
Reliab!e Comput ing 1 (3) (1995), pp. 3 2 5 - 3 4 2

A software interface and hardware design for
variable-precision interval arithmetic
MICHAEL J. SCHULTE and EARL E. SWARTZLANDER t JR.

This paper presents a software interface and hardware design for variable-precision, interval arithmetic.
The software interface gives the programmer the ability to spedfy the predsion of the computation
and determine the accuracy of the result Special instructions for vector and matrix operations are also
provided. The hardware design directly supports variable-precision, interval arithmetic. This gready
improves the accuracy of the computation and is much faster than existing software methods for
controlling numerical error. Hardware algorithms are presented for the basic arithmetic operations,
exact dot products, and elementary functions. Area and delay estimates indicate that the processor can
be implemented on a single chip With a cycle time that is comparable to existing IEEE d0uble-predsion
floating point processors.

1-IporpaMMHl:,I laHTep eflc l/i KOHCTpyKIII4a
aliIiapaTypbi/XA>I I4I-ITepBahl:,HO apl/I MeTI I,I
HepeMeHHO;i pa3p AHOCTI/t
M. 12I. IIIYAbTE, E. E. IIhAPu,XaHaFa', MA.

Onnc~BmOTCa nporpaMMn~/t nnrepdpeftc a KoncTpyxm.t;a annapaTyp,a a.aa anvepnanbnofi apnqbMeTngn
nepeMennofi pa3p.qaaOCTU. [IporpaMMn~fi nnTepqbeffc aaeT rxporpaMMnCTy BO3MO.)Knocrb ynpaBaaVb
pa3paanoc rb lo BhlX.inc,lennITi, onpeae.,iaa TOqHOCTb pe3y21bVaTa. TaK,ge FlpeLlycMorpeHIoI cneuna.~Ibnbm
ancrpyxuaa a.aa BeKTopnHx n MaTpn,-m~x onepaunft. Koncrpyxuna annapaTyp~ aanp;aMy~o noa.aep-
gnBaeT RnTepBadlbRyIO apnc[~MerHKy nepeMet-moh pa3p.qB.HOCTl, I, qTO 38aq~Te21bno NOB]hlnJ, aeT TOqHOCTb
abltinc/IeHHfl H 06ecneqHmaeT a tanrp tam B CKOpOCTR B cpaBHeHHR C cymecTByIORLRMH rlporpaMMH~MH Me-

TO/laMa ynpa2a.aetm~a BedlnttHHOI~I '-II, IC./IeHHhIX HoFpeLnHOcTefL FIpeacTa~eH~a annapaTHO peadlH30BaHnlMe

aflFOpHTMIM IldLq OCHOBHNIX apHqbMeTHqeCKI4X onepauHft, TOqHblX cKadI~IpHI,IX 11pon3Ber~enI4fl H 3/leMen-

rapm,~x OibyHKLIHI~. OUeHKH BpeMeHH B,-a,~Hcaennft H Tpe6yeio~ iL~oumaH KpHcraaaa IIoKa3blBalOT,
qro cooTBe'rc'rByloRmf~ npoueccop MogKeT 6hITb peadlH3OBaH Ha oanoM KpHc'ra.a.ae c pa6oqe~ qac'rorof~,
cpaBtmMo~t c cymec'rBylOUmMH rtpoueccopaMH n.aaBax)me/t TOqKH]].BOI~HOH TOqHOCTH craHaapTa IEEE.

1. Introduction
Advances in VLSI technology and compute r archi tec ture have lead to increasingly faster digital

computers. Dur ing each of the last three decades, the computa t ional speeds of the fastest

computers increased by a factor o f roughly 100 [1]. This increase in comput ing power has lead

to the deve lopment o f c o m p u t e r systems which pe r fo rm billions of ar i thmet ic operat ions per

second and has g iven researchers the ability to solve previously intractable problems. T h e l a rge

number of ar i thmet ic operations, however, has m a d e it ex t remely impor tan t to keep track o f

and control errors in numer ica l computations.

(~) M. J. Schulte, E. E. Swartzlander, Jr., 1995

326 M. J. SCHULTE, E. E. SWARTZLANDER, JR.

Although the number of arithmetic operations performed by computers has increased by
several orders of magnitude over the past few decades, the arithmetic precision of computers
has remained relatively unchanged. For example, in 1967 the IBM 360/91 [2] had a 64-bit
floating point format with a 7-bit exponent and a 57-bit significand (mantissa). in comparison,
computers which conform to the IEEE-754 double-precision floating point standard [18] use a
64-bit floating point format with an 11-bit exponent and a 53-bit significand. As the number of
arithmetic operations increases, the probability of inaccurate results due to roundoff error and
catastrophic cancellation also increases. This calls for an increase in the precision of modern
computers. Unfortunately, however, most modern computers only provide hardware support
for floating point numbers with 64 bits or less. As a result, today's numerically intensive
applications may produce results which are completely inaccurate.

As an example of the inaccuracies that can occur due to roundoff error and catastrophic
cancellation, consider taking the dot product of the following two vectors:

A = [- 10 TM, 2246, 1027, 1025, 22, 105]
B = [1038, 33, 1029, -1022, 1044, 1042].

Mthough the correct value of the dot product is 97,086, the result computed using IEEE
double-precision arithmetic is zero. On most computer systems, however, there is no method
for determining whether or not the final result is correct.

