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Interpolation that leads to the narrowest
intervals and its application to expert systems
and intelligent control

Hune T. Neuven, Viapixk Kremovicr, Bos Lea, and Dana TouserT

In many realife situations, we want to reconstruct the dependency y = f(zy,...,ZTn) from the known
experimental results zgk),y(k)‘ In other words, we want to interpolate the function f from its known
values y(*) = f(zgk), . ,zﬁ."’) in finitely many points ) = (zgk), e ,.’L‘S,,k)), 1<k <N There are
many functions that go through given points. How to choose one of them?

The main goal of finding f is to be able to predict i based on z;. If we get z; from measurements,
then usually, we only get interwils that contain ;. As a result of applying f, we get an interval y
of possible values of y. It is reasonable to choose f for which the resulting interval is the narrowest
possible. In this paper, we formulate this choice problem in mathematical terms, solve the corresponding
problem for several simple cases, and describe the application of these solutions to intelligent control.

VIHTeproAsILis1, AAIOIIasl caMble Y3Kie
VHTEpPBaABlL, 1 ee IPUAOXEHN K
IKCIIEPTHBIM CHCTEMaM U
VHTEAAEKTYaABHOMY YIIpaBAEHMIO

X. Hrven, B. Kewvmiosira, B. An, A. Toaserr

Bo MHOTHX NPAKTHYECKUX 320a4ax TPeGYETCs BOOCTAHOBHTL 3aBHCHMOCT Y = f(T1,...,Tn) HA oCHO-
BaHMM SKCNEPHUMEHTANBLHO MOJYHEHHBIX JAHHBIX x:gk),y(k). Jpyrumu C10BaMM, HaM HYXHO UHmepnonupo-
wams bynxwmo f o ee wsectHaM 3navennam y') = f (:z:(lk), ces zg;k) ) B KOHEYHOM MHOXECTBE TOYEK
R = (zgk) ,...,zslk)), 1 <k <N CyuectsyeT MHOrO (yHKUMI, MPOXOLIIIMX Yepe3 JafaHHbIE
touku Kax BmOpaTh ONHY M3 HuX?

OcHoBHast uenb MOHCKa GYHKIMH f COCTOMT B TOM, YTOGH MMETH BO3MOXHOCTH JIPEACKA3HIBATH
3HaYeHMsl Y HA OCHOBAHHMH T; ECIH Z; nonydesnl B pesy/isTaTe H3MEPEHHH, TO, KaK NMPaBWJIO, MH
HMeeM HE CaMM 3HaueHMA T;, a uwmepewisi, CoOepXKalIMe STH 3uadenus. [lpumenns dyukumo f,
MBI TIOAYMMM MHTEpBA] Y BOIMOXHBLIX 3HaueHwit . Vimeer cMmicn smiGpats f TakuM, uToSH 3TOT
Pe3yILTHPYIOWM MHTEpBaA OBLI [0 BO3MOXHOCTM Gosee y3KuM. B paborte sta npobiema BeiGopa
POpMYAHPYETCA MaTeMATUHECKH M PElIAETCA M/IA HECKOABKMX MPOCTBIX ClyvaeB OMHCHIBAETCA TakKe
fIpUMEHEHHE 3THX PEIICHHA B HHTE/LIEKTYAJILHOM YIPaBACHUM.

Interpolation: brief formulation of the problem; our
idea

In many real-life applications, we know that a physical quantity y depends on the quantities
Zi...-,Zn, but we do not know the exact dependency. To determine this dependency, we
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measure the values of z; and y in several real-life situations. As a result, we get the values
Yo = f(x(lk),...,mgk)) of the unknown function f at several points ¥ = (z:(lk),...,asﬁf)).
From the results of these measurements, we want to reconstruct the function f, i.e; we want to
know the values f(Z) for all other points Z. In mathematics, this problem is called interpolation
(if  is in between £¥)), and extrapolation otherwise. In real-life applications, this problem is also
called identification.

There are many ways to extend a function defined in finitely many points to the entire
area. So, we must somehow choose one of the resulting functions f. In some cases, we have
some apriori information about f: e.g., that f(Z) >0, or that f is monotonic. In the majority
of real-life situations, however, this information is not sufficient to pick a function f uniquely,
so, we need some additional choice criteria.

In interval computations (see, e.g., [1, 20, 21, 25]), several such criteria have been formu-
lated; these criteria and corresponding algorithms are described, eg., in [7, 9, 10, 15, 16, 24,
26—28, 30—36].

In this paper, we propose a new criterion. Its idea is as follows: The goal of the interpolation
{extrapolation) is to predict y based on our knowledge of r;. Measurements are never absolutely
accurate, so, after measuring z;, we will only get intervals x; of possible values of z;. After
applying the interpolated function f to these intervals, we get the interval y = f(X1,...,Xn)
of possible values of y. We would like to make the resulting predictions as precise as possible.
For the same accuracies of measuring z; (i.e, in mathematical terms, for the same widths of
the intervals x;), different interpolation methods will lead to intervals y of different width. For
some methods, the resulting precision in y will be comparable with the accuracy with which we
measured z;, for some other extrapolation techniques, we will get y with much lower accuracy.
For example, if n = 1, and we know that f(0) = f(1) = 0, then the constant interpolation
f(z) = 0 will lead to f([0.3,0.5]) = 0, while the sine interpolation f(z) = sin(1007z) (which
is quite consistent with the initial data f(0) = f(1) = 0) will lead to f([0.3,0.5]) = [~1,1].

