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tn many real-life situations, we want to reconstruct the dependency y = f ( x t , . . . ,  zn) from the known 

experimental  results x ~ ) , y  (~). In other words, we want to interpobae the function f from its known 

values y(~) = f (z~k) , . . .  , z  (~)) in finitel), many points ~-(k) = (z~k) . . . . .  x(k)) ,  1 < k < N The re  are 

many functions that go through given points. How to choose one of them? 

The  main goal of finding f is to be able to predict V based on x i .  If  we get z i  from measurements.  
then ~isually, we only get intervtd.s that contain z~. As a result of applying f ,  we get an interval y 

of possible values of y. It is reasonable to choose f for which the resulting interval is the narrowest 
possible. In this paper, we formulate this choice problem in mathematical terms, solve the corresponding 
problem for several simple cases, and describe the application of these solutions to intelligent control. 

]/[HTeplIOAmal/m, Aa~0rrr, a~ CaMl:,Ie y3Krte 
IIHTepBaAbI, tl ee IIpHA0~eHI~ K 

3KCIIepTHblM CIICTeUau I,I 
mlTeAAeK aAbI-IOMy yrlpaBAeI-ImO 
X. Hr'/F.H, B. KemartoBvin, B. A~, A. TOA~ZPT 

~ )  Mnor~x npaxrnnecxnx 3aaa,~ax rpe6yerc~t BO~XzraHoBHTr~ aaaucrtMocrl, y = f (z~. , . . . ,  Xn) Ha (Kno- 
BatiHn 3KcnepnMeHTaabHo no.,ly~ienntax Iaann~x ~ k ) , y ( k )  ~pyrnMn C'XOBaMn, ham nya4ao un*,'u~w.aupo- 
, ,m,  qbynxum0 f no ee a3BecrmaM 3na,~euna~ y(k) = f (x~ k) . . . . .  x~  k)) B Kt,ne,~noM Mnoa~ecx~e v o , e x  

z -'(~) = (z~k),. . . ,z~k)),  1 < k < N Cymec'rayer Mnoro qbyngun~, npoxoaamax  ,~epe3 3aaanmae 

rottKH KaK B~6paTb O/IHy u3 HIEK. ) 
OCHOBHa~I IteJlb lIO[~cKa ~yHKimn f COCTOHT B TOM, qTO~l~ HMeTb BO3MOFKHOCTb npeacKa3Ml:~Tb 

3HaqeHHa y Ha OCHOBaHHH ~i  EC.4H X i nodlvqeHM B pe3y~bTaTe a3MepeHn~, TO, KaK npaan.ao, M~a 
HMeeM He CaMI4 3HaqeHHa Xi, a upt?lb~lb~, coaep>Kaume 3TH 3HaqeHH~l. I'IpHMeHHB ~yHKIIHIO f ,  
Mla r~o~yqHM ~n'repBaa y BO3,~OX~H~aX 3Haqemt~ y. H i e e T  CMZaC_a a~6pa"rr~ f TaKHM, qTO~hl 3TOT 

pe3ym,r~tpy~oumfi nHTepBaa 6~a~ nO BO3MO>KH6c'rn 6o.aee F3KnM. B pa6o're ~ra npo6aeMa a~a6opa 
~c~)pMyartpye'rc~ MaTeMaTHqeCKH H pemaeTca n . ~  t~eCKOJII~KI4X rIpOC]blX GqyqaeB OnHcI~lBaeTc~ TaKFKe 

txpnMenenHe 3THX pemeHn~ B HHTe.qaeKTya~lbHOM yIlpaBJleHHH. 

11 Interpolation: brief formulation of the problem; our 
idea 

In many real-life applications, we know that a physical quantity y depends on the quantities 
x l , . . . , x n ,  but we do not know the exact dependency. To determine this dependency, we 
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measure the values of  xi and p in several real-life situations. As a result, we get the values 

p(k) = f ( x ~ k ) , . . . , x ~ ) )  of the unknown function f at several points z -'(k) = (X~k),...,x(~k)). 
From the results of  these measurements, we want to reconstruct the function f ,  i.e.; we want to 
know the values f(Y) for all other points Y. In mathematics, this problem is called interpolation 
(if ~ is in between ~k)), and extrapolation otherwise. In reaI-life applications, this problem is also 
called identifwation. 

There are many ways to extend a function defined in finitely many points to the entire 
area. So, we must somehow choose one of  the resulting functions f .  In some cases, we have 
some apriori information about f :  e.g., that f(ff) _> 0, or that f is monotonic. In the majority 
of real-life situations, however, this information is not sufficient to pick a function f uniquely, 
so, we need some additional choice criteria. 

In interval computations (see, e.g., [1, 20, 21, 25]), several such criteria have been formu- 
lated; these criteria and corresponding algorithms are described, e.g., in [7, 9, 10, 15, 16, 24, 
26-28,  30-36].  

In this paper, we propose a new cr/terion. Its idea is as follows: The goal of the interpolation 
(extrapolation) is to predict y based on our knowledge of xi. Measurements are never absolutely 
accurate, so, after measuring xi, we will only get intervvds xi of  possible values of  xi. After 
applying the interpolated function f to these intervals, we get the interval y = f ( x l ,  . . .  ,x~) 
of possible values of  y. We would like to make the resulting predictions as precise as possible. 
For the same accuracies of  measuring xi (i.e., in mathematical terms, for the same widths of 
the intervals xi), different interpolation methods will lead to intervals y of different width. For 
some methods, the resulting precision in y will be comparable with the accuracy with which we 
measured x,, for some other extrapolation techniques, we will get Y with much lower accuracy. 
For example, if n = 1, and we know that f (0)  = f (1)  = 0, then the constant interpolation 
f ( z )  = 0 will lead to f([0.3, 0.5]) = 0, while the sine interpolation f ( x )  = sin(100~-x) (which 
is quite consistent with the initial data f (0)  = f (1)  = 0) will lead to f([0.3, 0.5]) = [ -1 ,  1]. 

It is natural to choose an interpolation method that does not add unnecessary additional 
uncertainty to the inaccuracy of  measuring xi, i.e., a method that minimizes the guaranteed 
width of  y for a given width 6 of  intervals x,. 