To overcome the numerical limitations of existing computer systems, several scientific
programming languages including PASCAL-XSC [11], ACRITH-XSC [29], C-XSC [19], and
VPI [8] have been developed. These scientific programming languages are extensions to existing
languages which allow the user to define abstract data types, overload functions, and create
dynamic arrays. Special instructions are defined for vector and matrix operations, which are
essential for scientific computations. Furthermore, these languages provide software support for
variable-precision, interval arithmetic [23] in order to increase the reliability of the computation.

The main disadvantage of the extended scientific programming languages is their speed.
The languages are designed for machines which support the IEEE 754 standard. As a result,
all variable-precision, interval arithmetic operations must be simulated in software. This adds
tremendous overhead due to function calls, memory management, error and range checking,
and exception handling. The interval arithmetic routines discussed in [25] are approximately
40 times slower than their single-precision floating point equivalents. Routines which supported
variable-precision, interval arithmetic (up to 56 decimal digits) are more than 1,200 times slower
than the corresponding single-precision routines.

To overcome the speed limitations of existing scientific programming languages, direct
hardware support is required. Previous designs, such as [6] and [7] improve the speed of
variable-precision computations, but do not provide direct hardware support for interval arith-
metic. This paper presents a software interface and hardware design which support variable-
precision, interval arithmetic. Because the arithmetic operations are implemented in hardware,
this system offers substantial speedups over existing software programs which are designed
for general purpose computers. Section 2 presents an overview of the software interface to
the processor. In Section 3, a hardware implementation of the processor is given. Section 4
discusses the algorithms used to perform the basic arithmetic operations, dot product accl:mula-
tion, and elementary function evaluation. Area and delay estimates for the processor are given
in Section 5, followed by conclusions in Section 6.

A SOFTWARE INTERFACE AND HARDWARE DESIGN FOR VARIABLE-PRECISION...

2. Software interface

327

This section and the following section describe the software interface and hardware design of
the variable-precision, interval arithmetic processor. The main design goal is to obtain a balance
between the functionality and complexity of the hardware and software designs. Systems which
only provide software support for variable-precision, interval arithmetic are typically too slow,
while pure hardware solutions are either too complex or not flexible enough for general
purpose use. The design presented here uses a mix of hardware and software to provide an
efficient, flexible, and numerically reliable system.

In general, programs consist of sections of code which require variable-precision, interval
arithmetic and sections of code for which standard floating-point arithmetic is sufficient. To
maximize performance, the programmer is able to specify the precision of the computation and
whether or not interval arithmetic is to be used. The programmer can also test the accuracy
of the computation and perform the computation again with higher precision if the accuracy
requirements are not met.

The software interface presented here is an extension of the C++ programming language.
Program 1 illustrates the use of variable precision, interval arithmetic. In this example, the
precision of the computation is initialized to four 64-bit words (256 bits). The variables a, b,
and c are IEEE double-precision numbers, and the variables X, Y, and Z are variable-precision
intervals. The values of a, b, and e are first read in from standard input. X is initialized to
[rain(a, b), max(a, b)], and Y is set to [e, e]. Since X and Y have more precision than a, b,
and c, their trailing bits are set to zero. Alternatively, if an interval assignment is made which
results in a loss of precision, then the lower endpoint is automatically rounded downward (RD)
and the upper endpoint is rounded upward (RU). After this, X and Y are added together to
produce Z = [RD(a + c), RU(b + c)].

main () {

double a, b, c; /* double-precision values */

precision(4); /* set precision to 4 words */

cin >> a >>b >> c; /* read in values */

vp_interval X(a,b),Y(c),Z; /* intervals X, Y and Z */

Z = X + Y; /* Z = [RD(a + c) ,RU(b + c)] * /
}

Program 1. Variable-precision, interval arithmetic code

To efficiently support numerical computations, additional data types are defined. These
include combinations of vectors, matrices, intervals, complex numbers, and variable-precision
numbers. The numerical data types are shown in Program 2. Data types with a vp prefix
contain variable-precision entries, while the other data types contain IEEE double-precision
entries. Operations on both types of numbers are supported directly by the hardware. The
hardware also provides support for exact dot products and complex arithmetic operations.

Program 3 shows code which uses some of the numerical data types. In this example,
the matrices A, B, and C contain IEEE double-precision, complex, interval entries. X is a
variable-precision, complex, interval vector. The matrices A and B have sizes ra by k and k
by n, respectively. Initially, the entries for matrices A and /3 are read in, and each element in
the vector X is set to zero. Next C, is dynamically allocated as an ra by n matrix and receives

328 M. J. SCHULTE, E. E. SWARTZLANDER, JR.

the complex, interval product of A and B. After
of C, into the vector X.

real, vector, matrix;

vp_real, vp_vector, vp_matrix;

complex, cvector, cmatrix;
vp_complex, vp_cvector, vp_cmatrix;

interval, ivector, imatrix;
vp interval, vp_ivector, vp_imatrix;
cinterval, civector, cimatrix;

vp cinterval, vp_civector, vp_cimatrix;

this, a loop is entered which sums the rows

(real)
(vp_real)

(complex)

(vp_complex)
(real interval)
(vp_real interval)
(complex interval)
(vp_complex interval)