It is natural to choose an interpolation method that does not add unnecessary additional
uncertainty to the inaccuracy of measuring z;, ie., a method that minimizes the guaranteed
width of y for a given width § of intervals x;.

We will see that it is sometimes impossible to minimize the width of y for ail 6. In this
case, it is necessary to recall that the reason for this minimization is that we do not want to
ruin the accuracy of measuring z;. This is not such a big problem when we measure z; with
low accuracy, because in this case, the accuracy will be low anyway, but it is important for
accurate measurements. So, if we cannot guarantee the narrowest intervals for all §, we can at
least try to guarantee the narrowest intervals for all sufficiently small 6.

This idea does not always lead us to a unique choice of interpolation. However, as we will
see, in several simple case, it does. Several real-life applications for the resulting procedures (to
expert systems and intelligent control) are presented.

2. Definitions and the main results

2.1 Defirutions
Definition 1. By an interpolation problem, we mean the tuple P = (n, U, F, N, £, 3,
Yy y ™), where:
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is a positive integer;

is a subset of R™;

is a set of functions from U to R;
is a positive integer;

k) (1 <k < N) are elements of U;
(1 < k < N) are real numbers.

L EREE

We say that a function f € F is a possible solution to the interpolation problem if f(T®)) = 4
tor all k.

Definition 2. Let f be a possible solution to an interpolation problem P, and let § > 0 be a
positive real number. We say that a §-input uncertainty leads to a < c-output error, if for every
ZeU and ¥ € U, for which |z; — 2| < § for all i, we have |f{Z) — f(&)| < a.

Remark. In other words, if for all 4, z € {z; — 6,z; + 8], then f(&') € [f(Z) — o, f(Z) + q].
Definition 3. Let f be a possible solution to an interpolation problem P, and let § > 0 be a
positive real number. By a §-sensitivity of a function f(Z) we mean the smallest of real numbers
a, for which a §-input uncertainty leads to a < a-output error. The §-sensitivity of a function
f(Z) will be denoted by s¢(6).

Remark. It is easy to check that

s¢(8) = sup{|f(z1,...,Zn) = f(2}, ..., 2p)| : lo1 — 24} <6,..., |zn — 2| < 6}

When f is continuous, s¢(§) is the well-known modulus of continuity of f [18]. The above
sup is in fact max: see Proposition 1 below; for reader’s convenience, its proaof, as well as all
the proofs of the results are given in the last section.

Propesition 1. For every function f(Z), and for every § > 0, there exists a b-sensitivity (ie.,
the smallest of real numbers , for which a §-input uncertainty leads to a < a-output error).

Definition 4.
e We say that functions f(Z) and g(Z) are equally sensitive if for every 8, s¢(8) = s4(8).

e We say that a function f(Z) is less sensitive than a function g(Z), if for every 6, s§(6) <
54(6), and at least for one § > 0, s¢(6) < s4(6).

o We say that a function f(I) is asymptotically less sensitive than a function g(Z), if there
exists a A > 0 such that for every § < A, s(6) < 54(6).

o We say that a function f(Z) is the least sensitive solution to an interpolation problem P if
f is a possible solution, and f is either less sensitive, or equally sensitive than any other
possible solution.

e We say that a function f(Z) is the least asymptotically sensitive solution to an interpolation
problem P if f is a possible solution, and f is asymptotically less sensitive than any other
possible solution.

22. Main result: 1-D case

Definition 5. By the simplest 1—D interpolation problem, we mean the interpolation problem, for
which n = 1, U = [ay,as], F = the set of all functions from U to R, N =2, V) = q,, and
1(2) = Q.
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Comment. In other words, we are looking for a function f : [a1,a2] — R for which f(a;) = y¥
and f(ay) = y¥. It turns out that for this problem, there exists no least sensitive solution, but
there does exist the least asymptotically sensitive one:

Proposition 2. For every possible solution f of the simplest 1—D interpolation problem, there
exists another possible solution g and a real number § > 0 such that s4(6) < sf(6).

Theorem 1. For every simplest 1—D interpolation problem:

e the linear function fo(z) =y + (z — a;)(y® — yV)/(az — a1) is the least asymptotically
sensitive solution;

o for every other possible solution f, there exists a positive real number A > 0 and a
positive real number C < 1 such that for all § < A, s5,(6) < C - s4(6).

2.3. Auxiliary results: 1-D case

Comment. The motivation for these results will be presented later.
Definition 6. Let n =1 and U = R. Let us define the following 1—D interpolation problems:

o Let x_ <z, be two real numbers.