We will see that it is sometimes impossible to minimize the width of y for a/l 5. In this 
case, it is necessary to recall that the reason for this minimization is that we do not want to 
ruin the accuracy of measuring xi. This is not such a big problem when we measure xi with 
low accuracy, because in this case, the accuracy will be low anyway, but it is important  for 
accurate measurements. So, if we cannot guarantee the narrowest intervals for all 6, we can at 
least try to guarantee the narrowest intervals for all sufJ-u:iently small ~. 

This idea does not always lead us to a unique choice of interpolation. However, as we will 
see, in several simple case, it does. Several real-life applications for the resulting procedures (to 
expert systems and intelligent control) are presented. 

2Q Definitions and the main results 

2 .1 .  Definitions 

Definition 1. By an interpolation problem, we mean the tuple ;o = (n, U, .T', N, ~(1) . . . .  , z~N), 
y (1) . . . .  ,9(N)), where: 



INTERPOLATION THAT LEADS TO THE NARROWEST INTERVALS.,. 301 

n is a positive integer; 
U is a subset o f  Rn; 
.F is a set o f  functions from U to R; 
N is a positive integer; 
#k) (1 < k < N )  are elements of  U; 
y(k) (1 < k < N )  are real numbers. 

We say that a function f E ~F is a possible solution to the interpolation problem i f  f ( x  -'(~)) = y(k) 
~or all k. 

Definition 2. Let f be a possible solution to an interpolation problem 70, and let ~ > 0 be a 
positive real number. We say that a 6-input "uncertainty leads to a <_ a-output error, i f  for every 

E U and ~' E U, for which Ix, - x~] <_ 6 for all i, we have If(Y) - f(s < a .  

Remark. In other words, if for all i, x~ E Ix, - 6, xi + 6], then f ( U )  E [f(:~) - a, f ( s  + a]. 

Definition 3. Let f be a possible solution to an interpolation problem P ,  and let 6 > 0 be a 
positive real number. By a 6-sensitivity o f  a function / ( ~) we mean the smallest o f  real numbers 
a, for which a 6-input uncertainty leads to a <_ a-output  error. The  6-sensitivity o f  a function 
f ( s  wi11 be denoted by sI (6  ). 

Remark. It is easy to check that 

s i (6  ) = s u p { I f ( x l , . . . , x n ) -  f (x~ , . . . ,X~n)[:  ] x t -  x~[ < 6 , . . . ,  [ x n -  x~[ < 6}. 

When f is continuous, s l (6  ) is the well-known modulus of  continuity of f [18]. The  above 
sup is in fact max: see Proposition 1 below; for reader's convenience, its proof, as well as all 
the proofs of  the results are given in the last section. 

Proposition 1. For every function f ( s and for every 6 > 0, there exists a 6-sensitivity O.e., 
the smallest o f  real numbers a, for which a 6-input uncertainty leads to a <_ a-output  error). 

Definition 4. 

�9 We say that functions f ( s  and 9(~) are equally sensitive i f  for every 6, s l (6  ) = sg(6). 

�9 We say that a function f ( s  is less sensitive than a function 9(~), i f  for every 6, s l (6  ) <_ 
sg(6), and at least for one 6 > O, s f (6  ) < s9(6 ). 

�9 We say that a [unction f ( s  is asymptotically less sensitive than a function 9(~), i f  there 
exists a A > 0 such that for every 6 < A ,  s l (6  ) < sg(6). 

�9 We say that a function f ( s  is the least sensitive solution to an interpolation problem 70 i f  
f is a possible solution, and f is either less sensitive, or equally sensitive than any other 
possible solution. 

�9 We say that a function f(Y,) is the .least asymptotically sensitive solution to an interpolation 
problem 7 ~ i f  f is a possible solution, and f is asymptotically less sensitive than any other 
possible solution. 

2.2. Main result: 1-D case 

Definition 5. By the simplest I - D  interpolation problem, we mean the interpolation problem, for 
which n = 1, U = [al, a2], jc  = the set of  all functions from U to R, N = 2, x 0) = al,  and 
x (2) = a2. 
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Comment. tn  other  words, we are looking for a funct ion f : [al, a2] --* R for which f ( a l )  = V (1) 
and  f (a2)  = y(2). It turns  out  that for this problem, there exists no least sensitive solution, but  

there  does exist the least asymptotically sensitive one: 

Propos i t ion  2. For every possible solution f o f  the simplest 1 - D  interpolation problem, there  

exists another possible solution 9 and a real number  6 > 0 such that s9(5 ) < Sy(5). 

T h e o r e m  1. For every simplest I - D  interpolation problem: 

�9 the  l inear  funct ion  fo(~:) = y(~) + (x  -- a ~ ) ( r  ~) -- y(~)) / (a~ -- a~) is the  least a ~ y m p t o t i c ~ l y  

sensitive solution; 

�9 for every other possible solution f ,  there exists a positive tea/  number  A > 0 and a 

positive real number  C < 1 such that for all 6 < A ,  sfo(6 ) <_ C .  sy(~). 

2.3. Auxiliary results: t -D case 
Comment. T h e  motivat ion for these results will be presented later. 

Def in i t ion  6. Let n = 1 a n d  U = R. Let us def ine  the following 1 - D  interpolation problems: 

�9 Let x_  < x+ be two real numbers. 

- By 7~vb, we will denote the following problem: Y= = the set o f  all functions f : R --* R 

for which f ( x )  = 0 for x < z _ ,  and f ( x )  = t for x > x+; N = 2, f ( x _ )  = O, 

f ( x + )  = 1. 

- By Pnb, we will denote the fol lowingproblem: .~ = the set o f  all functions f : R ~ R 

for which f ( z )  = t for x <_ z _ ,  and f ( z )  = 0 for  x > x+; N = 2, f ( x _ )  = 1, 

f ( x + )  = O. 

�9 Let x_  < Xo < x+ be tea/  numbers such that x + - X o  = X o - X - .  By ~,~, we mean 
the following problem: i f  = the set o f  all functions f : R ~ R for which f ( x )  = 0 for  

x _ x_ a n d  for  x > x+; N = 3, f ( x _ )  = f ( z + )  = 0 and f ( x o )  = 1. 