Program 2. Numerical data types

main() {
precision(8); /*
int m, n, k; /*
cin >> m >> n >> k; /*

cimatrix A(m,k), B(k,n), C; /*
vp_civector X(n) = O; /*

cin >> A >> B; /*
C = A,B; /*

for (i = O; i < m; i++) /*
X = X+ C[i]; /*

cout << X; /*

set precision to 8 words */
matrix, vector sizes */
read in matrix sizes */

complex interval matrices */
complex interval vector */
read in vectors A and B */
matrix multiplication */

loop to sum rows of C */
add row i of C to X */

output X */

Program 3. Code for numerical data types

Accurate function evaluation is also provided for each of the numerical data types. For
ease of programming the standard functions are overloaded so that the same function name
can be used for different types. In the example shown in Program 4, the sine of z is first
computed using IEEE double-precision. Then, the sine of each element in the interval vector
X is computed, and each interval result is stored to 4 words (256 bits) of precision. After this,
the sine of each element in matrix A is computed.

main() {
precision(4);

int n;
double x, y;

cin >> x >> n;
vp_ivector X(n), Y;
matrix A(n,n), B;

cin >> X >> A;
y = Sin(x);

Y = Sin(X);
B = Sin(A);

/* precision is 4 words */
/* size of matrix and vector */

/* IEEE double-precision */
/* read in values */
/* vp interval vectors X and Y*/

/* real matrices A and B */
/* read in vector X and matrix A */

/* sine of IEEE double */
/* sine of each vector element */
/* sine of each matrix element */

Program 4. Code for standard functions

A SOFTWARE INTERFACE AND HARDWARE DESIGN FOR VARIABLE-PRECISION... 329

main() {

vp_real tolerance = le-6;

int prec, n;

int art=O, max_att=lO;

cin >> prec >> n;

precision(prec);

vp_interval X;

vp vector A(n),B(2*n);

cin >> A >> B;

restart:

for (i = O; i < n; i++) {

X = X + (A[i]*B[2*i]);
}

if (X.width() > tolerance){

precision(prec++);

goto restart;

if (art++ > max art)

exit(l);
}

/* specify error tolerance */

/* precision and sizes ~/

/* number of attempts */

/* read in values */

/* set precision */

/* X is prec words */

/* vp vectors A and B~/

/* get inputs for A and B */

/* beginning of loop */

/* accumulate in X ~/

/* if error is too large */

/* increment precision */

/* redo computation ,/

/~ if too many attempts */

/* then exit */

Program 5. Recomputing with higher-precision

Special instructions allow the precision of the computation to be set and the accuracy of
the result to be determine. In Program 5, the precision function is used to set the precision of
the computation. The X.width 0 function indicates the width of interval X. If the width is too
large, the interval is recomputed using higher precision. In this example, the maximum error
tolerance is I0 -6. If the width of interval X is greater than this value, the precision is increased
by one word and another attempt is made to compute the result. This process continues until
the desired accuracy is achieved or too many unsuccessful attempts at computing the result
have occurred.

30 Processor hardware design
This section gives an overview of the hardware design for a processor which supports variable-
precision, interval arithmetic. The hardware is designed to handle the common case quickly,
while still providing correct results and acceptable performance for less frequent situations in
which the data is especially ill-conditioned. The design incorporates the extra hardware required
for variable-precision interval arithmetic directly into the design of the floating point processor.
Alternatively, a tightly-coupled variable-precision co-processor could be designed which works
in conjunction with the floating point processor

The processor described here supports both normalized IEEE double-precision and variable-
precision floating point numbers. Denormalized numbers are handled in software. The format
for IEEE double-precision numbers is shown in Figure 1. IEEE double-precision numbers consist
of a sign-bit (S), an ll-bit exponent (E), and a 52-bit significand (F). The exponent is represented
with a bias of 1023. A normalized IEEE double-precision number DP has a significand between

330

<-- 1 bit > < 11 bits :'<

Sign(S) Exponent(E) Significand(F)

M. J. SCHULTE t E. E. SWARTZLANDER t JR.

52 bits :-

Exponent(E)

Figure 1. IEEE double-precision floating point format

16bi ts = = 8b i t s

Significand Word F[O]

Significand Words F[1] to F[L- 1]

Significand Word F[L]

< 64 bits ~"

Figure 2. Variable-precision floating point format

1 and 2 and uses a hidden one. Its value is

DP = (- 1) s • 1 .F • 2 E-1~

The format for variable-precision numbers is shown in Figure 2. Intervals are represented
by two variable-precision numbers, which correspond to the interval endpoints. Each variable-
precision number consists of a 16-bit exponent field (E), a sign bit (S), a 2-bit type field (T),
a 5-bit significand length field (L), and a significand (F) which consists of L + 1 significand
words (F[0] to F[L]) The exponent is represented with a bias of 32,768. The sign bit is zero if
the number is positive and one if it is negative. The type field indicates if a number is infinite,
zero, or not-a-number. The length field specifies the number of 64-bit words in the significand.
The words of the significand are stored from least significant F[0] to most significant F[L].
The significand is normalized between 1 and 2, but does not use a hidden one. The value of
a variable-precision floating point number VP is

VP = (- 1) .̀9 • F • 2 E-32'768.