— By Py, we will denote the following problem: F = the set of all functions f : R — R
for which f(z) =0 for z < z_, and f(z) =1 for z > z4; N =2, f(z_) =0,

flze) =1
~ By P, we will denote the following problem: F = the set of all functions f : R — R
for which f(z) =1 forz < z_, and f(z) =0 forz > zy; N =2, f(z_) =1,
flz4) =0.
o Let z_ < zy < T, be real numbers such that T, — Ty = Zop — T_. By P,, wé mean
the following problem: F = the set of all functions f : R — R for which f(z) =0 for

r<z_andforz>xz; N=3, f(z_) = f(z4) =0 and f(zo) = 1.

o Let _ < a_ < ay < z, be real numbers such that T. —a, = a_ — z_. By Pp, we
mean the following problem: F =the set of all functions f : R — R for which f(z) =10
forz <z and forz >z, and f(z) =1 fora_ <z <a.; N=4. flz_) = f(zy) =0,

fla-) = flay) =1.

Proposition 3. For the interpolation problems enumerated in Definition 6, the following
plecewise linear interpolation functions are the least asymprotically sensitive solutions:

e For Py, folz)=(x—z_)/(z+ —2_) forz= <z < z*.
o For P, fole)=1—(z—z)/(zs —z.) forz_ <z <™.
o For Py, folz) =z — xo|/(z4 —zo) for z- <z <z

e For Py, folz) = (x —z_)/(a- —z_) for z € [z_,a_] and fo(z) = (x4 —z)/(x — a)
for T € (a4, T4].
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Definition 7. Let us define the following interpolation problem P.: n =1, U = {0,1], F
consists of all decreasing functions f : [0,1] — {0,1] such that f(f(x)) =z forall z; N =2,
and the interpolation equations are f(0) = 1 and f(1) =0 (ie, 2 =0, z(¥ =1, ¢V = 1,
and y'¥ =0),
Proposition 4.

o fo(z) =1 — z is the least sensitive solution to the interpolation problem P-.

o If f is a possible solution to P-, and f # fq then there exists a positive real number
A >0 and a positive real number C < 1 such that for all § < A, s4,(6) < Csp{é).

24.  2-D problems

Definition 8. Let n = 2, U = [0,1] x {0,1]: Let us define the following 2—D interpolation
problems:

o By Py, we will denote the following problem:

— F = the set of all functions f : U = [0,1] for which f(z1,23) < 1 and f(z1,23) =
f{zq,21) for all z, and z3,

= N =4, f(0,0) = f(0,1) = f(1,0) = 0, f(1,1) = L.
e By Py, we will denote the following problem:

— F = the set of all functions f : U = [0,1] for which f(z1,23) 2 71 and f(z),23) =
f(za,z1) for all z, and ;.

- Nw=4 f(0,00=0,f(0,1)= f(1,0)=0=(1,1) = 1,
Theorem 2.

o min(z,,z3) is the least sensitive selution to the interpolation problem Py.

o If f is a possible solution to the problem Py, and f # min, then there exists a
positive real number A > 0 and pesitive real number C < 1 such that for all § < 4,

o max(zy,z3) is the least sensitive solution to the interpolation problem Py,

o If f is a possible solution to the problem Py, and f # max, then there exists a
positive real number A > 0 and positive real number C < 1 such that for all § < 4,

smux(8) S €'+ 84(8).

To compare these results, we describe the §-sensitlvity for min, max, and for several other
possible solutions of the interpolation problems Py and Py:
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Proposition 5.

e For f =min and f = max, s7(6) = 4.

o For f(a,b) = ab and f(a,b) =a+b—ab, s;(§) = 26 — §%;

e For f(a,b) = min(a+ b,1), sf(§) = min(26, 1).

Comment. The fact that min and max, and ab and a -+ b — ab are equally sensitive stems from
the fact that in general dual functions have the same modulus of continuity, where g(a,b) is
dual to an f{a,b) if g(a,b) =1 - f(1 —a,1-b).

Proposition 6. Dual operations are equally sensitive.

3.

3L

Applications of these results to expert systems and
intelligent control

What is intelligent control

In case we do not have the precise knowledge of a controlled system, we are unable to apply
traditional control theory. In such cases, we can find an expert who is good at control, extract
as many rules as possible from him, and try to transform these rules into the precise control
strategy. Zadeh and Mamdani initiated a methodology for such a translation [4, 19] that is
based on fuzzy set theory [37] and is therefore called fuzzy control (see, e.g., the surveys [2, 17, 29]).
In order to apply this methodology, we must:

1) describe the expert’s uncertainty about every natural-language term A (such as

~—

~=

“small”) that he uses while describing the control rules; this is done by ascribing to
every possible value T of the related physical quantity a value pa(z) from the interval
[0,1] that describes to what extent this expert believes that z satisfies the property A (e.g.,
Lsmant(0.3) is his degree of belief that 0.3 is small). The resulting function p4 is called a
membership function;

experts’ rules contain natural-language words combined by logical connectives (e.g., “f =
is small, and £ is medium, then u must be small”), Therefore, we must be able to estimate
the experts’ degree of belief in A&B, AV B, -A (where — stands for “not”) from the
known values of degrees of belief of A and B. In other words, we must describe the
fuzzy analogues of &, V, and - to combine the original membership functions into a
membership function uc(u) for control;

finally, we must transform this membership functions into an actual control value by a
proper defuzzification procedure.