�9 Let x_ < a_ < a+ < x+ be tea/  num ber s  such that x . - a +  = a _ - x _ .  By 79w, we 

m e a n  the following problem: .~ = t h e  set o f  all functions f : R ~ R for which f ( x )  = 0 
for z <_ x -  a n d  for x >_ z+, and f ( z )  = 1 for a_ < z < a+; N = 4. f ( x _ )  = f ( z + )  = O, 

f ( a _ )  = f (a+)  = t .  

Propos i t ion  3. For the interpolation problems enumerated in Definition 6, the following 

piecewise l inear  interpolation functions are  the least asymptotically sensitive solutions: 

�9 For Ppb, f o ( z )  = (x  - x _ ) / ( x §  - x _ )  for  ~'- < �9 < ~+. 

�9 For 79,~b, fo(x)  = t - (x - x _ ) / ( x +  - x_ )  for x_  < x < x -~. 

�9 For P~,  fo (~)  = Ix - x o l / ( ~ +  - Xo) for  x _  < ~ < x +. 

�9 For P~, ,  do(x)  = (~ - x _ ) / ( a _  - x _ )  Cot ~ �9 [x_, a_] a n d  f o ( x )  = (x+ - x ) / ( x  - a+)  

for z �9 [a+, z+]. 
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Definition 7. Let us debne the followin~ interpolation problem P-.: n = I, U = [0, I], 5 r 

consists of` all decreasJn~ :unctions f '. [0,1] - -  [0, I] such thac f( f(=))  = x [or all pc; N --- 2, 
and &e interpolation equations are  f(O) = 1 and  f ( 1 )  = 0 (i.e., pc(l) = O, x (2) = 1, y(~) = 1, 
and  y(~) = 0). 

Proposition 4. 

�9 fo(x) - i - x is the least sens/dve solution to the interpolation problem ~.. 

�9 It" f is a possible solut/on to P., and f ~ fo~ then there exists a positive real number 
A > 0 and a pos/tive real number C < I such that For all 6 < A, S/o(6 ) < Cs/,(6). 

2.4. 2-D problems 

Definition 8. Let n = 2, U = {0, I] x [0, l]; Let us de~qne the Following 2-D interpolation 
problems: 

�9 By ~., we wil] denote the followin$ problem: 

- ~ = the set of all functions / : U -* [0, i] For which/(x~, =~) _< =x and f(xt, z~) = 
f(x~, zz) For all zt and z~, 

- N - ~,/(0, 0) = f(0, ~) -/(~, 0) - 0, f(~, Z) - Z. 

�9 By 7~v, we will denote the Foilow#ng problem: 

- ~ =. the set o: all :.herOnS : : U ~ [0, I] For which/(x~, a2) _> z~ and :(z~, z2) = 
.F(x2, x~) For all z~ and x2, 

- ~ = 4,/(o, o). o,/(o, ~)./(~, o) .. o = (~, ~). ~, 

Theorem 2. 

�9 min(=z, z~) is the lease sen#/~Jve solufJon eo the inrerp~larJon problem ~ ,  

Is f is a pm~ible sdurJon to the problem P,,, and / @ rain, then there exisu a 
positive real number A > 0 end pa~tive real number O < I such that For all 6 < A, 
s~i.(~) < 0 at(e), 

�9 ma.x(=~, x2) is the least sen~dve sdutJon to the ImerpoJation Woblem Pv, 

f f f  is 
positive 

a po~ble soVu~on to the problem ~v, and / @ max, then there exists a 
real number A > 0 and po~tive real number C < I such that For all 6 < A, 
< C, ~/(~), 

To compare these resukm, we describe the ~-leniidvky for mitt, max, and for •veral other 
possible mlutlon8 of the Interpolation problems ~a and ~v: 
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Proposition 5. 

�9 For f = rain and f = max, s i (6  ) = 6. 

�9 For f (a ,  b) = ab and f (a ,  b) = a + b - ab, 8f(6) = 2 6  - -  62; 

�9 For f (a ,  b) = min(a  + b, 1), s l (6)  = min(26, 1). 

Comment. The  fact that rain and max, and ab and a + b -  ab are equally sensitive stems from 
the fact that in general dual functions have the same modulus of continuity, where g(a, b) is 
dual to an f (a ,  b) if 9(a, b) = 1 - f (1  - a, 1 - b). 

Proposition 6. Dual operations are equally sensitive. 

3. Applications of these results to expert systems and 
intelligent control 

3.1. What is intelligent control 
In case we do not have the precise knowledge of a controlled system, we are unable to apply 
traditional control theory. In such cases, we can find an expert who is good at control, extract 
as many rules as possible from him, and try to transform these rules into the precise control 
strategy. Zadeh and Mamdani initiated a methodology for such a translation [4, 19] that is 
based on fuzzy set theory [37] and is therefore called fuzzy control (see, e.g., the surveys [2, 17, 29]). 
In order to apply this methodology, we must: 

1) describe the expert 's uncertainty about every natural-language term A (such as 
"small") that he uses while describing the control rules; this is done by ascribing to 
every possible value x of  the related physical quantity a value #A(X) from the interval 
[0,1] that describes to what extent this expert believes that x satisfies the property A (e.g., 
#small(0.3) is his degree of belief that 0.3 is small). The  resulting function #A is called a 
membership function; 

2) experts' rules contain natural-language words combined by logical connectives (e.g., "~f x 
is small, and J: is medium, then u must be small"), Therefore,  we must be able to estimate 
the experts' degree of belief in A & B ,  A V B,  ",A (where -- stands for "not") from the 
known values of degrees of belief of  A and B. In other words, we must describe the 
fuzzy analogues of &, V, and -~ to combine the original membership functions into a 
membership function #c(u)  for control; 

3) finally, we must transform this membership ~'unctions into an actual control value by a 
proper clefuzzification procedure. 

As concerns the first stage, there exist several methods that allow us to ask several questions 
to an expert or experts and come out with the desired values of  membership functions (see, 
e.g., [6, 11]). This makes perfect sense if the experts (whom we ask) give "yes" or "no" answers 
to all these questions, i.e., when they are absolutely sure of what they are doing. They may be 
unable to describe their control strategy in precise mathematical terms, but they are absolutely 
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confident in what they are doing (a good example is a person driving his car: he has no 
doubts about his ability to drive, but he usually cannot formulate his strategy in precise terms). 

