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A new characterization of the set of all
intervals, based on the necessity to check
consistency easily

Jriss Misane® and Viabixk Kremovicn

The purpose of this paper is to present a new characterization of the set of all intervals. This
characterization is based on several natural properties useful in mathematical modeling; the main of
these properties is the necessity to easily check consistency of incomplete knowledge This characterization
is obrained both for one-dimensional and for multidimensional cases

HoBast xapakTepysalyssi MHOXeCTBa BCex
MHTEPBAAOB, OCHOBaHHAsI HA TpeOOBaHNM
IIPOCTOM IIPOBEPKI HENPOTHBOPEYMBOCTH

A. Mosars, B. Keevmiosi

Hpencraancﬂa HOBAA XapAKTCPpH3AUKA MHOXKECTBA BCEX HHTECDBAJIOB. Jra XApakTEepH3ALMA OCHOBRHZ
Ha HECKOJLKHMX OYE€BHIHBIX CBOHCTBAXxX, TMPHUMEHSIOLIUXCA B MATEMATHYECKOM MOACTHPOBAHHH, TIaBHOE
H3 KOTOpbIX — rper’x)sa:-me l"lp()CT()l:l MpOBEPKH HEMPOTHBOPEYABOCTH HEMOJIHOIO 3HAHUA. Januas
XapaKTepH3alUHA NMprHrMEHHMa KakK K CTy4vais ORHOA Pa3MEpHOCTH, Tak H K MHOTOMEDHLIM CIvYasM

1. Formulation of the problem: How to describe
incomplete knowledge?

Measurements always lead to approximate values of the measured physical quantities. So, if
we measure a physical quantity z, and the result of this measurement is Z, then, because of
the possible error, several different values of z are possible. Let’s denote the set of all possible
values (that are consistent with our measurement result) by X.

The manufacturers of a measuring device usually provide us with an upper bound A for
possible errors. Since the error Ar = Z — z is limited by A, we can guarantee that possible
values of the measured physical quantity belong to the interval [Z — A, % + A]. But are all
values from this interval possible? In other words, is this interval the desired set X?

Usually, it is not. The reason for that is as follows: The manufacturer’s bound is often an
overestimate, because it is difficult to estimate A precisely, and so the manufacturer, because of
his desire to guarantee the accuracy, prefers to give an upper estimate for this bound. Because
of that, the actual set X is usually smaller than the interval [f — A, T+ Al.
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Assume now that we know the exact upper bound A, tor the error This means that all
possible values of T belong to an interval [Z — A¢, Z+ A.], or, that the set X is a subset of this
interval. Then our question is: is X equal to this interval?® Le, & X an interval?-

In some cases, it may not be an interval. Then, we must somehow approximate it.
What family of sets should we use for this approximation? To find that out. let us take
into consideration the fact that measurements can go wrong, and therefore, several results of
measuring one and the same physical quantity can be inconsistent.

2. The necessity to check consistency easily
2.1 Main idea

Assume that we fix a physical quantity z, and we measure it several times. Each measurement
provides us with an additional knowledge about z.

Measuring instruments can go wrong. As a result, we may get inconsistent data. For
example, assume that we have measured the same current I twice, both times with an accuracy
0.1, and the results are 1.0 and 2.0. According to the first measurement, the actual value [
of the current must belong to an interval [0.9, 1.1]; according to the second measurement, this
value must belong to an interval [1.9,2.1]. Therefore, I must belong to the intersection of
these two intervals. But this intersection is empty, which means that during (at least) one of
the measurements, something went wrong with the measuring instrument.

In view of this possibility, before we start processing measurement results, it would be nice
to check the existing knowledge for possible inconsistencies.

Therefore, it is desirable to choose the family of approximating sets in such a way that
this check will not be computationally very complicated.

Comments.

1. The idea that checking consistency can detect crude errors. and thus improve the accuracy
of the resulting estimates, is definitely not new. What is new in this paper is our proof
that:

e for this idea to be (easily) applicable, i€, in order to be able to easily check
consistency, we must represent all incomplete knowledge in terms of intervals, and
that

o therefore, if we use sets from any other class (ellipsoids. etc) to describe incomplete
knowledge, then checking consistency will not he as easy as for intervals (the precise
formulation of what “easy” means will be given later).