As concerns the first stage, there exist several methods that allow us to ask several questions

to an expert or experts and come out with the desired values of membership functions (see,
e.g. [6, 11]). This makes perfect sense if the experts (whom we ask) give “yes” or “no” answers
to all these questions, i.e, when they are absolutely sure of what they are doing. They may be
unable to describe their control strategy in precise mathematical terms, but they are absolutely
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confident in what they are doing {a good example is a person driving his car: he has no
doubts about his ability to drive, but he usually cannot formulate his strategy in precise terms).

However, if we are planning a trip to the unknown (e.g., a mission to Mars), then operators
are often not that confident in their control abilities. For example, they can formulate a rule
in terms of a certain angle being small, but they are uncertain of whether, say, 10° is a
small angle or not. As a result, the values of membership functions that we extract from the
same expert can differ drastically. Different membership functions, in their turn, can lead to
drastically different control strategies, with different quality of the resulting control.

This situation can be viewed as one step further away from the precision of traditional

control:
precise knowledge — uncertain knowledge with known dagrees of certainty

— uncertain knowledge with uncertain degrees of certainty

What to do in these maximally uncertain situations? Since fuzzy control proved to be
a very efficient methodology [2, 17, 28], we still want to use it, but we must now be very
cautious in choosing &-, V-, and —-operations, and in choosing a defuzzification procedure. In
all these choices, we want to result to be as least sensitive to the possible changes in the values of
membership functions as possible. In other words, we want to develop the least sensitive control.

32.  Sensitivity of &- and V-operations

Let us first analyze the case of &- and V-operations (this section subsumes [22]).

The first paper by L. Zadeh [37] that introduced this approach to knowledge representation
proposed min(a, b) and ab as &-operations, and max(a, b) and a+b~ab as V-operations. Zadeh
himself stressed that these operations “are not the only operations in terms of which the union
and intersection can be defined”, and “which of these... definitions are more appropriate
depends on the context” [38], pp. 225—226. Since then several dozens different &- and V-
operations have been proposed and successfully used. Some operations have been discovered
empirically while working on real expert systems (e.g., the famous MYCIN (3)) or while analyzing
commonsense reasoning [23, 39]); some of them were proposed on a more theoretical basis (see,
eg., [6, 11]). A survey of such operations is given in [14].

The natural properties of an &-operation f are as follows:

o First, since A&B and B&A mean the same, we must demand that f(a,b) = f(b,a) for
all a and b,

o Second, when each of the statements A and B is either definitely true, or definitely false,
we must get the same truth values as the normal & operation of binary logic, ie, we
must have f(0,0) = f(0,1) = f(1,0) = 0 and f(1,1) =1.

o Third, the degree of belief in A&B cannot exceed the degree of belief in A. So, we
demand that f(a,b) < a for all a and b.

Summarizing, we conclude that an &-operation f must be a possible solution to the interpolation
problem Py (this is the explanation of the term that we used while proving Theorem 2).
Similarly, we can conclude that an V-operation f must be a possible solution to the interpolation
problem Py. So, from Theorem 2, we can new conclude that f(a,b) = min(a,b) is the least
sensitive &-operation, and f(a,b) = max(a, b) is the least sensitive V-operation,
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Comments.

1. In [12—14] general optimization problem are analyzed on the set of all possible &- and V-
operations. As a result of this mathematical analysis, lists are given that include all &- and
V-operations that can be optimal under reasonable optimality criteria, Our Theorem 2
are in good accordance with that general result, because both min and max are elements
of those lists.

2. Similar questions of sensitivity in the context of neural networks are analyzed in [3].

33. Sensitivity of negation operations

We can define a negation operation as.a function f:[0,1] — [0, 1] that interpolates the values
coming from the definition of the classical negation: f{0) =1 and f(1) = 0. From Theorem 1,
we can now conclude that f(z) =1 — z is asymplotically the least sensitive negation operation.

In addition to that, since =(—~A) means the same as A, we can demand that f (f (z)z =z
for all z. Also, if we increase our degree of belief in A, then the degree of belief in mA should
decrease. So, the function f must be decreasing. We arrive at the conclusion that f must be a
possible solution to the problem P-., and therefore, due to Proposition 4, that f(z) =1-z is
the least sensitive negation operation (and not only asymptotically the least sensitive one).

34. The least sensitive normalization

In some cases, before making a decision an auxiliary operation is performed with a membership
function pc(u) that is called a normalization. The reason for this operation is that for many
notion from natural language, there is a value about which all the experts (or at least the
vast majority of them) agree that this value satisfles the desired property: for example, for
“negligible” it is 0, for “big” it is 1000 (or 10° if 1000 is not enough). Se, for the corresponding
membership functions p(z), there exists a value zg for which u(zg) = 1, hence sup, u(z) = 1.

However, after applying the &-, V- and ~-cperations, we sometimes obtain a membership
function u(z), for which v = sup, u(z) < 1, and which is thus difficult to interpret. So, befere
we apply a defuzzification procedure to it, we first want to nermalize this membership function,
i.e, apply some transformation t : [0,v] = [0, 1] and get a new funetion y'(z) = t(y(z‘)) whose
biggest value is already equal to 1. Usually, the function #(z) = /v is taken. The question is:
which of the possible normalization procedures is the least sensitive? From Thecrem 1, we can
conclude that f(z) = z/v is the least asymplotically sensitive normalization.

