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A new characterization 
intervals, based on the 
consistency easily 
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of the set of all 
necessity to check 

The purpose ot this paper is to present a new characterizaticm ot the set of all intervals. I'his 
characterization is based on several natural properties useful in mathematical modeling; the main of 
these properties is the necessity to easily check consistency of incompMte knowledge This characterization 
is obtained Ix)th fiw one-dimensional and for multidimensional cases 
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10 Formulation of the problem: How to describe 
incomplete knowledge? 

Measurements  always lead to approximate  values of  the measured  physical quantities. So, if 

we measure  a physical quanti ty z,  and  the result of  this measu remen t  is f:, then, because of 
the possible error ,  several different  values of z are possible. Let's denote  the set of  all possible 

values (that are consistent with our  measurement  result) by X .  

T h e  manufac tu re r s  of  a measur ing  device usually provide us with an  upper  bound  A for 
possible errors. Since the error  A z  = :~ - z is l imited by A, we can guaran tee  that possible 

values of the measured  physical quantity belong to the interval  [:~ - A, k + A]. But are all 

values f rom this interval  possible? In  other words, is this interval  the desired set X?  

Usually, it is not. T h e  reason for that is as follows: T h e  manufac turer ' s  b o u n d  is often a n  
overestimate, because it is difficult to estimate A precisely, and  so the manufac ture r ,  because of  

his desire to guarantee the accuracy, prefers to give an  uppe r  estimate for this bound.  Because 

of that, the actual set X is usually smaller than the interval  [~" - A, f- + A!. 
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Assume now that we know the exact upper  bound A~ for the error  This means that all 
possible values of  a; belong to an interval [a~- &e, ~ + Ae], or, that the set X is a subset of this 
interval. Then  our question is: is X equal to this interval? I.e., ~" X an interval?- 

In some cases, it may not be an interval. Then,  we must somehow approximate  it. 
What family of  sets should we use for this approximation.: To find that out, let us take 
into consideration the fact that measurements can go wrong, and therefi)re, several results of  

measuring one and the same physical quantity can be inconsistent. 

2. The necessity to check consistency easily 

2.1. Main idea 
Assume that we fix a physical quantity a:, and we measure it several times. Each measurement  
provides us with an addit ional knowledge about z. 

Measuring instruments can go wrong. As a result, we may get inconsistent data. For 
example, assume that we have measured the same current  [ twice, both times with an accuracy 
0.1, and the results are 1.0 and 2.0. According to the first measurement,  the actual value I 
of the current  must belong to an interval [0.9, 1.1]; according to the second measurement,  this 
value must belong to an interval [1.9,2.1]. Therefore,  [ must belong to the intersection of  
these two intervals. But this intersection is empty, which means that dur ing (at least] one of 
the measurements,  something went wrong with the measuring instrument. 

In view of this possibility, before we start processing measurement  results, it would be nice 

to check the existing knowledge for possible inconsistencies. 

Therefore,  it is desirable to choose the family of approximat ing sets in such a way that 
this check will not be computationally very complicated. 

Comments. 

1. The  idea that checking consistency can detect crude errors, and thus improve the accuracy 
of the resulting estimates, is definitely not new. What  is new in this paper  is our  proof  
that: 

�9 for this idea to be (easily) applicable, i.e., in order  to be able to easily check 
consistency, we must represent all incomplete knowledge in terms of intervals, and 
that 

�9 therefbre, if we use sets from any other class (ellipsoids, etc) to describe incomplete 
knowledge, then checking consistency will not be as easy as fbr intervals (the precise 
formulation of  what "easy" means will be given later). 

2. Some of this paper 's  results first appeared in the Technical Report  [t3] and in the abstract 

[12]. 

2.2. Motivations for the (following) precise definition 
Let's formulate this necessity in mathematical  terms. Assume that we have several pieces of  
knowledge about :c, that come from several measurements. Each piece of  knowledge can be 
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formulated as a set of all the values x that are consistent with this particular knowledge. 1 So, 
instead of saying that we have several pieces of knowledge, we can say that we have several sets 
X, Y, . . . ,  Z C_ R. Consistency means that it is possible that a certain value z E R is consistent 
with all these measurements, i.e., x belongs to all these sets X, Y , . . . ,  Z (in other words, that 
xnYn., .nZ#~).  

How can we actually check consistency? Knowledge usually comes piece after piece, so a 
typical situation is as follows: 

We already have a consistent ~knowledge base "2. In other words, we have the pieces 
of knowledge represented by sets X{1), . . . .  X %, and these pieces of knowledge are 
consistent. 

* Then, a new piece of knowledge arrives, described by a set X. 

In the case when we are sure that all measuring instruments function properly, and 
therefore, all the sets X (1) do contain the actual value of the measured quantity, there is no 
need to store all these sets in the knowledge base: in this case, the actual value belongs to 
the intersection of these sets, so, we can as well keep the intersection only. However, the 
motivation for this paper is to consider the cam when torturing instruments can go wrong. 
Therefore, if it turns out that the new measurement is inconsistent with the results of the 
previous measurements, we want to be able to analyze the records of the related measurement, 
find the measurement that could be wrong, and discard its result. If we store the sets that 
describe the results of all previous measurements, then we discard one of them by simply 
deleting the correspondent set from the collection of sets'X (1) .... , X 0), If we only store the 
intersection (so that the sets themselves have been deleted), then there is no easy way to discard 
just the result of one measurement. So, in our situation, we haw to keep the sets that describe 
the results of all the measurements. 