However, if we are planning a trip to the unknown (e.g., a mission to Mars), then operators 
are often not that confident in their control abilities. For example, they can formulate a rule 
in terms of a certain angle being small, but they are uncertain of whether, say, 10 ~ is a 
small angle or not. As a result, the values of membership functions that we extract from the 
same expert can differ drastically. Different membership functions, in their turn, can lead to 
drastically different control strategies, with different quality of the resulting control. 

This situation can be viewed as one step further away from the precision of traditional 
control: 

precise knowledge ~ uncertain knowledge with known degrees of certainty 
uncertain knowledge with uncertain degrees of certainty 

What to do in these maximally uncertain situations? Since fuzzy control proved to be 
a very efficient methodology [2, 17, 29], we still want to use it, but we must now be very 
cautious in choosing &-, V-, and -,-operations, and in choosing a defuzzification procedure. In 
all these choices, we want to result to be as lr162 sauitive to the possible changes in the values of 
membership functions as possible, In other words, we want to develop tlw least sensitive control. 

3.2. Sensitivity of and V-operations 
Let us first analyze the case of &- and V-operations (this section subsumes [22]). 

The first paper by L. Zadeh [87] that introduced this approach to knowledge representation 
proposed rain(a, b) and ab as &-operations, and max(a, b) and a + b - a b  as V-operations. Zadeh 
himself stressed that these operations 'are not the only operations in terms of which the union 
and intersection can be defined", and "which of these,,, definitions are more appropriate 
depends on the context" [38], pp, 226-228, $1nce then several dozens different ~-  and V- 
operations have been proposed and successfu/ly umed, Some operations have been discovered 
empirically while working on real expert systems (e,g., the famous MYCIN [3]) or while analyzing 
commonsense reasoning [28, 39])~ some of them were proposed on a more theoretical basis (see, 
e.g., [6, 11]), A survey of such operations is given in [14]. 

The natural properties of an k-operation ] are as follows: 

�9 First, since A&B and BI~A mean the same, we must demand that/(a, b) = f(b, a) for 
all a and b, 

Second, when each of the statements A and B is either definitely true, or definitely false, 
we must get the same truth values as the normal & operation of binary logic, i.e., we 
must have f(0,  0) *. f(0, 1) ,- f(1, 0) m 0 and f(1,  1) .. 1, 

Third, the degree of belief in A&B cannot exceed the degree of belief in A. So, we 
demand that f(a, b) < a for all a and b. 

Summarizing, we conclude that an &:-operation f must be a posalble solution to the interpolation 
problem P~. (this is the explanation of the term that we used while proving Theorem 2). 
Similarly, we can conclude that an V-operation f must be a possible solution to the interpolation 
problem T)v. So, from Theorem 2, we can now conclude that f(a, b) = mln(a, b) is tht ltoat 
se'asitive &-op~ation, and ](a, b) - max(a, b) ~ t~  least ~i t~ve V.oWtation, 
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Comments. 

1. In [12-14] general optimization problem are analyzed on the set of all possible &- and V- 
operations. As a result of this mathematical analysis, lists are given that include all &- and 
V-operations that can be optimal under reasonable optimality criteria. Our Theorem 2 
are in good accordance with that general result, because both s i n  and max are elements 
of those lists. 

2. Similar questions of sensitivity in the context of neural networks are analyzed in [5]. 

3.3. Sensitivity of negation operations 
We can define a r~gaIion o'pro~ion as.a function f '. [0, I] =-, [0, i] that interpolates the values 
coming from the definition of the classical negation: /(0) = 1 and .f(1) =- 0. From Theorem i, 
we can now conclude that f ( x )  ffi 1 - z is asyrnpto~ally $h~ bast s~n~itiw negation ol~rtation. 

In addition to that, since - ( - A )  means the same as A, we can demand t h a t / ( / ( z ) )  = x 
for all x. Also, if we increase, our  degree of belief in A, then the degree of belief in "-A should 
decrease. So, the function f must be d,~reasing. We arrive at the conclusion that ] must be a 
possible solution to the problem 'P~,, and therefore, due to Propos'tion 4, that f (z )  ffi 1 - z  is 
th~ least sm~sitiw nqation ot~ration (and not only asymptotically the least sensitive one). 

3.4. The least sensitive normalization 
In some cases, before making a decision an auxiliary operation is performed with a membership 
function #v(u) that is called a aorz~/maon. The reason for this operation is that for many 
notion from natural language, there is a value about which all the experts (or at least the 
vast majority of them) agree that this value satiales the desired property: for example, for 
"negligible" it is 0, for *big" it is 1000 (or I06 if i000 is not enough). So, for the corresponding 
membership functions/~(x), there exists a v~ue ~0 for which ~(x0) ~- 1, hence sup,/~(x) ~ l, 

However, after applying the &-, V- and ~-operations, we sometimes obtain a membership 
function/.,(z), for which v -=- sup, #(z) < I, and which is thus difficult to interpret. So, before 

a defuzxification procedure to it, we first want to nor~d~ this membership function, 
i.e.,we applYapply some transformation t :  [0, v] ~ [0, 1] and get a new function/t(x) ~-~(/~(x)) whose 

biggest value is already equal to i, Usually, the function t(~:) ~- r  is taken. The question is: 
which of the possible normalization procedures is the least semitive~ From Theorem 1, we can 
conclude that f (x)  ~ z / v  is th~ l~as$ asympto$iealty ~ i t i v~  normaLita$ion, 

3.5. The least sensitive choice of membership functions 
All the above applications are about the ta~e when the experts can be uncertain, but the 
inputs for the control decision (i,e,, the values of ~, ~, etc) are considered to be precise, In 
real-life situations, especially in the case of the future space missions, it is important to take 
into considerations that the input data can also be imprecise, In this ease, we want to choose 
membership functions in such a way that the change in an input value a: will lead to the 
smallest possible change in the value of/~(~) (and thus in the resulting control), In other 
words, we want to guarantee that the interval of possible values of p(~) is the least possible, 
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We want to use this idea to choose the most sensitive extrapolation procedure  for member-  
ship functions. In other words, when we have a fuzzy notion for which we want to describe a 
membership function, we describe when this nouon is absolutely true, and when it is absolutely 
false (i.e., when the membership function is equal to 1 and 0) and get all other values of 
membership function by extrapolation. 