35. The least sensitive choice of membership functions

All the above applications are about the ease when the experts ean be uncertain, but the
inputs for the control decision (i.e, the values of z, 2, ete) are considered to be precise. In
real-life situations, especially in the case of the future space missions, It is important to take
into considerations that the input data can also be impreeise. In this case, we want to choose
membership functions in such a way that the change in an input value z will lead to the
smallest possible change in the value of 4(z) (and thus in the resulting control). In other
words, we want to guarantee that the interval of possible values of u(z) Is the least possible,
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We want to use this idea to choose the most sensitive extrapolation procedure for member-
ship functions. In other words, when we have a fuzzy notion for which we want to describe a
membership function, we describe when this notion is absolutely true, and when it is absolutely
false (i.e., when the membership function is equal to 1 and 0) and get all other values of
membership function by extrapolation.

In fuzzy control, four types of natural-languages terms (fuzzy variables) variables are mainly
used:

1) Variables like “negligible”, where one can name a value zg for which the corresponding
property is absolutely true (u(zo) = 1), (for negligible it is o = 0), and the values z_
and z. such that for £ < z_ and z > z, the corresponding property is absolutely false
(e.g., values with £ < z_ or T > ., are absolutely not negligible).

2) (similar case) Variables, for which we can name an interval [a_,a,}, inside which the
corresponding property is absolutely true, and a bigger interval [z_,z,], outside which
this property is absolutely false (the first case can be considered as a particular case of
this one, when a. = a, = xy).

3) Variable like “positive big”, for which we can name values z_ < z; such that for z < z_
the corresponding property is absolutely false, and for £ > z, this property is absolutely
true.

4) Variable like “negative big”, for which we can name values £ < z such that for z < z_
the corresponding property is absolutely true, and for £ > z, this property is absolutely
false.

In the first and second cases, wsually the intervals are symmetric, ie, in the first case,
Ty — Tp = Ty — T, and, in the second case, T, — a; = a_ — z_. Applying Proposition 3, we
can now conclude that the least asymptotically sensitive membership functions can be obtained by linear
interpolation (i.e., triangular, trapezoidal, etc).

36. Conclusions

As far as combining degrees of belief of experts is concerned, in situations where estimates can
vary drastically, it is reasonable to use fuzzy logic connectives, which are the least sensitive to
these variations, ie., for which the resulting intervals of uncertainty are the smallest possible.
We have proved that in this situation, the dual pair min(a, b), max(a,b) are the least sensitive
operations. Results are also given for choosing the least sensitive negation operations and
membership functions.

4, Proofs

Proof of Proposition 1. The set S of all real numbers a, for which a é-input uncertainty
leads to a < g-output error, is bounded from below (by 0), and therefore, has an infimum
(the greatest lower bound) r. r is the value of f-sensitivity. Indeed, since 7 is the greatest
lower bound of the set S, for every positive integer k there exists a number 7 € S such
that 7 < r + 1/k. According to the definition of S, from 7. € S we conclude that if
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{z; — xi| <6 for all 4, then |f(z1, .,zn)— f(),...,2})| < 7% Letting k — 0o, we conclude
that |f(z1,.,.,20) — fl2}, ..., 2))] <lmgre =7 O
Before proving Proposition 2, let us first prove Theorem 1.

Proof of Theorem 1.

1°. Let us first prove that if f is non-linear, then sz, (8) > s7(6) for sufficiently small §. Without
losing generality, let us assume that y‘® > y(I) (the proof for the case when y» < ¢V is
similar). For fo(z), one can easily compute that s4,(8) = K8, where K = |y@ —yV|/(a; —a;).
Since f is different from fy, we have f(z) # fo(z) for some z. For this z, either f(z) < fo(z),
or f(z) > fo(z). Let us analyze these two cases.

e In the first case, for ; = z and | = a3, we have |21 —z{| = as—z and | f(x1) — f(2})] =
yP = fz) > y® ~ folz) = folaz) — folz) = sp{as — z). Hence, for & = a2 — 7, we
have Sf(éo) > Sfy (60) = Kbp.

e In the second case, for z; = @y and z} = z, we have |2; — z}| =2z — a; and

(@) ~ f(a))] = £(2) =y > folz) = vV = fol2) ~ folar) = sp(z ~ a1)
hence, for 8 = z — a;, we have s7(8) > s5,(80) = Kbo.

2°. To prove the second part of Theorem 1, we need the following Lemma (we will use it for
K= [y(2) - y(l)l/(az - ay)):

Lemma. If s¢{§g) > K&y for some K >0 and § > 0, then there exists a positive real number
A > 0 and positive real number C < 1 such that for all § < A, sf(6) > (K6)/C.

Proof of the Lemma. As we have already noticed, for continuous functions S, d-sensitivity
coincides with the modulus of continuity of f. The modulus of continuity is a subadditive
function {18], so, if f is continuous, then sp(8; + &3 + -+ + 8,) < sp(61) + 57(62) + -+ + bn
for all 6y,...,8, > 0. The proof of this inequality does not use continuity of f and therefore,
it can be applied to arbitrary functions f. In particular, for §; = 8, = -+ = &, = &o/n, we
conclude that s¢(8y) < nsg(6p/n). Therefore, s¢(8p/n) > s5(60)/n. If we denote s¢(dp) by D,
then this inequality takes the form s¢(&/n) > D/n.