For variable-precision numbers, the maximum significand length is 32 64-bit words, or
2048 bits. This gives a max imum precision of approximately 616 decimal digits. The range of
positive, variable-precision numbers is approximately

[2-3-08 23 , 09] [10-0,864 100804]

A S O F T W A R E I N T E R F A C E A N D H A R D W A R E D E S I G N F O R V A R I A B L E - P R E C I S I O N . . .

r .

331

_ _ _ _~ Register File

Significand Words Header Words

r u

Multiplier

_i
Selector

Exponent Adder
and Register Control

Shifter and Zero
Detect

I '
I

1

Shifter

Long Accumulator

E
A

, J

Figure 3. Arithmetic processor hardware design

In comparison, IEEE double-precision floating point numbers have a maximum precision of 53
bits or approximately 16 decimal digits. The range for positive, IEEE double-precision numbers
is approximately

A block diagram of the hardware unit which performs variable-precision, interval arith-
metic is shown in Figure 3. Control signals are shown as dashed lines. The significand and
exponent data paths are depicted as bold and plain lines, respectively. The main components
of the hardware unit are the register file, a 64-bit by 64-bit multiplier, a laa-bit adder, a long
accumulator consisting of 64 128-bit segments, and two 128-bit shifters. The hardware unit also
includes an exponent adder which determines the exponent of the result and helps control the
register file, long accumulator, selector, and shifters. The selector stores temporary values and
determines which values go into the adder.

332 M. J. SCHULTE I E. E. SWARTZLANDER t JR.

64 Header Words
16bits >= 8bits ~< 8bits '-~

Exponent(E o) So Tol L o Index(I o)

/

I

Header Words

Exponent Ek skl,lLkt dex Ik -J

256 Significand Words
64 bits :-

Significand Word F o [0]

I
I

~ignificand Word F o [1] to 1~ [Io-1 i

Significand Word F o [~]

Significand Words

Significand Word F k [0]

HeaderWords

~ignificand Word F k [1] to F k [I~-1~

Significand Word F k [I~]

Significand Words

Figure 4. Header and significand memories

The register file consists of two memory units: a 64-word by 32-bit header memory, and
a 256-word by 64-bit significand memory, as shown in Figure 4. Each header word contains
the exponent, sign, type, and length of the variable-precision number, along with an index
which points to the least significant word of the corresponding significand. When operations
are performed on variable-precision numbers, the header words are first read. In the following
cycles, the significands words are accessed based on the value of the index fields. For IEEE
double-precision numbers, the significand is stored in the significand memory (with the leading
11 bits set to zero), and the sign bit and exponent are stored in the header memory. The value
of the length field is zero, and the type field is used to indicate if the double-precision number
is infinite, zero, or not-a-number. The header and significand memories have two read ports
and one write port. This allows two operand words to be read and one operand word to be
written in each cycle.

Operands which are read from the register file go into either the multiplier or the selector.
The selector determines which values go into the adder and the shifter, based on the instruction
being performed and the exponents of the operands. The tong accumulator is used to store
intermediate variable-precision results, as well as the partial sum of dot products.

A SOFTWARE INTERFACE AND HARDWARE DESIGN FOR VARIABLE-PRECISION... 333

4D Arithmetic algorithms
In this section hardware algorithms for variable-precision, interval arithmetic are described.
All intervals are stored in the register file using consecutive memory words with the lower
endpoint stored first. The hardware supports the four rounding modes specified in the
IEEE 754 floating point standard: round-to-nearest-even (RN), round-toward-plus-infinity (RU),
round-toward-minus-infinity (RD), and round-toward-zero (RZ).

4.1. Arithmetic operations
For floating point addition and subtraction, the exponents of the operands A and t3 must be
equal be.fore performing the operation. If the exponents of A and t3 are Ea and Eb, with
Eb _> Ea, and the significands are Fa and Fb, this is achieved by shiffing F~ to the right
by (Eb - E~) bits and setting the exponent of the result to Et,. If addition is performed on
operands with different signs, or subtraction is performed on operands with the same sign,
the smaller number is subtracted from the larger number and the sign of the result is set to
the sign of the larger number. After the subtraction, leading zeros may appear in the result,
if the exponents of the two operands differ by less than two. These are removed by shifting
the result to the left, and incrementing the exponent by an amount equal to the number of
leading zeros.

Figure 5 shows variable-precision addition for C = A + B, where Na, Nb, and Nc denote
the number of bits in the significands Fa, Fb, and F'c, respectively (N~, Nb, and Ne are
multiples of 64). For variable-precision addition and subtraction, it may be necessary to shift
one of the operands by several bits before adding them together. This is accomplished by
accessing different words from the register file and using the shifter to align the bits in Fa
with the bits in Fb. The [(Eb - E~ + N~ - Nb)/64] least significant words of Fe are equal to
the (Eb - E~ + N~ - Nb) least significant bits of F~ (plus trailing zeros) and do not required any
additions. T h e [(Nb + Ea - Eb)/64] words in F~ and Fb which overlap require full additions.
These additions are performed as a miles of 64-bit additions, in which the carry-out of the
i-th addition is the carry-in of the (i + t)-th addition. The [(Eb - E~)/64] most significant
words of Fc are equal to the corresponding words of Fb, with the possible addition of a carry.
Unless there is a carry into the L(Eb - E~)/64J most significant words of F0, these words are
copied directly into Fe, without any addition.

