = 0 if vi = "true" and 
xi = 1 if vi = "false". As a result, a literal a is true iff M ( a )  = 0. 

Since F = D I & D 2 & - " & D d  is true, it means that all the expressions Dj  are  true. So, 
for every Dj  = a V . . .  V c, there exists a literal that is true. For this literal a, we have 
M(a) = O. Hence, M(Dj )  = M(a)  x . . .  x M(c) = 0 for every expression Dj. Hence, 

M ( F )  = M(D1) + M(D2) + " "  + M(Da) = 0 + . . .  + 0 = O. 

Thence,  0 belongs to the desired range. 
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Assume that  0 belongs to the range.  This  means  that  M(F) = M(D1)+. . .  + M(Dd) = 0 
for some xi. When  xi E [0, 1], we have t - x i  > 0, hence IYI(Dj) > O. T h e  only case 

when the sum of k non-negat ive  number s  M(Di) is equal to 0 is when each of  them is 
equal to 0. So, M(Dj) = 0 for all j .  

By defini t ion of M, M(Dj) = M ( a V . . . V  c) = M(a) • 2 1 5  M(c). So, f rom M(Dj)  = O, 
it follows that M(a) = 0 for one of the literals f rom Dj. If  a = vi, this means  that 

x, = 0. If a = vi, this means  that 1 - xi = 0, a n d  xi = 1. 

Let us take v, =" t rue"  iff xi = 0, and  let us show that these values make F true. Indeed ,  

ibr  every j ,  since M(Dj) = 0, we have M(a) = 0 for one of the literals f rom Dj .  If  

a = t'~, this means  that xi = 0, hence vi = "true", a n d  Dj is true. If  a = vi, then  xi = 1, 
so v, = "false", vi = "true", and  Dj  is true. So, in both cases, D j  is true. Hence,  all 

expressions Dj are true, so F = DI&D2&'"  &,De, is also true. [] 

P r o o f  of Proposi t ion 3. By defini t ion of  f = M ( F ) ,  the function f can be represented  as 

f = fl  + " "  + fa for f j  = M(Dj). Therefore ,  

d Of~._ 
f,, = E 

j = l  

Let's calculate the derivatives of f j .  We will consider  all possible cases: 

�9 ff Dj does not  contain vi, then fj  does not  depend  on zi at all, so, Ofi/Oxi = O. 

�9 If Dj = v~ V b V c, then fj  = xiM(b)M(c), hence Ofj/Ox, = M(b)M(c) = (1/2)  2 = 1/4.  

�9 If D 3 = ~ V b V c ,  then f j  = ( 1 - x ~ ) M ( b ) M ( c ) ,  hence Ofs/Ox~ = -M(b)M(c)  = (1/2)  2 = 
- 1/4. 

�9 If  Dj  = vi V b, then f j  = x~M(b), hence Ofj/Oxi = M(b) = 1/2.  

�9 If  Dj = ~, V b, then fj = (1 - x,)M(b), hence Ofj/Oz, = -M(b)  = - 1/2.  

A d d i n g  all these expressions, we get the desired fo rmula  

IrN+tv~ 2N~-(vi) N~(vi) 2N2-(vi)) .  f . i = ~ \  3~ i ) +  - - 

P r o o f  o f  Propos i t i on  4. T h e  funct ion M(F)  is a sum of  the terms 

O 

M(D) = M(a) x ... • M(b) 

where M(vi) = ( 1 / 2 ) +  Ax,  a n d  M ( : ~ )  - ( 1 / 2 ) -  Axi .  Therefore ,  if a corresponds to vi or  

~i, and  b is vj or ~j, then 

= ( U 4 )  • • + 

where signs depend  on whether  D contains a variable or  its negation.  A d d i n g  up  these 

equalities and  similar equalities for disjunctions of  length  3, we get the desired formula.  [] 
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Proof of Comment 2 from Section 5. By differentiating formula (1), we get the formula fbr 
the i-th partial derivative of f = M(F) :  

oy 
Oxi j=l 

�88 + �89 ~ N3(vi, vj)Axj + ~ N3(v~, v3, ve)AxjAxk. 
j=l j<k 

(3) 

Therefore, the result of applying naive interval computations to this formula leads to the 
interval 

Of ([~1- a l , ~  + a + .  [~. - a . , ~ .  + a.])  = 
a x i  ' ' 

where 

< :  ~ ~ IN:(~,,,)4 + ~ ~ JN3(~,~,)J + ~ E IN3(~,,,,~)1. (4) 
j = l  j = l  j<k 

Substituting these values into the above formula, and applying interval computations with 
Ai = 0.5, we get an expression that is similar to (2), but in which each term N2(vi, vj) occurs 
twice. As a result, for these polynomials, mean value form leads to worse estimates than naive 
interval computations. [] 
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