In fuzzy control, four types of natural-languages terms (fuzzy variables) variables are mainly 
used: 

1) Variables like "negligible", where one can name a value x 0 for which the corresponding 
property is absolutely true ~ (x0)  = 1), (for negligible it is x0 = 0), and the values x_ 
and x+ such that for x < x_ and x > x+ the corresponding proper ty  is absolutely false 
(e.g., values with x < x_ or  x > x+ are absolutely not negligible). 

2) (similar case) Variables, for which we can name an interval [a_, a+], inside which the 
corresponding property is absolutely true, and a bigger  interval Ix_, x+], outside which 
this proper ty  is absolutely false (the first case can be considered as a part icular  case of  
this one, when a_ = a+ = x0). 

3) Variable like "positive big", for which we can name values x_ < x+ such that for x < x_ 
the corresponding proper ty  is absolutely false, and for x > x§ this proper ty  is absolutely 
true. 

4) Variable like "negative big", for which we can name values x_ < x+ such that for x < x_ 
the corresponding proper ty  is absolutely true, and for x > x§ this proper ty  is absolutely 
false. 

In the first and  second cases, usually the intervals are symmetric, i.e., in the first case, 
x+ - x0 = x0 - x_ ,  and, in the second case, x .  -~ a+ = a_ - x_.  Applying Proposition 3, we 
can now conclude that the least asymptotically sensitive membership functions can be obtained by linear 
interpolation (i.e., tr iangular,  trapezoidal, etc). 

3.6 .  Conclusions 
As far as combining degrees of  belief of experts is concerned, in situations where estimates can 
vary drastically, it is reasonable to use fuzzy logic connectives, which are the least sensitive to 
these variations, i.e., for which the resulting intervkls of  uncertainty are the smallest possible. 
We have proved that in this situation, the dual pair rain(a,  b), max(a ,  b) are the least sensitive 
operations. Results are also given for choosing the least sensitive negation operations and 

membership functions. 

4. Proofs 
Proof of Proposition 1. The  set S of  all real numbers a ,  for which a 6-input uncertainty 
leads to a <_ a -ou tpu t  error,  is bounded from below (by 0), and therefore, has an infimum 
(the greatest lower bound) r .  r is the value of  6-sensitivity. Indeed, since r is the greatest 
lower bound of  the set S,  for every positive integer k there exists a number  rk E S such 
that rk < r + 1/k. According to the definition of S,  from rk E S we conclude that if 
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Ixi - x{[ <_ 5 for all i, then If(x1, .,x,~) - f ( x l , . . . , x ~ ) [  _< rk. Letting k ~ oc, we conclude 
that I f (x> .~. , x , )  - f ( x l , . . .  ,x~n)l < limit rir = r. [] 

Before proving Proposition 2, let us first prove Theorem 1. 

Proof of  Theorem 1. 

1 ~ Let us first prove that if f is non-linear, then s f0(5 ) > s f((5) for sufficiently small 6. Without 
losing generality, let us assume that 71 (2) > yO) (the proof for the case when y(2) < y(n is 
similar). For fo(x) ,  one can easily compute that sfo(6 ) = K6,  where K = ]y(2)_ y (n l / ( a  2 _ ax). 
Since f is different from fo, we have f ( x )  # fo(x)  for some x. For this x, either f ( x )  < fo(x) ,  
or f(:c) > fo(x).  Let us analyze these two cases. 

�9 In the first case, for xl = x and x i = a2, we have Ixl-zll = a = - x  and I f ( z t ) - f ( x l ) l  = 
y(2) _ f ( z )  > y(2) _ fo(x)  = fo(a:)  - fo(x)  = sfo(a2 - x). Hence, for (50 = a2 - z ,  we 
have sl(60) > s/o((5o ) = K6o. 

! �9 In the second case, for xl = al and x 1 = x, we have Ix1 - x][ = x -  al and 

I f ( z J  - f ( x l ) [  = f ( x )  - yO) > f o ( x )  - y(~) = f o ( z )  - f o ( a J  = s s ( x  - ax) 

hence, for 60 = x - al,  we have sl(6o) > Slo(5O) = K6o. 

2 ~ To prove the second part of  Theorem 1, we need the following Lemma (we will use it for 
K" = ly (2) - y(1)]/(a2 - a J ) :  

Lemma. I f  si(60 ) > K Q  for  some K > 0 and 6 > O, then there exists a positive real number  
A > 0 and positive real number C < 1 such that for all 6 < A, s i (5  ) >_ ( K 6 ) / C .  
Proof of  the Lemma. As we have already noticed, for continuous functions f ,  &sensitivity 
coincides with the modulus of continuity of f .  The  modulus of  continuity is a subadditive 
function [18], so, if f is continuous, then si(61 + 62 + ' "  + 6n) ~_ sf(61) + s1(62) + . - -  + 6n 
for all 6 t , . . . ,  6n > 0. The  proof of  this inequality does not use continuity of f and therefore, 
it can be applied to arbitrary functions f .  In particular, for 61 = 62 . . . . .  6n = 6o/n, we 
conclude that s f(60) ~ ns f (6o/n) .  Therefore, s f (6o/n)  >_ s i (6o)/n.  If  we denote sl(60) by D, 
then this inequality takes the form sf((5o/n) >_ D i n .  

In order to continue the proof, we need to use one more property of  the modulus of 
continuity [18]: if (5 < 6', then s l (6  ) < sf(6') .  

Let us now take any real number C between c = K 6 o / D  and 1 (c < C < 1), and prove 
that there exists a A > 0 such that for all 6 < A, we have K 6  <_ Cs i (5 )  (or, equivalently, 
s z (6 )  >>_ K 6 / C ) .  