Addition and subtraction of the intervals X = [a, b] and Y = [c, a~ are defined as [23]

X + Y = [RD(a+c) ,RU(b+d)]
X - Y = [R D (a - d) , R U (b - c)] .

Thus, interval addition (or subtraction) requires two variable-precision additions (or subtractions).
The lower endpoint is computed first and rounded toward negative infinity. The upper
endpoint is then computed and rounded towards positive infinity. Only three guard digits,
including a sticky bit, are required to implement correct rounding [15].

For floating point multiplication, the significands of the two operands are multiplied and
the exponents are added. The sign of the result is positive if the signs of the multiplier and
the multiplicand are the same, and one if they are different. Since the significand of the
result is between t and 4, it may be necessary to shift the significand right one position and
increment the exponent.

334 M . 1 . S C H U L T E t E . E . S W A R T Z L A N D E R t J R .

Nb
i J i i i
I I I I I

' ' r'~'b' ' ' I I l I I
I I I I I

' ' ' F a '
I 1 I I

~ ~ O ' b - I "4 , , , ,
I I I I
I I I I

- E o - E a + N a - N b-->

I I t
L I I
I I I
I I I

Na

< Nb+ E a - E b -

1 t t I I i I
I I I I I I I
I I ~ I I I I I
I I ~ C I I I I I
I I I I I I I

Nc

Figure 5. Variable-precision addition with exponent shift

4 W ~ d s

A=M,,lup.~ t A~ I A. t A, F Ao I
.

,
] A / a n

,
f A I B 1

.

[AIB~
..

A 3 R 3 A] B3

.

Figu re 6. Variable-precision multiplication (4 word by 4 word)

Variable-precision multiplication is performed by using the multiplier and adder repetitively
to generate and accumulate 128-bit partial prodticts. During the first cycle, the exponents are
read from the header memory and added to compute the exponent of the product. Each
subsequent cycle, 64-bits of the multiplier are multiplied by 64-bits of the multiplicand to
produce a new 128-bit partial product which is added to the previous result. The sum of the
partial products is stored in the long accumulator Figure 6 shows the multiplication process,
for a 4 word by 4 word (256 bit by 256 bit) multiply. To avoid excessive carry propagation,
the partial product generation is reordered so that the less significant partial products are
generated first, as shown in Figure 7.

A SOFTWARE INTERFACE AND HARDWARE DESIGN FOR VARIABLE-PRECISION.., 335

q 4 Words '~

A=Multiplicand A3 I A2 J AII Ao]
B=Multiplier B 3] B~ j B1 I Bt)]

AoB~
A1B 1

AoB~ A1Bn
AIB~

Ain~ A'] nfl J

A3B1]

t A:a~ A~B, I
A~B~] "

I A B0,]
AOBT ~l

A 1Bfl

Figure 7. Reordered variable-precision multiplication (4 word by 4 word)

If the multiplicand and multiplier contain m and n 64-bit segments, respectively (m > n),
then m . n single-precision multiplications and additions are required. If the final result is
rounded to m bits, then a method proposed in [16] is used to reduce the number of single-
precision multiplications and additions to m . r~ - (n ~ - 3 . n)/2 - 1. This reduction in the
number of operations is possible because only the m + 1 most significant columns of partial
products are likely to contribute to the rounded product. For exampte~ for the 4 word by 4
word multiplication shown in Figure 7, the partial products A0' B0, A0' Bb and AI ' B0 will
most likely have no effect on the product when it is rounded to 4 words. A quick test is used
to determine if the omitted partial products can change the value of the rounded product. If
they can, the product is computed to full precision and then rounded.

Multiplication of the intervals X ~-[a, b] and Y -~ It, d] is defned as [23]

x r od, bd)), od, bd))],

Rather than computing al l /bur products and then comparing the results, the endpoints to be
multiplied together to form the upper and lower endpoints of the result are determined by
examining the sign bits of the interval endpoints of X and Y [12]. With this technique, only
two variable-precision multiplications are required, unless the condition

a < 0 < b AND c < 0 < d

holds. The method proposed in [10] guarantees correct directional rounding,
For floating point division X/Y, the signifcands of the two operanda are divided and the

exponents are subtracted, The sign of the result is positive if the signs of X and Y are the
same and one if they are different, Since the stgntficand of the result is between 1/2 and 2, it
may he necessary to shift the final quotient left one position while decrementing the exponent.

336 M. J. SCHULTEr E. E. SWARTZLANDERp JR.

The algorithm used for performing variable-precision division is based on Newton-Raphson
iteration. As presented in [10], the Newton-Raphson division algorithm computes the reciprocal
of the divisor Y by the following iterative equation

b~+l = bi(2 - Ybi)

where b~ is the approximation to 1 / Y after the i-th iteration. Each iteration approximately
doubles the number of accurate bits in the result. Since the accuracy of the approximation
increases with each iteration, lower precision computations are used for earlier iterations and
higher precision computations are used for later iterations. After a suitable number of iterations,
bi is multiplied by the dividend X to obtain the quotient Q. A correction step is then employed
to ensure that the quotient is correctly rounded [21].