2. Some of this paper’s results first appeared in the Technical Report {13} and in the abstract
[12]

22. Motivations for the (following) precise definition

Let’s formulate this necessity in mathematical terms. Assume that we have several pieces of
knowledge about z, that come from several measurements. Each piece of knowledge can be
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formulated as a set of all the values z that are consistent with this particular knowledge.! So,
instead of saying that we have several pieces of knowledge, we can say that we have several sets
X,Y,...,Z € R, Consistency means that it is possible that a certain value z € R is consistent
with all these measurements, i.e, T belongs to all these sets X,Y,..., Z (in other words, that
XNYNn.-NZ#oy)
How can we actually check consistency? Knowledge usually comes piece after piece, so a

typical situation is as follows:

e We already have a consistent “knowledge base™. In other words, we have the pieces
of knowledge represented by sets X, ..., X and these pieces of knowledge are
consistent.

e Then, a new piece of knowledge arrives, described by a set X.

In the case when we are sure that all measuring instruments function properly, and
therefore, all the sets XV do contain the actual value of the measured quantity, there is no
need to store all these sets in the knowledge base: in this case, the actual value belongs to
the intersection of these sets, so, we can as well keep the intersection only. However, the
motivation for this paper is to consider the case when measuring instruments can go wrong.
Therefore, if it turns out that the new measurement is inconsistent with the results of the
previous measurements, we want to be able to analyze the records of the related measurements,
find the measurement that could be wrong, and discard its result. If we store the sets that
describe the results of all previous measurements, then we discard one of them by simply
deleting the correspondent set from the collection of sets' XV, .., X, If we only store the
intersection (so that the sets themselves have been deleted), then there is no easy way to discard
just the result of one measurement. So, in our situation, we have to keep the sets that describe
the results of all the measurements,

Another possibility could be to keep both the sets X" that describe the results of the
measurements, and the intersection of these sets. This is a reasonable alternative, but it has
one serious drawback: it is not always applicable. Modern knowledge bases are distributed, ie.,
some data are stored in one place, and some are stored in other places (see, eg, [15]; this is
how, e.g., some knowledge is stored in the World Wide Web and Mosaic). One of the major
advantages of such storage is that we can do operations like search and update in parallel on
different parts of this knowledge base (and therefore, much faster than if all the knowledge
was located in one place only). If, however, we were required to alse store the intersection,
then we would need to actually recompute this intersection every time we add a new piece of
knowledge. This necessity will make update a sequential operation and thus, one of the main
advantages of distributed databases will be gone.

Therefore, in this paper, we will consider the situation in which we store the sets X
corresponding to different pieces of knowledge but not their intersection.

In this case, if we have a new set X (representing the new piece of knowledge) added
to the sets X', a natural way to check consistency s to check whether X is consistent with

“This is a very specifie type of knowledge, called incomplate hnowledge. There exist other types of knowledge that
describe different types of uncertainty, For a brief description of different types of uncertainty, sce, eg. (14}

4The notion of a knowledge hase 1a a general notlon, that 1s used to describe different types of knowledge. In this
paper, we will be using only one apecifie type of knewledge bases: namely, eollections of sets representing different
pieces of incomplete knewledge,
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each of the existing sets XY, The consistency between X and each of X is, of course,
necessary for the new knowledge base {X, ... X{9 X} to be consistent. It is easy to see,
however, that this comparison is not always sufficient. For example, if s = 2, X® = {0,1},
X® = {1,2}, and X = {0,2}, then the original knowledge base {X, X®} is consistent,
and X is consistent with each of the sets X!, but there is no number common to all three
sets.

