
Reliable Computing 1 (3) (1995), pp. 317-323

A parallel complex zero
MARK I" SCHAEFER and T~LM~NN BUBECK

finder

A recent paper [7] describes a variable precision interval arithmetic algorithm for the computation of the
zeros of an analytic function inside a given rectangle and to a user-specified accuracy. The algorithm
is based on the argument principle in the set of complex numbers C and carries much potential for
parallelization at various levels of granularity. Here we explain how to modify the sequential algorithm
to take advantage of parallelism at four levels ranging from coarse to medium grain. The algorithm
is tested in a distributed environment consisting of eight SPARe workstations. The underlying software
environment is also discussed.

I IapaAAeA ,Ha npoL eaypa
KOMIIAeKCHbIX Hyae;

HOHCKa

M. IIIEo~,, T. ByB~

B Heaaanefl pa6oxe [7] onucaH nxTepaaabno-apnqbMerHqecxu~ aaropnTu rlepeMeltnofl paap~umocrH mls
a~q~IC.lleHH~ HyJlefl aHaymTH~ecKO~t dlaynKtmn aHyTpH aaaanHoro np~rMoyro~bHHxa c TOqHOCn,~O, ortpe~e-
.'I~eMOfl rtoJlbaOBaTe~eM. ~3rroT a.~ropnTM OCHoaan na ntpHHuHne apryMeura Ha MHO,V~.ecTBr XOMH;IeKC..HUX
qHceJI C H o6ma~aer 60~mnM rtoxeHu~a.rmM napanaeaHaauHH Ha pa3Hbrx ypoaH~X rpaHy~npomauHocrx.
B Hacro~ttte~t pa6oTe npe/l.~araeTc~ MO.aHOpHXaHHst nor~e/logaTe.~bHoro a~ropHTMa s Mt~O.~,3OBaHHeM
napa.ntae~naauHH Ha ,~exupex ypoBHnX rpanya~pomaHnoc'm: OT rpy6oro ~o cpeaHeaepnHcroro. Aaro-
pHTM TCCTHPOBaa'ICR B pacnpeaeaeHHO~ BlalqHC.rlHTeJIbHOI~ cffrH, COCTO~efl 143 aOCI~MH pa6oqnx craHRH~
SPARC. Onepeae~eHHoe BnnMan~e yaeaeHo nporpaMMHOMy o6ecneqeHmo Hm~Hero ypoaHs.

1. Introduction

T h e verif icat ion of zeros o f analytic functions in the complex plane is "commonly based on the

a r g u m e n t pr inciple and computa t ion o f winding numbers (see [6], Remarks to Chapte r 5). T h e

winding n u m b e r o f an analytic funct ion f with respect to a s imple closed contour S in the

complex plane is the n u m b e r o f t imes the poin t f(z) winds a round the or ig in in the image

plane as z traces S once in the positive direct ion. T h e a r g u m e n t pr inc ip le appl ied to analytic

functions states that, in the absence of zeros o f f on S, the winding n u m b e r equals the n u m b e r

of zeros o f f in ter ior to S, count ing multiplicities. It is clear that g iven an initial rec tangle

R in the complex p lane whose sides contain- no zeros of f , a s imple bisection strategy coupled

with an a lgor i thm for comput ing winding numbers can serve as a basis for locat ing zeros o f f

inside R.

T h e a lgor i thm in [7], hereaf te r re fe r red to as the sequential algorithm, is a hybrid method:

g iven a star t ing rec tangle and a suitable e lementa ry funct ion, the first phase of the p r o g r a m

serves to isolate a funct ion 's zeros within individual subrectangles. This is accomplished th rough

the computa t ion of winding numbers using interval me thods and rec tangu la r bisection. T h e

(~) M. Schaefer, T Bubeck, 1995

318 M. SCHAEFER/ T. /3UBECK

second phase employs Newton's iteration to locate individual zeros rapidly and is only applied
to first order zeros. The first phase is needed to ensure that no zeros are missed and to
provide, for each first order zero, a reasonable starting location and bounded search area for
Newton's method. Higher order zeros are handled correctly by the program but their presence
can increase execution times significantly because convergence to them is only linear.