In order to continue the proof, we need to use one more property of the modulus of
continuity [18]: if § < &', then s4(6) < s4(8).

Let us now take any real number C between ¢ = K&y/D and 1 (¢ < C < 1), and prove
that there exists a A > 0 such that for all § < A, we have K§ < Cs¢(6) (or, equivalently,
5¢(6) > K6/C).

We already know how to estimate the values of s¢(6) for § = ég/n, where n =1,2,3,...
So, to get the estimates for arbitrary §, we can use these known estimates. For every 6 < do,
we want to find an n such that &/(n +1) < § < &/n. This inequality is equivalent to
(n+1)/60 > 1/6 > néo, which, after multiplying both sides by &, turns out to be equivalent
to the inequality n < §,/8 < n + 1. Therefore, we can take as n the integer part |6p/6] of
the ratio éy/8. From monotonicity, we can conclude that s¢(§) > sf(éo/ (n+ 1)) We have

already proved that sy ((50/(n + 1)) > D/(n+1). Therefore, s¢(6) > D/(n+1). We defined
cas ¢ = Kéy/D; so, D = Kby/c. Hence, s7(8) > Kéo/(c(n + l))

We want to get an inequality s;(6) > K6/C. We will be able to deduce this inequality
from the one that we have just proved if 6/ (c(n + 1)) > 6/C. Since § < 6p/n, this inequality
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is valid if &o/Cn < &/ (c(n + 1)) Dividing both sides by 8y and then inverting both sides, we
get an equivalent inequality C'n > c(n+ 1), which, in its turn, is equivalent to (C —c¢)n > ¢ and
n > ¢/(C — ¢). Therefore, if n > ¢/(C — ¢), then for § < §/n we get the desired inequality
sp(6) = é/c.

The inequality n > ¢/(C — ¢) is valid for all n starting from N = [¢/(C —¢)| + 1.
Therefore, the desired inequality s¢(6) > K6/c is true for all § < A, where A = §/N. The
Lemma is proven.

?? Now, the second statement of Theorem 1 is proven. The first statement of Theorem 1
directly follows from the second one. a
Now we are ready to prove Proposition 2.

Proof of Propesition 2. If f(z) # fo(z), then the existence of the desired g(z) follows from
Theorem 1: we can take g(z) = fofz). So in order to prove this Proposition, it is sufficient to
prove it for f(z) = fo(z), ie, it is sufficient to find a function g{(z) such that s4(6) < s,(6)
for some § > 0.

Let us define the following function F(z):

e F(z)=100/3z for z < 0.01,

o F(z) =1/3 for 0.01 < z < 0.495,

o F(z) =1/3+ 100/3 * (z — 0.495) for 0.495 < z < 0.505,
o F(z) =2/3 for 0.505 < z < 0.99, and

o F(z) =2/3+100/3  (z — 0.99) for > 0.99.

This is a continuous function from [0,1] to {0,1}. Let us prove that for g(z) = F(z),
54(0.4) < 1/(3) < 0.4 = s4,(0.4). In other words, we want to prove that if {a —a’| £ 0.4, then
lg(a) — g(a’)] <1/3 < 0.4.

Without losing generality, we can assume that a < a’; then @’ < 0.4+ a, and the desired
inequality takes the form g(a’) — g{a) < 1/3 < 0.4. Let us consider all possible locations of a.

e If 0 <a <001, then ¢’ < 0.4+ a < 0.4+ 0.01, and, therefore g(a’) < g(0.45) = 1/3.
Hence, g(a') — g(a) < g(a’) <1/3.

o If 0.01 < a < 0.495, then g{a) = 1/3, and o’ < 0.4 + 0.495 = 0.895, hence g(a’) <
9(0.895) = 2/3. Therefore, g{a') — g{a) < ¢(0.895) — g(a) = 1/3.
>

o If 0.495 < a < 0.505, then g(a) > ¢(0.495) = 1/3; here o’ < 0.505 + 0.4, hence
g(a’) < g(0.905) = 2/3. Therefore, g{a’) — g(a) < g(a’) — 9(0.495) = 1/3.

o For the cases 0.505 < a £0.99 and a > 0.99, the proofs are similar.

So, in all the cases, [g(a) — g(a)] €1/3 < 0.4.

This proves the Proposition for the case when a; =0, ag = 1, yM =0, and y@ =1 In
the general case, we can take g(z) = y{V + (y® - y(V)). F((x —a1)/(az — al)). a
Proof of Proposition 3. For the piecewise-linear functions, sy, (6) = k6, where k = 1/(z4+—z-)
for functions of types 1 and 2, k = 1/{x, — xzp) for functions of type 3, and k = 1/{z} —ay)
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for functions of type 4. The fact that these functions are less asymptotically sensitive then the
others can be proven just like in the proof of Theorem 1.
Proof of Theorem 2. Let us call a possible solution of a problem Py an &-operation, and a
possible solution of a problem P, an V-operation.
1°. Let us first prove that we have f{a,b) < min(a,b) for any &-operation f. Since f(a,b) < a
and f(a,b) = f(b,a) < b, it follows that f{a,b) < min(a,b).
2°. Next, let us show that spip(6) = 6.