So, since we want to express the fact that the above procedure does lead to checking
consistency easily, we arrive at the following definition:

2.3. Formal definition

Definition 1. We say that a family S of sets allows checking consistency easily if the following is
true: For every s, and for every tuple of sets XDes, . .. X eS XeS, for which:

o sets XU X6) are consistent (ie, XV N ---N XS # ) and

e X is consistent with all X® (ie, XN X® #£¢ foralli=1,...,s),

all s+ 1 sets XM, ..., X X are consistent (ie, XV N---NXEONX )

3. Translation and dilation invariance: Additional
demands on the desired family of sets

We are interested in measurements, so it is natural to assume that if X is a reasonable
approximation to sets that describe the incomplete knowledge, then a set X + a (that is
obtained from X by a translation) is also a reasonable approximation. For example, assume
that we are measuring time, and as a result we get 35 +5 (ie, a set X = [30,40]). If we now
change the starting point for measuring time, e.g., take —5 as the new starting point, then the
same result will be expressed as X + 5 =40 £ 5 = [35,45]. This new set X + 5 must also be a
reasonable approximation. If instead of changing the starting point, we change the measuring
unit (i.e., consider minutes instead of seconds), then in the new units, we get AX instead of X.
So, it is also natural to assume that if X is a reasonable approximation, and A > 0, then AX
is a reasonable approximation as well.

Comment. In terms of measurement theory (see, e.g., [16]), this means that we are considering
measuring scales that are determined modulo arbitrary linear transformations. Such scales are
also called interval scales. To avoid confusion, we must mention that the very fact that we are
considering an interval scale (e.g., time} does not necessarily mean that the resulting incomplete
knowledge is represented by an interval (see, eg, [10]). For example, suppose that we are
measuring time by using an electromagnetic clock in the close vicinity of a computer memory
element. In this situation, the external field caused by this element is the main source of error.
This element can be in two possible states (depending on whether it represents bit “1” or bit
“0™), so we have two possible values of an error. Crudely speaking, for this situation, the set of
possible values of measurement error consists of only two points {—¢,£}, and does not contain
any internal values at all. So, if the measured time is f, then the set X® of possible values of
time is {f — ¢, +£}. This set is not an interval, but measuring time is definitely an interval
scale.
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If in addition to this main source of error, we take into consideration other possible
sources of error, then the resulting set X () of possible values of time becomes a union of two
small intervals: one close to £ — ¢, and a one close to £ +¢. Still, it is not an interval.
Definition 2. We say that a family S of sets is translation-invariant if for every X € S, and for
every a € R, the set X + a also belongs to S (this set X + a is called a translate of X).
Definition 8. We say that a family S of sets is dilation-invariant if for every X € S, and for
every A > 0, the set AX also belongs to S.

Since we have already argued that each set X belongs to an interval (namely, to [Z —
A, Z+ A]), each set X is bounded. It is also natural to assume that each set X is closed. Now,
we are ready to formulate our main result.

4. First result: one-dimensional case

Proposition 1. For an arbitrary family of sets S, the following conditions are equivalent to
each other:

i) § is a non-empty translation- and dilation-invariant family of bounded closed sets that
allows checking consistency easily;

ii) 8 is either:
— the family of all intervals, or
— the family of all non-degenerate intervals [a,b], a < b.

(For reader’s convenience, all the proofs are moved to the last section).

Comment. This result doss not mean that in all the cases, incomplete knowledge must be
described by intervals. It could as well be that our incomplete knowledge can be described
by the 2-element set {=1,1}. This Proposition proves that if we use non-interval sets to
describe incomplete knowledge, then checking consistency of the resulting knowledge will not
be so straightforward. So, if the actual knowledge corresponds to non-interval sets (domains
representing incomplete knowledge), then we have two options:

o We can replace these domains by intervals (e.g., use [=1,1] instead of {-1,1}).

~ The main advaniage of this replacement ls that we will now be able to easily check
consistency.

= The main disadvantags is that we have increased the domain, and therefore, the
resulting estimates may be overestimates. Let's describe an example of this over-
estimation.  Suppose that we know that 2 € X = {=1,1}. In this case, we
use [~1,1] to describe this incomplete knowledge. Suppose that we are now in-
terested in the set Y of posible values of y = 2. If when estimating ¥, we
can only use the fact that X G {=1,1], then, as a result, we can only conclude
that Y € {2?|z € [=1,1]} = [0,1], which is an overestimate for the desired set

Y = {z?|z € {-1,1}} = {1}.