When interval methods are used to compute the winding number of an analytic function
f with respect to some rectangle R, three outcomes are possible: R is found not to contain
any zeros, R is found to contain one or more zeros, or else the winding number could not be
computed and the test for zeros was inconclusive. The third case can occur either because a
zero lies directly on the boundary of R or else because a zero lies close to the boundary and
the current precision of computation is insufficient to resolve the behavior of f(OR), where OR
denotes the boundary of R (more details are given in [7]). The sequential algorithm monitors
the number of rectangles encountered for which the winding number could not be computed
and periodically adjusts the precision of computation to keep this number in check.

During its first phase, the sequential algorithm manipulates one or several lists of rectangles
known or suspected to cover zeros of the problem function f . (Initially, there is only one list
containing one rectangle, the starting rectangle supplied by the user.) Occasionally, a list is
found to consist of a number of mutually disjoint sets of rectangles. If each such set can
be enclosed in its own rectangular region, disjoint f rom other regions containing other sets,
then the list is split into a number of independent sublists, each of which is processed in turn.
Within each list, each rectangle is first removed from the list, bisected, and its two halves
checked for zeros (the starting rectangle is first processed as a whole to determine the number
of zeros it contains before it is bisected). Those halves that are found not to contain any zeros
are discarded while the others are appended to the end of the list. The number of zeros
contained in a rectangle is found by obtaining the winding amount (see [7]) of f for each side
of that rectangle. A rectangle side s typically requires several recursive bisections to resolve
the location of f(s) relative to the origin in the image plane, which then translates into the
winding amount.

The first phase of the sequential algorithm is by far the most time consuming but offers
good opportunities for parallel computations. We use a form of domain decomposition where
the input to each job consists of a list of rectangles, a single rectangle, a side of a rectangle
or just one half of a side. None of these inputs are known a priori but rather are determined
dynamically, except for the four sides of the starting rectangle initially provided by the user.
This is to be expected since the computations will tend to concentrate near the zeros, and since
there is no advance knowledge of their distribution in the rectangle supplied.

Currently, our hardware platform i s made up of eight SPARC ELC stations coupled loosely
by a network bus. The software basis consists of the Range Arithmetic package [1] coupled with
the Distributed Thread System (DTS) [2]. The latter makes possible the distributed computation
of individual functions in a C or C + + program. Using this system, one generates only a
single executable program, an image of which resides on each machine that participates in the
computations. A more complete introduction to DTS appears in Section 4. Section 2 provides
a detailed description of the parallel version of the algorithm and Section 3 gives numerical
results for an example problem.

A PARALLEL COMPLEX ZERO FINDER 319

2. Four levels of parallelism
This section describes the modifications to the sequential algorithm that were made in the
parallel version. Perhaps the most obvious opportunity for distributing the computation occurs
when a list of rectangles is split into a number of independent sublists. A thread of execution
causing such a split retains one of the new lists but sends the others off for remote processing.
it then continues execution, processing the list it retained for itself. An exception to this
scheme occurs when a new list's rectangles are known to cover only a single (first order) zero.
i'ypically, this kind of zero is found and verified rapidly using Newton's method, in which case

it does not pay to send off the list for remote processing, lnstead~ the local thread attempts
to find the zero itself using Newton's method. Only when this falls will the list be shipped
out to another machine. The importance of this level of parallelization clearly depends on the
rmmber and geographical distribution of zeros in the starting rectangle.

Next we consider the simultaneous processing of rectangles in a single list. The two halves
of a newly bisected rectangle should not be processed in parallel since they share a new side
that has not previously been processed and must be processed now. The rectangles on a list
currently awaiting their turn should, however, be processed in parallel. If' more than one
rectangle is available, all but one are broadcast to other machines for remote processing. This
level of parallelism usually kicks in Shortly before a list is split into several sublists or before
the precision of computation is increased. Recall that a low precision setting can result in
rectangles for which the number of zeros covered is unknown and which cannot be discarded.