Each iteration requires two multiplications and a subtraction. To start the algorithm, an
initial approximation to 1 / Y is required. This approximation is made by a table-lookup on
the most significand bits of Y [28]. ff the initial approximation has k bits of accuracy, then
approximately [log2(p/k)] iterations are required to compute a reciprocal which is accurate to
p bits. A similar algorithm which avoids division and is based on Newton-Raphson iteration is
used to compute square roots [24],

For interval division, the reciprocal of the lower and upper endpoints of the divisor are
first computed. Interval multiplication is then used to produce the lower and upper endpoints
of the quotient, as specified below

Q = X / Y = [a, b] • [l/d, 1/c]

An adjustment step, similar to the one presented in [21], is used to ensure that both endpoints
are correctly rounded, ff the divisor interval contains zero, the resulting interval will contain
positive or negative infinity. In this situation, extended interval arithmetic [12], which allows
division by intervals containing zeros, is employed.

4.2. Dot product computation
Accurate dot products are essential for scientific applications. Given two vectors X =
[xl ,x2, . . . ,x ,~] and Y = [Yl, y2 ,yn] T, and a specified rounding mode 0, the result of
an exact dot product operation [17] is defined as

O(X . Y) = 0 x, . yi

where all arithmetic operations are mathematically" exact and only a single rounding is per-
formed at the very end. To avoid overflow and rounding problems, exact dot products are
only supported in hardware for IEEE double-precision numbers. The long accumulator is used
to store the partial sum of the exact dot product. For each term in the dot product, the new
product and the appropriate words from the long accumulator are added together. The words
chosen from the long accumulator and the amount that these words are shifted is determined
by the exponent of the new product.

When adding the new product to the partial dot product, it is possible for carries to
propagate over long distances, resulting in a large number of additions. To prevent this, each

A SOFTWARE INTERFACE AND HARDWARE DESIGN FOR VARIABLE-PRECISION... 337

1 1 1 1 1 Data 1 0 0 0 1

Flag neither

Carry Jump

New Product

, , o , I

1 1 1 1 1

ones

1 1 1 1 0
Before

0 0 1 1 0

ones neither neither

After
Data 1 0 0 1 0

Flag neither

0 0 0 0 0 0 0 0 0 0 0 0 0 0 t

zeros zeros neither

1 1 0 1 0

neither

Figure 8. Accumulation of products for an accurate dot product

segment of the long accUmulator has a flag associated with it which tells if the bits in the
segment contain all ones, all zeros, or neither [13, I4]. A carry propagating into a segment
which contains all ones will cause the flag to signal all zeros. Similarly, a borrow into a segment
which contains all zeros will cause the flag to signal all ones. If a carry or a borrow comes
into a segment which is neither all ones nor all zeros, the carry will not be propagated beyond
that segment. Using this technique limits the number of additions that are performed for each
element in the dot product to three; two to add the new product and one to resolve the carry.
Figure 8 demonstrates the accumulation process using five bit segments. The new product is
added to two of the segments in the long accumulator. I f a carry occurs after the second
addition, it is added to the first word that does not contain all ones. After the accumulation,
the words which contained all ones now contain all zeros. Once the entire dot product is
computed, it is normalized, rounded to a specified precision, and stored back in the register
file. The adl ones and a/l ztros flags also help simplify the normalization and rounding process,
because they indicate the most significand word of the result and are used to determine the
sticky bit.

As shown in [4], if a number representation uses at most L M A X bits for the significand
and the exponent ranges from emi= to emax, the dot product of two vectors each containing
T v numbers can be computed exactly if the number of bits in the long accumulator is

BITS_LA = N + 2 x (LMAX + era= + leminl).

Since BITS_LA = 8,192 and 2 x (L + em~ + [em!nl) = 4,198, N = 8,192 - 4,198 = 3,994. Thus,
the exact dot product of two vectors containing 23,994 IEEE double-precision numbers can be
obtained.

To compute an exact interval dot product, it is necessary to determine the lower and
upper endpoints of each multiplication. The lower endpoint is added to a portion of the
long accumulator which contains the lower endpoint of the dot product. The upper endpoint
is added a portion of the long accumulator which contains the upper endpoint of the dot
product. After the upper and lower endpoints for the entire dot product have been computed,
they are outward rounded to produce the final result.

338 M..i'. SCHULTE~ E. E. SWARTZLANDER~ JR.

4.3. E l e m e n t a r y f u n c t i o n e v a l u a t i o n

Elementary function evaluation is performed by polynomial approximations. These approxima-
tions have the form

n--1

f (x) ~ pn-:(x) = a0 + ~: . x + ~ . x~ + . . . + ~ _ : . ~ - : = ~ ~,. z i
i=0

where f (x) is the function to be approximated, pn-:(x) is a polynomial of degree n - l , and ai is
the coefficient of the i-th term. With this method, the elementary functions are approximated
using variable-precision addition and multiplication. The functions are approximated on a
specified input interval and argument reduction is employed for values outside this interval [9].
To reduce the required number of multiplications, Hornet 's rule [22] is applied, so that the
approximation takes the form

(o, (o, +. . .
With Horner's rule, a polynomial approximation of degree n - 1 requires n - 1 multiplications
and n - 1 additions.