¢ We can also use the original (non-Interval) sets to deseribe knowledge. Then, the estimates
will be correct, but (due to Proposition 1) checking consistency will be difficult.
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5. Multi-dimensional case

51. Motivation and the formulation of the main result

Motivations. If we have several physical quantities Zy, ..., Z,, it is natural to ask the following
question: what is the set of possible tuples £ = (z1,...,2,) € R"? Definition 1 does not depend
on the dimension. Definitions 2 and 3 can be easily adjusted to n—dimensional case, if we
take into consideration that in case of n quantities, we can independently change the value of
each of them:

Definition 2'. We say that a family S of sets is translation-invariant if for every X € S, and for
every @ € R", the set X + @ also belongs to S (this set X + @ is called a translate of X).
Definition 3'. We say that a family S of sets is dilation-invariant if for every X € S, and
for every vector X with positive components A; > 0, the set XX also belongs to S, where
XX = {XZ|E € X} and A\Z = (\Z1, ..., MZn).

For n quantities, one of the natural situations is when we have some knowledge about each
quantities, and these pieces of knowledge are independent. In such a situation, whether z; is a
possible value of i-th quantity or not does not depend on what the values of other quantities
are. So, in this case, a set of values £ = (zy,...,%,) is possible iff each of z; is possible. In
mathematical terms, it means that the set S of possible values of ¥ can be represented as a
Cartesian product S; X Sz X --- x S, where 5; is a set of possible values of i-th quantity z;.
Hence, we arrive at the following definition:

Definition 4. We say that a set S describes independent knowledge of ; is S = 5y x --- x S, for
some sets S; C R.

If one of these sets S; consists of only one point {s;}, this means that we actually know
the value of i-th quantity exactly. For this z;, our knowledge about z; is complete. So, we
arrive at the following definition:

Definition 5. We say that a set S = Sy X --+ X Sy, describes independent incomplete knowledge of x;
if each of the sets S; contains at least two different points.

Proposition 2. (R",n > 1) For an arbitrary family of sets S, the following conditions are
equivalent to each other:

i) § is a non-empty translation- and dilation-invariant family of bounded closed sets that
allows checking consistency easily, and that contains a set S describing independent
incomplete knowledge of ;.

ii} There exists n values n; € {0, 1} such that S coincides with the family of all n-dimensional
intervals X = [a1,b1] X - - - X [an, by] for which all component intervals [a;, b;] with n; =1
are non-degenerate.

Comments.

1. In particular, if all n; =1, § coincides with the set of all non-degenerate n-dimensional
intervals, and if all n; = 0, then S coincides with the set of all n-dimensional intervals.

2. Similarly to Proposition 1, this result does mot mean that in all the cases, incomplete
knowledge must be described by intervals. It could as well be described by, eg., an
ellipsoid. This proposition proves that if we use non-interval sets (eg., ellipsoids) to
describe incomplete knowledge, then checking consistency of the resulting knowledge
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will not be so straightforward. So, if we want to be able to check consistency fast, we
must enclose ellipsoids and other sets in n-dimensional intervals, and use these enclosures
instead of the original domains.

52. The auxiliary result

A similar result can be proven if instead of dilation-invariance, we assume that all sets from X
are convex.

Propasition 3. If § is a non-empty translation-invariant family of bounded closed convex sets
that allows checking consistency easily, then all sets from S are parallelepipeds.

Comment. This result explains why parallelepipeds are often used to describe incomplete knowledge.

A possible meaning of convexity of domains representing incomplete knowledge. Let’s
consider the case when all the knowledge about the quantities z, ..., z, comes from measure-
ments, and when the errors of these measurements are so small that terms quadratic in these
errors can be neglected. This means that after processing the results of all the measurements,
we get the (approximate) values Zj,...,Z, of the quantities z;, and we know that the errors
A; = Z; — z; of these measurements are small.