We already know how to estimate the values of  s f(5) for 6 = 60/n, where n = 1, 2, 3 , . . .  
So, to get the estimates for arbitrary 6, we can use these known estimates. For every 6 < 60, 
we want to find an n such that 60/(n + 1) ~ 6 __ 60/n. This inequality is equivalent to 
(n + 1)/60 >_ 1/6 _> n60, which, after multiplying both sides by (5o, turns out to be equivalent 
to the inequality n _< 60/6 <_ n + 1. Therefore, we can take as n the integer part [60/6j of 

the ratio 60/6. From monotonicity, we can conclude that sf(6)  >_ s f (6o / (n  + 1)). We have 

already proved that S f@o/ (n  + 1)) >_ D / ( n  + 1). Therefore, sf(6) >_ D / ( n  + 1). We defined 

c as c = K6o/D;  so, D = K(5o/c. Hence, sf((5) _> K(5o/(c(n + 1))~ 

We want to get an inequality sf(6) _> K 6 / C .  We will be able to deduce this inequality 

from the one that we have just proved if 5o/(c(n + 1)) > (5/C. Since (5 < (5o/n, this inequality 
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is valid if 6o/Cn <__ (5o/(c(n + 1)). Dividing both sides by 60 and then inverting both sides, we 

get an equivalent inequality Cn > c(n + 1), which, in its turn, is equivalent to ( C -  c)n > c and 
n > c / (C  - c). Therefore,  if n > c / (C  - c), then for (5 _< ~o/n we get the desired inequality 

ss((5) > 6/c, 
The  inequality n > c / ( C -  c) is valid for all n starting from N = L c / ( C -  c)J + 1. 

Therefore,  the desired inequality si(6)  > K(5/c is true for all 5 < A,  where A = (5o/N. T h e  
Lemma is proven. 

~o Now, the second statement of Theorem 1 is proven. The  first statement of Theorem 1 
, lirectly follows from the second one. [] 

Now we are ready to prove Proposition 2. 

Proof  of  Proposi t ion 2. If f ( z )  r fo(x),  then the existence of  the desired g(x)  follows from 
Theorem 1: we can take g(x) = fo(x).  So in order  to prove this Proposition, it is sufficient to 
prove it for f ( x )  = fo(x) ,  i.e., it is sufficient to find a function 9(x) such that sg(5) < sio(6 ) 
for some 6 > 0. 

Let us define the following function F ( x ) :  

�9 F (x )  = 100/3x for x _ 0.01, 

�9 F (x )  = 1/3 for 0.01 < z < 0.495, 

�9 F(x)  = 1/3 + 100/3 * (x - 0.495) for 0.495 < x < 0.505, 

�9 . F (x )  = 2/3 for 0.505 < x < 0.99, and 

�9 F (x )  = 2/3  + 100/3 * (x - 0.99) for x > 0.99. 

This is a continuous function from [0,1] to [0,1]. Let us prove that for g(x)  = F ( x ) ,  
sg(0.4) < 1/(3)  < 0.4 = si0(0.4 ). In other words, we want to prove that if [ a  - a ' [  < 0.4, then 
Ig(a) - g(a')l  < 1 /3  < 0.4. 

Without losing generality, we can assume that a < a ' ;  then a '  < 0.4 + a, and  the desired 
inequality takes the form g(a j) - g(a) < 1/3 < 0.4. Let us consider all possible locations of  a. 

�9 If 0 < a < 0.01, then a '  <_ 0.4 + a <_ 0.4 + 0.01, and, therefore g(a') <_ 9(0.45) = 1/3. 
Hence, g(a') - g(a) <_ 9(a') < 1/3. 

If  0.01 _< a _< 0.495, then g(a) = 1/3, and a '  _< 0.4 + 0.495 = 0.895, hence g(a') <_ 
g(0.895) = 2/3.  Therefore,  9(a') - 9(a) < g(0.895) - g(a) = 1/3. 

If  0.495 _< a _< 0.505, then g(a) >_ 9(0.495) = 1/3; here a '  _< 0.505 + 0.4, hence 
g(a') <_ g(0.905) = 2/3. Therefore,  g(a') - g(a) <_ g(a') - g(0.495) = 1/3. 

�9 For the cases 0.505 < a < 0.99 and a _> 0.99, the proofs are similar. 

So, in all the cases, Ig(a) - 9(a')l <_ 1/3 < 0.4. 

This proves the Proposition for the case when a l  = 0, a2 = 1, yO) = 0, and y(2) = 1. In 

the general case, we can take 9(x) = y(1)+ (y(2) _ yO)) .  F ( ( x  - al) / (a2 - a l ) ) .  [] 

Proof of Proposi t ion 3. For the piecewise-linear functions, slo((5 ) = kt ,  where k = 1 / ( x + - x _ )  
for functions of types 1 and 2, k = 1 / (x+ - x0) for functions of type 3, and k = 1 / (x+  - a+) 
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for functions of  type 4. T h e  fact that  these functions are less asymptotically sensitive then the 
others can be proven just like in the p roo f  of  Theo rem 1. 

Proof  of  Theo rem 9.. Let us call a possible solution of  a problem P a  an &-operation, and  a 
possible solution of  a problem 79v an V-operat/on. 

1 ~ Let us first prove that we have f (a ,  b) < rain(a,  b) for any &:-operation f .  Since f (a ,  b) < a 
and  f (a ,  b) = f(b,  a) < b, it follows that f (a ,  b) < rain(a, b). 

2 ~ Next, let us show that stain(6) = ft. 

Indeed,  for la - a'l < 6, we have a < a '  + 6 and  likewise b < b t + (5. Hence, rain(a,  b) < 
min(a '  42 (5, b t +/5) = min (a  t, U) + (5, therefore,  rain(a, b) < min(a ' ,  b t) + 6. Likewise, min(a ' ,  U) < 
min(a ,  b) + (5, so -(5 <_ min(a ,  b) - min(a ' ,  b') <_ (5, and  

I min(a ,  b) - m in (a  t, bt)[ < 8. 

Take a = b =  (5, a t = b ' = 0 .  T h e n  

[ min(a ,  b) - min(a ' ,  b')] = (5 

and therefore,  the output  e r ror  is precisely 6. So, we cannot" take a . <  6, and so the 6-sensitivity 
of min  is really equal to 6. 