If a Chebyshev series approximation of degree n - 1 is used for the approximation, the
maximum approximation error on an interval [a, b] is

E , , (z) < ' n ! - -

where ~ is the point on [a, b] where the n-th derivative of f(x) has its maximum value [22].
To reduce the number of terms in the approximation, the interval on which the function is
computed is divided into subintervals and separate coefficients are used for each subinterval.
The coefficients for each subinterval are determined by a table-lookup on the most significant
bits of x. A more detailed description of this process is given in [26, 27].

The evaluation of an elementary function f (x) on an interval X = [a, b] is performed as
follows: If f(x) is monotonically increasing on Is, b], the resulting interval is

If f(x) is monotically decreasing on [a, b] the resulting interval is

If f(x) is are neither monotonically increasing nor decreasing on In, hi, f(x) is evaluated at
its local minimum and maximum, and at the interval endpoints to determine the resulting
interval. For example, if sin(x) is evaluated on the interval [~1, 2], then the resulting interval

is [R D (s i n (- 1)) , 1.0], since s i n (X) h a s a local maximum of 1.0 at 7r/2.

5. Area and delay estimates
Table 1 gives area and delay estimates for the variable-precision, interval arithmetic processor.
These estimates are based on data from a 1.0 micron CMOS standard cell library [20]. The

A SOFTWARE INTERFACE AND HARDWARE DESIGN FOR VARIABLE-PRECISION... 339

estimates for the multiplier assume that multiplication is implemented using a Reduced Area
Multiplier [3], followed by a carry look-ahead adder [5]. The area of each component is
estimated by calculating the total size of the macrocetls (e.g., AND gates, full adders, half
adders, etc.) which make up the component and then adding an additional 50 percent for
internal wiring. The total area is estimated as the sum of the component areas plus an
additional 60 percent for control logic, global routing, unused space, and pad area. The total
chip area is estimated to be 227.5 mm 2. The component delays are computed by taking the
worst case delay of the critical path and adding 25 percent for unexpected delays and clock
skew. The worst case component delay comes from the multiplier which has a delay of 37.6 ns;
19.2 ns for partial product reduction and 18.4 ns for carry look-ahead addition. Assuming
these two stages of the multiplication are separately pipelined and allowing an additional 2 ns
for control and register latching, the processor could have a cycle time of less than 22 ns
(45 MHz).

Unit Area (mm 2) Delay (ns)

Multiplier (64 bits by 64 bits) 49.4 37.6

Carry took-ahead adder (133 bits) 5.2 18.4

Significand memory (256 words by 64 bits) 35.5 8.2

Header memory (64 words by 32 bits) 4.4 7.2

Long accumulator (64 words by 128 bits) 17.8 7.8

Shifter + zero detect (128 bits) 8.5 9.2

Shifter (128 bits) 8.2 8.9

Operand selector (4 words by 128 bits) 7.8 4.2

Exponent add/subtract (16 bits) 0.6 4.4

Latches 4.8 2.0

Control logic, global routin, pads, etc 82.7 *

Total 227.5

Table 1. Estimates for the variable-precision, interval arithmetic processor

Table 2 gi'ves the area and delay estimates for a IEEE double-precision floating point
processor, using the same assumptions as above. The worst case component delay comes from
the multiplier which has a delay of 34.6 ns; 18.0 ns for partial product reduction and 16.6 ns
for carry look-ahead addition. If these two stages of the multiplication are separately pipelined,
the processor can have a cycle time of less than 20 ns (50 MHz). Compared to the variable-
precision, interval arithmetic processor, the IEEE double-precision processor uses approximately
56 percent less area and has a cycle time which is approximately 9 percent shorter. The main
increase in area comes from the increased size of the arithmetic units, the larger register file,
and the memory needed for the long accumulator.

6. Conclusions
This paper presented the software interface and hardware design for a computer system which
supports variable-precision, interval arithmetic. The software interface allows the programmer

340 M . J. SCHULTE t E. E. S W A R T Z L A N D E R I JR.

Unit Area (mm 2) Delay (ns)

Multiplier (53 bits by 53 bits) 37.4 34.6

Carry look-ahead adder (106 bits) 4.3 16.6

Register file (16 words by 64 bits) 4.4 6.2

Shifter + zero detect (106 bits) 7.2 9.0

Shifter (106 bits) 6.9 8.8

Exponent add/subtract (1i bits) 0.4 4.0

Latches 2.4 2.0

Control logic, global routin, pads, etc 37.8 *

Total 100.8 *

Table 2. Estimates for the IEEE double-preciion processor

to specify the precision of the computation and recompute the result with higher precision
when the required accuracy is :not achieved. The processor can also be used to evaluate the
accuracy of programs before running them on a general purpose processor, or can be used
to select between various programs based on their accuracy for givefl inputs. By providing
hardware support for variable-precision, interval arithmetic, a substantial speedup over existing
software methods is achieved. Area and delay estimates demonstrate the effidency of the
design. The hardware deign and arithmetic algorithms have been simulated in C++. Further
testing, hardware simulation, and performance evaluation are required before the design is
complete.

Acknowledgements
Special thanks are extended to Professor Jeff Ely at Louis and Clark University who provided
the variable-precision, interval arithmetic package which was modified to simulate, the hardware
design presented in this paper.

References
[1] Adams, E. and Kulisch, U. Scientif~ computing with automatic result verifgation. Academic Press,

1993, pp. 1-12.

[2] Anderson, F. S. et al. The IBM System~360 Model 91: floating point execution unit. IBM Journal
of Research and Development 1i (1967), pp. 2~t-53.