How does the domain X representing incomplete knowledge, ie., the set of all possible
values of Z, look in this case? Since we assumed that knowledge comes only from measurements,
X is the set of all vectors T that are consistent with all the measurements. How to describe
this consistency? Suppose that we measure a quantity y that is related to z;, i, that can be
expressed as a function of z;: y = f(Z1,...,%a). The measured quantity ¥ can coincide with
one of the z;, or it could be some combination of z;. Assume that the result of measurement is
¥, and that we know the bound A for the measurement error guaranteed by the manufacturer
of the used measuring instrument. This means that the actual value f(zi,...,n) of y must
belong to an interval [y~, y*]; where y* = § £ A. Since we assumed that the errors are small,
and their errors are negligible, we can expand the function f(z;,...,z,) in Taylor series, and
retain only linear terms in this expansion: f(zi,...,Zn) ® fin(21,...,Ta), where we denoted
flin(a:la Cey .’L'n) = f(il, ey in) +f11(.’i'1, cay i‘n) . (1‘1 - Azl) +-- ‘+fyn(.’i]., N ,i’n) . (.’En - Al‘n)
So, instead of the. inequalities y~ < f(21,...,Zn) and f(zy,...,2n) < y*, we consider the
inequalities ¥~ < fin(21,...,%n) and fin(Z1,...,2,) < yT. For a linear function fi,, each of
these inequalities describes a semi-space.

Elements from X must satisfy all inequalities that stem from all the measurements. There-
fore, X is an intersection of semi-spaces that correspond to all these inequalities. A semi-space
is convex, so, this intersection is also convex.

53. A hypothesis

Propositions 2 and 3 naturally lead to the following Hypothesis:

Hypothesis (R*,n > 1). If S is a non-empty translation- and dilation-invariant family of
bounded closed sets that allows checking consistency easily, then all the sets from S are
parallelepipeds.
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6. Proofs

Proof of Proposition 1. ii) — ) is evident. So, let us prove that i) — i%). This proof will also
be relatively simple. Assume that S is a non-empty translation- and dilation-invariant family of
bounded closed sets that allows checking consistency easily.

First, we will prove that all sets from & are intervals. Indeed, assume that X € S.
Since X is closed and bounded, it is compact. Therefore, the set X contains its sup and inf:
z-=infX € X and z7 =sup X € X. Hence,

{£7 e’} C X Clzm. 2] (1)

Let us prove that X = [z7,z%]. Indeed, take z € (z7,z*), and let us prove that z € X.

Due to translation- and dilation-invariance, the sets

-z

X(1)=a‘:"+x (X -z7)

+ -

and

z

zt ~
X =gt —— (X -z7)
z‘f‘_

belong to S. From (1) and from the definitions of X» and X?, we conclude that

{z-,2} € XV C [z7,q],
{r,z*} € X@ C [z,z%]

Let us now apply to the sets X X and X the assumption that S allows checking
consistency easily. All conditions of Definition 1 are satisfied; indeed:

e the sets X and X® have a common element z, so X and X () are consistent;
o the sets X and X have a common element z~, so X is consistent with X(1;
o the sets X and X® have a common element z¥, so X is consistent with X%

As a result, we conclude that all three sets X, X, and X are consistent, ie., that they
have a common point y. But all elements of X M are < z, all elements of X @ are >z, so
the only common point of X and X® is 2. Therefore, y =z and y € X, ie, z € X.

So, we have proved two statements about X:
e First, we have proved that {z~,z*} C X C {z~,z*]
e Second, we have proved that an arbitrary real number z from (z=,z*) belongs to X.

Therefore, X = [z7,z7].

Hence, all sets from S are intervals. To complete our proof, we must show that every
interval belongs to S. Indeed, S is non-empty, and we aiready know that all its sets are
intervals. Let’s take one of these sets X = [z7,z%] € S, and let us prove that any other
interval [a, b] also belongs to S. Indeed,

(0,8 = a + —— %
T



A NEW CHARACTERIZATION OF THE SET OF ALL INTERVALS... 293

so the fact that [a,b] € S follows from the assumption that the family S is dilation- and
translation-invariant.

Similarly, it is easy to prove that if S contains at least one degenerate interval [a, a], then
S contains all possible degenerate intervals [a, a]. O
Proof of Proposition 2. i2) — ) is evident. So, let us prove that 1) — iz). Assume that S is a
non-empty translation- and dilation-invariant family of bounded closed sets that allows checking
consistency easily, and that contains a set S’ describing independent incomplete knowledge of z;.
1 Let us first prove that the given set S (that describes independent knowledge) is an
-dimensional interval.

Indeed, according to Definitions 4 and 5, S = S; x 83 X -+ X S, where each of the sets
S; contains at least two different elements. Since S is translation- and dilation-invariant, we
can conclude that for every a € R, and for every A > 0, the sets (S;+a) x Sz X --- x S, and
'\/\(51 +a)) X Sy X -+ x Sy, also belong to S.