3 ~ Let us now prove that for every &-operat ion f (a ,  b): sf(/5) >_ stain(8) = 6. 

Indeed,  suppose that for some 6 E (0, I ) ,  s f(6) < 8. This means that if l a -  a'l _< 8 and  
ib - b'l _< 6, t h e n  I f (a ,  b) - f (a ' ,  b')l < s~(6) < 6. In particular, if we take a = b = 1 and 
a' = b' = t - 6, we conclude that I f ( t ,  1) - f ( t  - 6, 1 - 6)1 < 6. But according to the definition 
of a &-operation,  f ( 1 ,  t )  = t, therefore,  this inequality turns into It - f ( 1  - 6, 1 - 6)1 < 8. 
Hence, 1 - f ( 1  - 6, 1 - 6) <_ I1 - f ( 1  - 6, 1 - 6)1 < 6, therefore, f ( t  - 6, 1 - 6) > 1 - 6. But we 
have already proved in 1 ~ that f ( a ,  b) < rain(a,  b), therefore, f ( 1  - 8, t - c5) < t - 5. These  
two inequalities contradict  to each other.  Therefore ,  our  assumption that s i (6  ) < 8 is incorrect. 
Hence, sy(/5) >/5. 
4 ~ Finally, let us show that rain(a,  b) is the only & - o p e r a t i o n ,  for which sI (~  ) = 6 for all 6. 

Indeed,  suppose that f is different  f rom rain. T h e n  for some a and b, f (a ,  b) ~ rain(a,  b), 
hence f (a ,  b) < rain(a,  b). Without  loss of  generality, assume a <_ b, resulting in f (a ,  b) < 
min(a ,b )  = a. For a '  = b' = 1, we have ] a - a t [  = l - a ,  ]b-bt[  = 1 - b  <_ l - a ,  but 
If(a, b) - f (a ' ,  U)I = 1 - f ( a ,  b) > 1 - a. So, for 60 = 1 - a, sf(60) > (50. The  first s tatement 
of  T h e o r e m  2 (for &-operations) is proven. 

The  second statement follows f rom the above Lemma.  

T h e  third and  the four th  statements (about V-operations) can be proven in a similar 
manner .  [] 

P roof  of  Proposi t ion 4. Let us call a possible solution to a problem P_  a negation operation. Let 
us first prove that for every negation operation, sy(6) > /5 for all /5. For a s tandard negation 
operat ion fo(x)  = 1 - x, fo(6) = t - 6. So, let us consider three possible cases: 

�9 f(6)  < t - 6 ,  

�9 f ( 6 ) = l - 6 ,  and 

�9 f ( 6 ) >  1 - 6 .  

Let us prove the inequality sy(6) > 6 for all these three cases. 
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�9 In the first case, for  a = 0, a' = 6, we have ]a-a'[ <_ 6 and [ f ( a ) - f ( a ' ) [  = [1- f (6) l  > 6. 
There fo re ,  s f (6 )  > I f ( a )  - f (a ') l  > 6, and  s f (6)  > 6. 

�9 In the second case, likewise s i ( 6 )  _> 5. 

�9 In the th i rd  case, for  a = 1 and  a '  = f ( 6 ) ,  we have  la - a'] < 6, but  I f ( a )  - f (a ' ) l  = 
[0 - 6[ = 6. There fo re ,  sf(6)  > I f(a)  - f (a ') l  > 6, and  sf(6)  >_ 6. 

So, in all three  cases, we have s / ( 6 )  _> ~ for  all 6. 

We  can also easily show that  for  fo(x)  = 1 - x, we have sf0(~ ) = (5. So, to comple te  the 
p roo f  of  the theorem,  it is sufficient to prove tha t  if  a nega t ion  opera t ion  is not  s t andard ,  i.e., 
f ( x )  r 1 - x for  some x,  then sI(6 ) > 6 for  some 6. I f  f ( x )  r 1 - x,  this means  that  e i ther  
f ( z )  < l - x ,  or  f ( x )  > t - z .  T h e  case when  f ( x )  < 1 - x  has a l ready  been cons idered  
,bore, and  in this case, as we have a l ready  proved,  sf(6)  > 6 for  6 = x. 

Suppose now tha t  f ( x )  > 1 - x .  T h e n  x >  l - f  (x).  So, for  a = 1 and  a '  = f ( z ) ,  we 
have ] a - d  I = 1 -  f ( x ) ,  a n d  [ f ( a ) - f ( a ' ) [  = [ 0 - x [  = x. There fo re ,  for  y = 1 -  f ( z ) ,  
sf(V) > I f ( a )  -- f ( a ' ) ]  ----- x > y,  and  s / (y )  > y. 

T h e  second s ta tement  of  the Proposi t ion follows f r o m  the above Lemma.  [] 

Before p rov ing  Proposi t ion 5, let us prove  Proposi t ion 6. 

Proof of Proposition 6. 

1 ~ Let us first p rove  tha t  i f  f and  g are  dual ,  i.e., g(a, b) = 1 - f ( 1  - a, 1 - b), then  for  every 
6, s . (6)  > s+(6). 

Indeed,  suppose that  [a - a '  I <_ 6 and  [b - bl[ _< 5, a n d  let us prove  that  

Ig(a, b) - g(a', bl)[ <_ sr 

Since [ a - a ' ] < 6  and  [ b - b ' [ < 6 ,  w e h a v e ] A - A '  I = [ a - a '  1 < 6  and  I B - B '  I - - I b - b ' [ < 6 ,  
where  we deno ted  A = 1 - a,  A t = 1 - d ,  B = 1 - b, a n d  B t = 1 - b t. Due to the  def in i t ion  

of  s / (6 ) ,  we can conclude  tha t  [f(A, B ) -  f (A ' ,  B')[  <_ s l ( 6 ) .  But g ( a , b ) =  1 -  f ( A ,  B)  and  
g(a', b') = 1 - f (A ' ,  B') ,  the re fo re  Ig(a, b) - g(a', b')] = I f (A,  B)  - f (A ' ,  B') [  _< s/(6).  So, for  
a = sl(6) ,  if  ] a -  a '  I <_ 6 and  I b -  bq _< 6, then Ig(a, b) - g ( a ' ,  b')l <_ a. Since sg(6) is de f ined  
as the smallest  of  all a with this proper ty ,  we conclude tha t  sg(6) < sf(6) .  
2 ~ One  can easily check that  if  9 is dual  to f ,  then f is dual  to g. There fo re ,  we have both 
sg(6) < s f(6)  and  s l ( ~ )  _< s9(6),  hence sg(6) = sg(6)  
Proof of Propos i t ion  5. In the p r o o f  of  T h e o r e m  2, we have a l ready  shown tha t  8min(~ ) 