The third level of parallelism occurs when several sides of the same rectangle are processed
simultaneously. For reasons given below, however, most rectangles require processing only one
of their sides, and this level is not as important as may first appear. A notable exception is of
course the starting rectangle. When this rectangle is processed, neither of the earlier two levels
of parallelism are active, and processing all four sides in parallel is clearly beneficial.

The final level o~" parallelism implemented consists of the simultaneous processing of the
two halves of a subinterval, in case that subinterval requires bisection. The data in [7] shows that
the average depth of bisection varies considerably for different problems, but that the potential
degree of parallelism at this level can often be expected to exceed eight. Unfortunately, as
the depth of bisection increases the individual jobs quickly become too light to warrant export
to other machines. Therefore, in our program this level of parallelism is only employed for
sides of rectangles and not for any subintervals of these Sides. Nevertheless, on a more tightly
coupled multicomputer this level could well be the most rewarding as the number of processors
available increases beyond just a few.

The sequential version of the algorithm uses binary trees for the purpose of retaining
winding information on each processed subinterval of a rectangle's side. This avoids unnec-
essary recomputation in case this information is ever needed again. Each side of a processed
rectangle points to such a tree, whose structure reflects the bisections that were c.arried out
before. Rectangles that share sides or even just parts of sides share a tree or subtree. The
implementation of this idea made the program more complicated and less suitable to paral-
lelization, but it did result in a significant reduction of execution time, sometimes by more than
a factor of three.

In the parallel version, it is not assumed that two threads of execution have any shared
memory available, and binary trees are no longer shared between rectangles in this version.
Moreover, the trees used have a fixed maximum depth. This simplifies the programming of

320 M . SCHAEFER t T . BUBECK

functions responsible for broadcasting and receiving such trees to and from other machines. It
also eliminates the risk of incurring too much communication overhead from broadcasting deep
trees. The trees used are two levels deep, which can be motivated by the following argument.

Consider the four sides of a new rectangle Re which has been obtained through bisection
of a parent rectangle P~. The aim is to find the number of zeros contained in /~c, but how
many of Rc's sides need to be processed? We assume here that the sibling of Fgc, the other
subrectangle emerging from the bisection of Rp, has not already been processed. If absolutely
no winding information about /~ ' s sides is forwarded from Rp to Re, then it is clear that all
four sides of Re need to be processed, which constitutes the worst case. In contrast, the best
possible scenario requires processing just one side of Flc, with enough information inherited
from R E to deal with the other three sides. It is interesting to derive the expected number
of sides of Re to be processed as a function of the maximum depth of inherited binary trees.
Naturally, this number will lie between one and four, and will decrease with increasing depth,
because more information can then be inherited by Re from Rp.

We will not carry out this derivation here but only quote the results for binary trees of
depths 0, 1, and 2. For simplicity we assume that the computation of the winding amount
associated with a given side always succeeds, using as many recursive bisections of that side as
necessary. First suppose that the binary trees contain only root nodes, which means that Re
inherits from R E only information about P,~'s sides, but no information about any subintervals
of these sides. In this case it is clear that the expected number of sides of Re to be be processed
is three, one less than the worst case but two more than the best case. Next assume the binary
trees are one level deep: R~ inherits from R E winding information about its sides and possibly
information about the two halves of each side. It can be shown that the expected number of
sides to be processed now equals ~ ~ 1.79. The derivation assumes that whenever a side is
processed, it has to be bisected at least once, which means that winding information will then
be available not only for the side itself but also for its two halves. From the data in [7], it is
clear that this is a fair assumption in practice.