All resulting sets have the same 2-nd, ..., n-th components Sy, ..., S,. For such sets,

(S1X Sy X e XS)N(Sy X S2X++-x8,)=(51NS]) XS x-+-%x5,

50 (Syx Sax-+-x 8p)N(S) xS x---x8,) =g iff $N.S] = ¢. Therefore, from the fact that
the family S allows checking consistency easily, we can conclude that the first components of
the resulting sets also allow checking consistency easily. So, these first components satisfy the
conditions of part i) of Proposition 1. So, these first components are intervals. In particular, 5
is an interval. Since S; contains at least two different elements, it is a non-degenerate interval.

Similarly, we can conclude that each of the components S; is a non-degenerate interval
and therefore, that S = S5y x --+ X S, is an n-dimensional interval.

2. We have just proved that S contains an n-dimensional interval. By applying appropriate
translations and dilations in each dimension, we can conclude (similarly to Proposition 1) that
every non-degenerate n-dimensional interval I belongs to S.

3. Let us now prove that every set X € S is convex.

By definition of convexity, it means that if @ € X, be X,and a € (0,1) is a real number,
then ¢ = ad + (1 — a)b € X. To prove this inclusion, let us construct the following intervals
X and X2,

e If a; < b;, then a; < ¢; < b;. In this case, we take X,-(l) = [ai, ¢;] and X,-(Z) = [¢;, bi).

o If a; > b;, then a; > ¢; > b;. In this case, we take Xi(l) = [¢;, a;] and X,-(z) = [b;, .

e If a; = b;, then a; = ¢; = b;. In this case, we take Xi(l) =[g—1,¢] and Xi(z) =[a,a+1).
In all three cases, X,v(l) and Xi(z) have the following properties:

® a; € Xi(l) and b; € Xi(z);

. Xi(l) and Xiu) are non-degenerate intervals;

e XV xP® =}
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Let us now consider n-dimensional intervals

XU = xPx.ox X0 (2)
and
X = xP x . x X0, (3)

According to Part 2 of this proof, X! € S and X® € S. Because of the properties of Xi(l)
and X,-(z), we have @ = (ay,...,a,) € X, b e X® and

XOnx® = (X %o XMy n (X x-ox XP)
(XN XY x o x (XPNXP) = {a} x - x {ea} = {2}

Let us now apply to the sets XV, X® and X the assumption that S allows checking
consistency easily. All conditions of Definition 1 are satisfied; indeed:

e the sets X and X® have a common element &, so XV and X® are consistent;
o the sets X and XV have a common element @, so X is consistent with X{U;
o the sets X and X® have a common element b, so X is consistent with X

As a result, we conclude that all three sets X, XV, and X® are consistent, i.e., that they have
a common point. But the only common point of X and X is & Therefore, € X. So, X
is convex.
4. Let us now prove that every set X € S satisfies the following recombination property: for every
i from 1 to n, ifd = (al,. . .,ai_l,ai,aiﬂ,...,an) € X, and 5= (b]_,...,bi_l,bi,bi+1,...,bn) €
X, then ¢ = (al,...,ai_l,bi,aiﬂ,...,an) € X.
Comment. In other words, instead of each component a; of @ € X, we can substitute the
corresponding component of any other vector be X, and still get an element of X. This
operation is a particular case of what is happening when two DNA’s from two parents are
transformed into a single DNA of a child. This procedure has been formally described under
the name of recombination in the first algorithms that simulated biological evolution {2, 3], and it
is actively used in genetic algorithms that use a simulated evolution to solve optimization problems
[4-8, 11].

To prove the recombination property, let us consider the following intervals Xi(l) and

x2.

e If a; < b;, then Xi(l) = [a;, b and Xi(z) =[bi,bi+1];
e If a; > b;, then Xiu) = [b,-,a.;] and Xi(2) = [bl - 1,bi] 5

o If g; = b;, then €= &, so the desired conclusion ¢ € X immediately follows from 4 € X.
In this case, there is no need to construct the intervals Xim.