= 6. 
1% Let us prove  the resul t  about  s /  for  f (a ,  b) = ab. We must  prove,  first, tha t  if  ]a - aq < 6 
and  ] b -  bt[ < 6, then  l a b -  a~bt[ < 2~5-  62, and ,  second, that  there  exist such a,  b, d ,  b t for  
which ] a - a t [ < 6 ,  ] b - b q  < 6 ,  and  ]ab-atbq  = 2 6 - 6 2  . 

T h e  second s ta tement  is easy to prove: take a = b = 1, a ~ = b' = 1 - 6, then lab - atbq = 
1 - (1 - 6) 2 = 26 - 62. Let us now prove the first one. 

Let us deno te  [ a - a  t ] by Aa,  and  ] b - b ' [  by Ab. T h e n  A~ <~5 and  Ab < 6. Wi thou t  

losing any genera l i ty  we can assume that  a > a t. T h e n  a ~ = a - A~. With  respect  to b and  b I, 
there  are  two possible cases: b > b' and b < b t. Let  us cons ider  both of  them.  

I f  b > b t, then  b' = b - Ab, and  ab > atb ~, so the des i red  absolute value  d = lab - atbq can 
be compu ted  as follows: d = l ab -  atb'[ = a b -  a'b' = a b -  ( a -  A ~ ) ( b -  Ab) = a A b + b A ~ -  A~Ab.  
Since a _< 1 and  b <_ 1, we have d <_ A~ + Ab - A~Ab.  T h e  r igh t -hand  side of  this inequali ty 
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can be expressed as 1 -  ( 1 -  A ~ ) ( 1 -  A~). Therefore, it is a monotonely increasing function 
of both ~ and A b. So, its maximal value is attained when both of these variables take their 
biggest possible values. Since A~ < 5̀ and Ab _< 8, the maximal possible value is attained when 
A~ = A b = `5, and is equal to 2`5 - `52. Therefore, d <_ A~ + A b - A~A b < 2`5 - `52. So for this 
case the desired inequality is proved. 

Let us now consider the case when b < U. Then b = b ' - 2 x b ,  and d = l a b -  a'b'l = 
l a ( b ' - A b ) -  ( a - / M ) b ' l  = l a 2 x b -  b ' /Ml.  Let us consider two subcases: when the expression 

! under the absolute value is positive or negative, i.e., when aAb > b~A~ and aA  b < b A~. In 
the first subcase, d = aAb -- b'A~, therefore, d <_ b~Aa. Since Aa _< d~ and b' <_ 1, we get d _< `5. 

In the second subcase similarly d = b~A~ - aAb _< UAa _< 5̀. So, in both cases d ___ ̀ 5. 

So, to complete the proof, it is sufficient to show that 5̀ _< 2`5 - 5̀2 for all 5̀ f rom 0 to 1. 
Indeed, by dividing both sides by 5̀ and moving all terms to the right-hand side, we conclude 
that this inequality is equivalent to 0 _< 1 - 5, which is certainly true for 5̀ ___ 1. 

For f ( a ,  b) = a + b -  ab, the expression for s/(`5 ) follows from Proposition 6. 

2 ~ Let us now prove that si(`5) for the last function f .  Let us first consider the case when 
5̀ < 1/2. Then 2`5 < 1, and rain(2`5, 1) = 2`5. Let us prove that in this case, if ]a - a'] < `5 and 
[b - b' I <_ `5, then I f (a ,  b) - f (a ' ,  b')l <_ 2`5. 

Indeed, if [a--a'  I <_ `5 and Ib-b ' l  < `5, then I ( a + b ) - ( a ' + b ' ) ]  = I ( a - a ' ) + ( b - b ' ) [  <_ 2`5. In 
particular, this means that d + b '  < a+b+2`5. Evidently, a~+U _< 1, therefore, d + b '  < 1 < 1+2`5. 
So, a '  + b ~ is not bigger than the smallest of these two numbers: a ~ + U < min(a  + b + 26, 1 + 2`5). 
But min(a  + b + 2`5, 1 + 2`5) = min(a  + b, 1) + 2`5 = f ( a ,  b) + 2`5. So, a' + b' < f ( a ,  b) + 2,5. 
Since f (a ' ,  b') = min(a '  + b', 1) and therefore, f (a ' ,  b') <_ a' + b', we conclude that f (a ' ,  b') < 
f ( a ,  b) + 2`5. In a similar manner  we can prove that f ( a ,  b) < f (a ' ,  b') + 2`5. Combining these 
two inequalities, we conclude that I f (a ,  b) - f (a ' ,  b')[ _< 2`5. So, for `5 < 1/2, s/(b) < 2`5. 

Let us now show that c~ = 2`5 is the smallest value, for which `5-input uncertainty leads 
to a <_ a-output error, and thus, s:(`5) = 2`5. Indeed, if we take a = b = 0, a ~ = b ~ = `5, then 
] a -  a'[ _< `5, [ b -  b'[ _< 2`5, and I f (a ,  b ) -  f (a ' ,  b')l = [ 0 -  2`5[ = 2`5, so the values a < 2`5 do not 
work in this case. So, for 5̀ < 1/2, we proved that s / (6 )  = 2`5. 

Now let us consider the case when 6 > 1/2. In this case, rain(2`5, 1) = 1. If  we take 
a = b = 0, a '  = b' = `5, then f ( a , b )  = O, f (a ' , b ' )  = 1, ] a -  a'] < 6, [ b -  b'[ ___ 2`5, and 
I f (a ,  b) - f (a ' ,  b')[ = ]0 - 1] = 1. Therefore, nothing smaller than 1 can serve as c~, hence 
s:(6) = :. 
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