Finally, assume the binary trees are two levels deep. The expected number of sides to
843 be processed turns out to be r--g6 ~ 3..17, which is optimistically close to the best case. Here

the derivation assumes that whenever a side is processed, it has to be recursively bisected at
least twice, which is still a fair assumption to make, at least for the test cases in [7]. For the
example of Section 3, the observed average number of sides processed is 1.43. Contrary to our
earlier hypothesis, the computation of winding amounts is not always successful, either because
the precision is too low or because a zero lies on the rectangle's boundary. Therefore, child
rectangles do not always inherit as much information about their parents' sides as we assumed
in the derivation of the expected value.

3Q Numerical experience
A loosely coupled workstation cluster implies significant communication overhead when used as
a parallel computer. Moreover, network traffic can vary considerably during the course of a
day, and this directly affects the overhead. The data below is based on measurements obtained
on three separate days and subsequently averaged. These measurements are actual observed
time intervals that elapsed during program execution and lie in the range of several minutes.
Although the machines used in the computations are part of a much larger departmental

A PARALLEL COMPLEX ZERO FINDER 321

network and subject to remote logins, at least none of them were used by other users at the
start of program execution.

The problem solved is to find all zeros of

f(z) = sin
z + 7r(2i - 3)

m the rectangle defined by the corner points - 1 0 - 5i and 10 + 10i. The desired number
~f guaranteed decimal places is 20. This problem was already solved in [7] where it was seen
. hat 27 zeros exist in the specified rectangle. About half of these zeros are clustered near the
lower right corner point. Figure 1 shows the speedup obtained as a function of the number
of machines used. Clearly, it is far less than ideal but certainly not neglible. We deliberately
chose a problem that was originally conceived without parallel execution in mind, to avoid the
cmptation of "discovering" a problem ideally suited to our environment.

Speedup

I I I I , I I I I

1 2 3 4 5 6 7 8

Number of workstations

Figure 1.

The version run on a single workstation, which constitutes the comparison base for the
other cases, is identical to that run on multiple machines. By removing all forks, decoupling the
program from'DTS, and storing the precision of computation in a global variable as opposed
to the thread's system control block (cf. Section 4), the program can be made to run as fast
on one machine as on two without these changes. The original sequential version (with its full
binary trees) runs as fast on one machine as the paralle! version using all eight workstations.
Nevertheless, we believe the parallel algorithm could be sped up significantly beyond what is
shown here for reasons explained below.

It is interesting to consider the number of forks that take place at each of the four levels
of parallelism. (Here the term fork refers to the creation of a new independent thread of
execution by an existing thread, which basically means that some particular function call can
be off-loaded to another processor.) For the problem above, there are six forks at the first
level, 154 forks at the second level, 88 forks at the third level, and 255 forks at the fourth
level. Slightly more than half of all forks occur at the fourth level. When the number of
processors is small (say two or three), the overhead incurred by this level appears to outbalance
the reduction in execution time gained through added parallelism: preventing these forks then
reduces the average execution time by about 10%. With eight machines available, however, the

322 M . SCHAEFER I T . BUBECK

average execution time increases by about 20% when fourth level forks are absent. It is hoped
that in the future, the algorithm can be tested on a more tightly coupled multicomputer. The
fourth level forks could then be extended deeper into the tree of recursive bisections. In the
example problem above, the average depth of bisection for rectangle sides equals 6.3, and there
is the potential for keeping dozens of processors occupied.

40 Software basis
Relatively little effort was required in adapting the Range Arithmetic package to the Distributed
Thread System (DTS). The most interesting aspect of this conversion concerns the precision
setting associated with each thread. As more than one thread may be concurrently active on
the same machine, this information cannot be stored in the global address space shared by the
threads. It cannot be passed via an additional parameter argument to the functions that most
frequently access the precision setting, because these functions are overloaded C + + operators
which use a predefined number of arguments. We store a thread's current precision setting
directly inside its own system control block.

We conclude this Section with an overview of DTS, a System which allows a user to
distribute a program over a network of loosely coupled workstations. As described above, this
can lead to significant improvements in program execution time. DTS uses Parallel Virtual
Machine (PVM) [8] as the underlying message passing system and C Threads [3] for parallel
execution on a single node. It basically offers the usual thread functions fork and join, here
extended to distributed computing in a SPMD (single program over multiple data streams) [4]
programming environment.