For j # i, we will consider the following intervals X;l) and X;z):
e If a; < b;, then X = [a; — 1,a;] and X? =a;,b] ;
5 < 05> i =18~ L4 i T 185050

o If a; > b;, then X](»l) = [aj,a; + 1] and X](z) = [b;,q5] ;
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b, M —1, .. (2) _
o If a; = b;, then X = [a;,a; + 1] and X[ = [bj, a;].

In all three cases, these intervals XJ(-U and X;Z), 7=12,...,1,...,n, satisfy the following
properties:

®a; € X](-l) and b; € X](Z);

. XJ(U and X](~2) are non-degenerate intervals;
1) @ _ 4. - L

o X;"NX;7 = {¢} for all § (including j = 1).

So, if we use formulas (2) and (3) to define n-dimensional intervals X and X, we will have
e XU be X and XV N XA = {&}. Applying the condition that the family S allows
checking consistency easily, we conclude that ¢ € X.

5. Let us now prove that an arbitrary set X from the given class S is an n-dimensional
interval.

Indeed, since X is bounded and closed, it is compact, and so, for each i, the set X
contains the points in which the ¢-th coordinate attains its supremum and infimum. Let’s
denote these supremum and infimum by z and z; correspondingly. Then, there is a point
&) € X with coordinates {...,z},...) (ie, for which (z(+9); = z*S;), and there is another
point £~ € X, with coordinates (..., z;,...).

Now, we can apply recombination property to the points £V € X and £+% € X, and
get points from X with coordinates (z7,z7,...). Similarly, by combining different pairs of
vectors ©TY € X and #*D € X, we get 3 more points, with coordinates correspondingly
(zf,z7,. ), (z7,z3,...), and {z],27,...). We can recombine each of these 4 elements with
one of the elements #*3) € X and get 8 vectors with coordinates (z¥,z7,z53,...) that all
belong to our set X. Repeating this procedure n times, we conclude that X contains all
2" points with coordinates (z7,z5,...,zE). In other words, X contains all vertices of an
n-dimensional interval I = [z7,z7] x -+ X [z, z}].

We have already proven (in Part 3 of this proof) that X is convex. Therefore, X contains
the convex combination of these vertices, i.e., X contains the entire n-dimensional interval I:
I € X. On the other hand, since z; and x:’ have been chosen as the infimum and supremum
of z;, we have z; € [z],z7] for all i and for all £ € X. Therefore, if £ € X, then T € I,
ie, X C I. Since we already know that [ C X, we conclude that X = I, and X is an
n-dimensional interval. O
Proof of Proposition 3. This result is a simple corollary of a known result from combinatorial
geometry.

1. Let us first prove that our Definition 1 can be proved to be equivalent to the so-called
2—Helly property (see, e.g., [1, 9]): if every two sets from S have a common point, then any finite mumber
of sets from S also have a common point.

Comment. The name of this property came from Helly theorem from combinatorial geometry.
Proof of Statement 1. Assume that S allows checking consistency easily, and the sets X DR ¢
from S have pairwise non-empty intersections. To prove that

XU nx® £

let’s start with a consistent class {X"), X®®}. Since S altows checking consistency easily, and
X® is consistent with both sets XV and X®, we can conclude that XV N X N X6 £ o
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Now, likewise, we can add X™, and conclude that X N XP N XN X £ o Adding the
sets X one by one, we finally conclude that XV N ... N X6 # .

Vice versa, assume that 2—Helly property is true, XV - NX® #p and XONX £ ¢
for all ¢ from 1 to s. Then, XN XW 5 ¢ for all 4,5 and therefore, due to 2—Helly property,
XD ... nXE N X # . The equivalence is proven.

2. It is known ([1], p. 237; [17]) that the translates of a compact convex set X satisfy a 2— Helly property
if and only if X is a parallelepiped. So, a convex compact set X can be a reasonable representation
of incomplete knowledge iff X is a parallelepiped. a

7. Conclusions

In this paper, we give a characterization of the set of all intervals and (in multi-dimensional case)
the set of all parallelepipeds as natural and useful settings in mathematical modeling. Namely,
we show that these two sets can be uniquely characterized by the condition of invariance with
respect to shifts and dilations (that correspond to change the unit measure and the starting
point) plus the possibility to check easily the consistency of incomplete knowledge.
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