Indeed, for |a — a’| < 8, we have a < @' + 6 and likewise b < ¥ + §. Hence, min(a, b)
min(a’ + 6,4 4+ 6) = min(a’, ') + 6, therefore, min(a, b) < min(a’, ¥') + 8. Likewise, min(a’, )
min(a, b) + §, so —4 < min(a, b) — min(a’,¥’) < §, and

<
<

| min(a, b) — min(d’, ¥')| < 6.
Take a =b=§, a’ =¥ =0. Then
| min(a, b) — min(a’, )| = §

and therefore, the output error is precisely §. So, we cannot take a.< §, and so the §-sensitivity
of min is really equal to é.
3°. Let us now prove that for every &-operation f(a,b): s¢(6) 2 Smin(6) = 6.

Indeed, suppose that for some § € (0,1), 57(6) < 8. This means that if |a — a’| < § and
[b— 8| <6, then |f(a,b) — f(a',¥')] < s¢(6) < 8. In particular, if we take @ = b = 1 and
o’ =b =1-46, we conclude that |f(1,1) ~ f(1 ~§,1~8)] < §. But according to the definition
of a &-operation, f(1,1) = 1, therefore, this inequality turns into |1 — f(1—-6,1—-6)| < é.
Hence, 1— f(1-6,1-6) < |1— f(1~6,1-6)| <6, therefore, f(1-6,1~6) >1—6. But we
have already proved in 1° that f(a,b) < min(a,b), therefore, f(1 — 6,1 -06) <1 —6. These
two inequalities contradict to each other. Therefore, our assumption that s¢(6) < § is incorrect.
Hence, s¢(6) > 6.
4°. Finally, let us show that min(a, ) is the only &—operation, for which s¢(§) = § for all é.

Indeed, suppose that f is different from min. Then for some a and b, f(a, b) # min(a, b),
hence f(a,b) < min(a,b). Without loss of generality, assume a < b, resulting in f(a,b) <
min(a,b) = a. For ' =9 =1, we have [a—a| =1-a, [b-b|=1-b<1-a, but
|f(a,b) — f(a',b}] =1~ f(a,b) > 1 —a. So, for & =1 ~a, s¢(6p) > do. The first statement
of Theorem 2 (for &-operations) is proven.

The second statement follows from the above Lemma.

The third and the fourth statements (about V-operations) can be proven in a similar
manner. O
Proof of Proposition 4. Let us call a possible solution to a problem P- a negation operation. Let
us first prove that for every negation operation, s¢(6) > 6 for all §. For a standard negation
operation fo(z) =1 —1z, fo(6) =1 — 6. So, let us consider three possible cases:

o f(6)<1-34,
o f(6)=1-46, and
o f(8)>1-6.

Let us prove the inequality s;(6) > 6 for all these three cases.
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o In the first case, for a = 0, a’ = §, we have |a—d’| < § and |f(a)— f(a)] = |1-f(8)] > 6.
Therefore, s¢(6) > |f(a) — f(a')] > 6, and s4(8) > 6.

o In the second case, likewise s¢(8) > 6.

e In the third case, for a = 1 and o’ = f(6), we have |[a — a/| < §, but [f(a) — f(d')] =
|0 — 6] = 6. Therefore, s¢(8) > |f(a) — f(a’)] > 6, and 54(8) > 6.

So, in all three cases, we have s¢(§) > § for all §.
We can also easily show that for fy(z) =1 — z, we have s4,(§) = §. So, to complete the
proof of the theorem, it is sufficient to prove that if a negation operation is not standard, ie.,
f(z) #1 —z for some z, then s¢(6) > & for some §. If f(z) # 1 — x, this means that either
f(z) <1—=x, or f{z) > 1 —z. The case when f(z) < 1 —z has already been considered
iove, and in this case, as we have already proved, s¢{6) > 6 for § = z.
Suppose now that f(z) > 1~ z. Then £ > 1 — f(z). So, for a =1 and o’ = f(z), we
have |a — a'| = 1 — f(z), and |f(a) — f(a’}| = |0 — z| = z. Therefore, for y = 1 — f(z),
s¢(y) 2 1f(a) = f(a)] =z >y, and s4(y) > y.
The second statement of the Proposition follows from the above Lemma. |
Before proving Proposition 5, let us prove Proposition 6.
- Proof of Proposition 6.
1°. Let us first prove that if f and g are dual, ie, g(a,b) = 1 — f(1 —a,1 —b), then for every
b, 54(6) = s¢(6).

Indeed, suppose that |a — a’| < § and [b — ¥'| < 4, and let us prove that

|lg{a, b) — g(a’, )] < s£(6).