[3] Bickerstaff, K. C., Schulte, M. J., and Swartzlander, E. E. Reduced area multipliers. In: "Pro-
ceedings 1993 Application Specific Array Processors", 1993, pp. 478-489.

[4] Bohlender, G. What do we need beyond IEEE arithmetic? In: UUrich, C. (ed.) "Computer
Arithmetic and Self-Validating Numerical Methods", Academic Press, New York, N-Y,
I990, pp. 1-32.

A SOFTWARE INTERFACE AND HARDWARE DESIGN FOR VARIABLE-PRECISION... 341

[5] Brent, R. P. and Kung, H. Y. A regular layout for parallel adders. IEEE Transactions on
Computers C-81. (1982), pp. 260-264.

[6] Carter, T. Cascade: hardware for high~variable precision arithmetic. In: "Ninth Symposium on
Computer Arithmetic", 1989, pp. 184-191.

[7] Cohen, M., Hull, T., and Hamarcher, V. CADAS: a controlled-precision decimal arithmetic unit.
IEEE Transactions on Computers C-82 (1983), pp. 370-377.

[8] Ely, j. s. The VPI software package for variable precision intem~ arithmetic. Interval Computations
2 (1993), pp. 135-153.

[9] Hke, C. T. Computer em/uat/on of mathematical functions. Prentice Hall, Englewood Cliffs, N j,
I968.

[10] Flynn, M. J. On ~ by funa/ona//terat/ons. IEEE Transactions on Computers C-19 (1970)
pp. 702-706.

[11] Hammer, R., Neaga, M., and Ratz, D. Pascal-XSC new concepts for scientific computation and
numerical data processing. In: Adams, E. and Kulisch, U. (eels) "Scientific Computing with
Automatic Result Verification", Academic Press, 1993, pp: 15-44.

[12] Hansen, E. G/oba/opt/m/zat/on using intemm/ana/ys/s. Marcel Dekker, New York, NY, 1992.

[13] Kn0fel, A. Fast hardware units for the computation Of accurate dot products. In: 'q"enth Symposium
on Computer Arithmetic", 1991, pp. 70-75.

[14] Knofel; A. Hardware kernel for scie~fic/engineering compuations. In: Adams, E. and Kulisch, U.
(eds) ~Scientific Computing with Automatic Result Verification', Academic Press, 1993,
pp. 549-570.

[15] Koren, I. Computer arithmetic and algorithms. Prentice Hall, Englewood Cliffs, NJ, 1993.

[16] Krandick, W. and Johnson, j. g. Efficient multipredsion floating point mult~dicatfon with optimal
directional rounding. In: "Eleventh Symposium on Computer Arithmetic", 1993, pp. 228-233.

[17] Kulisch, U. W. and Miranke r, W. L. Computer arithmetic in theory and in practice. Academic
Press, New York, NY, 1981.

[18] IEEE Standard 754 for binary floating point arithmetic. American National Standards Institute,
Washington, DC, 1985.

[19] Lawo, C. C-XSC new concepts for scientifw computation and numerical data processing. In: Adams, E.
and Kulisch, U. (eds) "Scientific Computing with Automatic Result Verification', Academic
Press, 1993, pp. 71-86.

[20] LSI Logic 1.0 micron cell-based products databook. LSI Logic Corporation, Milpitas, California,
1991.

[2t] Markstein, P. W. Computation of elementary functions on the IBM RISC System~6000 processor.
IBM Journal of Research and Development 84 (1990), pp. 111-119.

342 M . J . SCHLrLTE t E. E. SWARTZLANDER t JR.

[22] Mathews, J. H. Numerical methods for computer science, engineering and mathematics. Prentice Hall,
Englewood Cliffs, N J, 1987.

[23] Moore, R. E. lnten~ analfiis. Prentice Hall, Englewood Cliffs, N J, 1966.

[24] Ramamoorthy, C. V., Goodman, j. R., and Kim, K. H. Properties of iterative square-rooting
methoda using high-speed multiplication. IEEE Transactions on Computers C-21 (1972), pp. 837-
847.

[25] Reuter, E. K. et al. Some experiments using inten~ arithmetic. In: "Fourth Symposium on
Computer Arithmetic", 1978, pp. 75-81.

[26] Schulte, M. J. and Swartzlander, E. E. Exact rounding of certain elementary functions. In:
"Eleventh Symposium on Computer Arithmetic", 1993, pp. 128-145.

[27] Schult e, M. J. and Swartzlander, E. E. Parallel hardware designs far correctly rounded elementary
funct/ons. Interval Computations 4 (1993), pp. 65-88.

[28] Schulte, M. J., Omar, J., and Swartzlander, E. E. Opthna//n/t/a/apprax-/mat/ons for the Newton-
Raphson d'w/s/on a/gor/thm. Submitted to Computing, 1994.

[29] Walter, W. V. Acrith-XSC a FortranJike language for verified scientific computing. In: Adams, E.
and Kulisch, U. (eds) "Scientific Computing with Automatic Result Verification", Academic
Press, 1993, pp. 45-70.

Received:
Revised version:

February 25, 1994
November 23, 1994

Department of Electrical and Computer Engineering
The University of Texas at Austin

Austin
Texas 78712

USA