In contrast to the client-server model, there is only one executable program, containing
all required functions. The programer does not write separate programs for client and server,.
as for instance in RPC (Remote Procedure Call) [4] applications. The semantics and syntax
of DTS correspond to what is typical of many thread packages, such as C Threads or Posix
Threads.

Unlike the case of PVM applications, a user of DTS does not manually start his program
on each host but instead starts execution on just one of the participating machines. The
program then calls a DTS function which in turn loads and executes the same program image
on all other machines. The initiating machine continues execution following this call while
the others wait for job assignments. When a machine forks to concurrently execute some
function in the program, DTS chooses the machine on which the execution takes place. There
is no need to specify the executing machine by hand or in advance. The choice is based on
the current individual loads of the machines, and an attempt is made to balance the overall
load as much as possible. After execution of a forked job, the results are sent back to the
caller's machine and saved in a special buffer until a subsequent call to the corresponding join
occurs. All sending and receiving of input parameters and results is done in a non-blocking
buffered way, in order to establish as much parallelism as possible. This means that a forking
thread can continue execution without concern about whether outgoing messages have already
been delivered: Furthermore, DTS automatically recovers whenever a machine goes down
unexpectedly, because the system remembers which node executed which jobs and reassigns
crashed jobs to other machines. This can be a very important reliability enhancement in a
distributed environment that consists of many independent computers.

A PARALLEL COMPLEX ZERO FINDER 323

Under DTS, all participating nodes are allowed to use fork and join. It is not unusual even
for the initiating host to execute jobs forked from other machines. The entire network, which
may consist of many heterogeneous machines, can be made to join in the computations. In
the experiments above we have avoided using heterogeneous computers only for the sake of
obtaining meaningful speedup data, Apart from the present program, DTS has been successfully
used to paraIlelize a number of different applications. Among these are a RSA crypto system
in PARSAC-2 [5], a linear equation solver, and others resulting in system efficiencies topping
80% (system efficiency is defined as speedup over number of processors).

To summarize, DTS f~atures (I) automatic load-h~lancing, (2) parallel execution on many
machines, (3) single sourcecode, and (4) dynamic recovery and reconfiguration of the working
pool.

References
[I] Aberth, O. and Schaefer, M. j. ra, , c++. ACM

Transactions on Mathematical SoRware (December 1992),

[2] Bubeck, T, E/su $~tmttm~/m~ mm t~rte/Lten~en P~.hnm, Internal Report WSI-93-8,
Wilhelm-schickard.lnstitut der Universi01t Ttibingen, 1998,

[8] Cooper, E, C. and Draves, R, P, C T~ts~, Technical. Report, Computer Science Department,
Carnegie Mellon University, Pittsburgh, PA, july 1987,

[4] Hwang, K, Rdva~ computer arc~taur#, McGraw-Hill, 1993,

[5] Kfichlin, W, W. PARgAC-a: a para//e/;DIC-~ ba~ad on tMau/J, In: Sakata, S, (ed.) 'Applied
Algebra, Algebr~c Algorithm,, and Errar-Correcting Code,: 8th International Conference,
AAECC-8", Lecture Note, in Computer Science 608 (1990), Springer-Verlag, Tokyo,
pp, 206-217,

[6] Neumaier, A. lnUrval ~ t ~ far ~Wm of Klua~, Cambridge University Preu, 1990.

[7] Schaefer, M, J. Pr~'iu ur~ of aaa/y~ funa~u u~ing i ~ L e / ~ / m u ~ . Interval Computations
4 (1993), pp. 22-89.

['8] Sunderam, V. S. PVM: a #ammark far pm'~Let ~ a a ~ l r Concurrency: Practice &
Experience (December 1990), pp. 31tf-889.

Received:
Revised version:

February 28, 1994
November 20, 1994

Universitit T(ibingen
Wllhelm-Schickard-lnstitut

Sand 13
72076 T~ibingen

Germany