Since l[a—a'| < 6 and [b—b/| < 4, we have |[A—A'|=|a—a'|<§ and |[B—B'|=|b-¥]| <4,
where we denoted A =1 —a, A =1—~a’, B=1-b), and B’ =1 — V. Due to the definition
of s¢(6), we can conclude that |f(A, B) — f(A, B')| < s¢(6). But g(a,b) =1— f(A, B) and
g(a',b) =1~ f(A, B'), therefore |g(a,b) — g{a’, V)| = |f(A, B) — f(A', B')| < s#{5). So, for
a=3¢(6),if la—a'| <8 and |b—¥| < 4, then |g(a,b) — g(a’,¥)] < a. Since 34(5) is defined
as the smallest of all a with this property, we conclude that s¢(6) < s¢(6).

2°. One can easily check that if g is dual to f, then f is dual to g. Therefore, we have both

59(6) < 5£(6) and s5(6) < 54(6), hence s54(6) = 54(6). o
Proof of Proposition 5. In the proof of Theorem 2, we have already shown that Smin{6) =
Smax{6) = 6.

1°. Let us prove the result about sy for f(a,b) = ab. We must prove, first, that if ja —a'| < 6
and |b— ¥| < 4, then |ab — a'b'| < 26 — 6%, and, second, that there exist such a,b,a’,b" for
which |a —a'| <6, |b—¥| <6, and |ab — a'b/| = 26 — 6.

The second statement is easy to prove: take a =b=1,a' =¥ =1~ 4, then |ab— a't| =
1 —(1~6)2 =28 -6 Let us now prove the first one.

Let us denote |a — a'| by A,, and [b —¥| by Ap. Then A, < 6 and Ay < 6. Without
losing any generality we can assume that @ > a’. Then o’ = a — A,. With respect to b and ¥/,
there are two possible cases: b > & and b < &’. Let us consider both of them.

If 5>, then ¥ = b~ Ay, and ab > a'l/, so the desired absolute value d = |ab — a'b/| can
be computed as follows: d = |ab—a't/| = ab—a'b/ = ab— (a — Ag)(b— Ap) = alp+bA5 ~ AgAp.
Since ¢ <1 and b < 1, we have d < A, + A, — A,A,. The right-hand side of this inequality
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can be expressed as 1 — (1 — Ag)(1 — A,;). Therefore, it is a monotonely increasing function
of both A, and 4. So, its maximal value is attained when both of these variables take their
biggest possible values. Since A, < § and A, < §, the maximal possible value is attained when
A, = Ay =6, and is equal to 26 — §2. Therefore, d < A, + Ay — A, < 26 — 82, So for this
case the desired inequality is proved.

Let us now consider the case when b < b'. Then b = b — A,, and d = |ab - d'V/| =
la(t) — D) — (@ — D )¥| = laQy — B'A,]. Let us consider two subcases: when the expression
under the absolute value is positive or negative, ie., when ad, > VA, and af, < ¥A,. In
the first subcase, d = alp, — b'A,, therefore, d < ¥'A,. Since A, <8 and & <1, we get d < 6.

In the second subcase similarly d = ¥'A, — ady < VA, < 6. So, in both cases d < 4.

So, to complete the proof, it is sufficient to show that § < 26 — 6% for all § from 0 to 1.
Indeed, by dividing both sides by § and moving all terms to the right-hand side, we conclude
that this inequality is equivalent to 0 < 1 — §, which is certainly true for § < 1.

For f(a,b) = a+ b — ab, the expression for s¢(8) follows from Proposition 6.
2°. Let us now prove that s¢{6) for the last function f. Let us first consider the case when
§ < 1/2. Then 2§ < 1, and min(28,1) = 25. Let us prove that in this case, if |a —a/| < 6 and
|b — b'| <4, then [f(a,b) — f(a,¥)| < 26.

Indeed, if ja—a’| € 6 and |b—¥| < §, then |(a+b) —(a'+¥)| = {{a—a')+(b—V)| < 26. In
particular, this means that a’+b < a+b+24. Evidently, a’+b" < 1, therefore, o’/ +b < 1 < 1426.
So, @'+’ is not bigger than the smallest of these two numbers: a’+b < min(a+b+ 26, 1+26).
But min{a + b + 26,1 + 26) = min(a + b,1) + 2§ = f(a,b) + 28. So, &’ + ¥ < f(a,b) + 26.
Since f(a',t') = min(a’ + ¥,1) and therefore, f{a’,b') < @’ + ¥, we conclude that f(a/,d) <
f(a,b)+26. In a similar manner we can prove that f(a,b) < f(da’,') +25. Combining these
two inequalities, we conclude that |f(a,b) — f(a’, V)] < 28. So, for 6 < 1/2, s¢(6) < 26.

Let us now show that o = 2§ is the smallest value, for which é-input uncertainty leads
to a < a-output error, and thus, s¢(§) = 24. Indeed, if we take a = b = 0,4’ = = §, then
la—a'| <6, |b-¥| <26, and |f(a,b) — fla’,¥')| = |0 — 28] = 24, so the values o < 26 do not
work in this case. So, for § < 1/2, we proved that s7(6) = 28.

Now let us consider the case when § > 1/2. In this case, min(26,1) = 1. If we take
a=>b=0,0 =V =246, then f(a,b) =0, f(a",b) =1, la—-d| <6 |b-V] < 25, and

[f(a,b) — f(a’,¥)] = [0 — 1] = 1. Therefore, nothing smaller than 1 can serve as a, hence
Sf(é) =1. O
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