Another possibility could be to keep b0th the sets X(O that describe the results of the 
measurements, and the interaction of the~e sets. This is a reasonable alternative, but it has 
one serious drawback: it is not always applicable, Modern knowledge bases are distributed, i.e., 
some data are stored in one place, and some are stored in other places (see, e.g,, [15]; this is 
how, e.g., some knowledge is stored in the World Wide Web and Mosaic). One of the major 
advantages of such storage is that we can do opera~ions like search and update in pardld on 
different parts of this knowledge base (and therefore, much fgsc~ than if all the knowledge 
was located in one place only). If, however, we were required to also store the intersection, 
then we would need to actually re-compute this intersection every time we add a new piece of 
knowledge. This necessity will make update a sequential operation and thus, one of the main 
advantages of distributed databases will be gone, 

Therefore, in this paper, we will consider the situation In which we stor~ the sets X (i) 
corresponding to different pieces of knowledge bu~ n~ their intersection, 

In this case, if we have a new set X (representing the new piece of knowledge) added 
to the sets X (0, a natural 'way to check consistency ts to check whether X is consistent with 

ZThis is a very q~ctflc )ype of knowledge, callgl i~o~tN~, k~mg~l~. There exist other ~yp~a of knowledge that 
describe different tyl~ of aneenatnty, For a brief dea~rtptioo of dtffer@n~ ~ypea of uaeertaimy, s~, e,a,, [14], 

aThe notion of a knowlelge hose la a general notion, ~ha~ is u~l  to deg'rtlw different types of knowledge. In this 
paper, we will be uslnjl only one opec|fie type of knowlgtge basss~ namely, ~olle~tona of sets representing different 
pieces of incomplete knowledge, 
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each of the existing sets X (i). The consistency between X and each of X (i) is, of course, 
necessary for the new knowledge base {X(1) , . . . ,  X (~), X}  to be consistent. It is easy to see, 
however, that this comparison is not always sufficient. For example, if s = 2, X O) = {0, 1}, 
X (2) = {1,2}, and X = {0,2}, then the original knowledge base {X(1),X (2)} is consistent, 
and X is consistent with each of the sets X (i), but there is no number common to all three 
sets. 

So, since we want to express the fact that the above procedure does lead to checking 
consistency easily, we arrive at the following definition: 

2.3. Formal definition 

Definition 1. We say that a family  ,.q o f  sets allows checking consistency easily i f  the following is 

true: For every s, and for  every tuple o f  sets X (1) E S , . . . ,  X (s) E S ,  X E S ,  for which: 

�9 sets X (1), . . . ,  X (s) are consistent O.e., X (1) f3 - .-  fq X (s) ~ qa) and 

�9 X is consistent with aIl X (i) (i.e., X N X (~) # qa for a/l i = t , . . . ,  s), 

all s + 1 sets X(1),  . . . , X (s), X are consistent (i.e., X (1) n . . . f3 X (') fq X # ~). 

3. Translation and dilation invariance: Additional 
demands on the desired family of sets 

We are interested in measurements, so it is natural to assume that if X is a reasonable 
approximation to sets that describe the incomplete knowledge, then a set X 4 - a  (that is 
obtained from X by a translation) is also a reasonable approximation. For example, assume 
that we are measuring time, and as a result we get 35 4- 5 (i.e., a set X = [30, 40]). If  we now 
change the starting point for measuring time, e.g., take - 5  as the new starting point, then the 
same result will be expressed as X 4- 5 = 40 4- 5 ~ [35, 45]. This new set X 4- 5 must also be a 
reasonable approximation. If  instead of  changing the starting point, we change the measuring 
unit (i.e., consider minutes instead of  seconds), then in the new units, we get AX instead of X.  
So, it is also natural to assume that if X is a reasonable approximation, and A > 0, then )~X 
is a reasonable approximation as well. 

Comment. In terms of  measurement theory (see, e.g., [16]), this means that we are considering 
measuring scales that are determined modulo arbitrary linear transformations. Such scales are 
also called interval scales. To avoid confusion, we must mention that the very fact that we are 
considering an interval scale (e.g., time) does not necessarily mean that the resulting incomplete 
knowledge is represented by an interval (see, e.g'., [10]). For example, suppose that we are 
measuring time by using an electromagnetic clock in the close vicinity of a computer memory 
element. In this situation, the external field caused by this element is the main source of error. 
This element can be in two possible states (depending on whether it represents bit "1" or bit 
~0"), so we have two possible values of an error. Crudely speaking, for this situation, the set of 
possible values of measurement error consists of only two points {-E,  E}, and does not contain 
any internal values at all. So, if the measured time is {, then the set X (0 of  possible values of  
time is { t -  e, t + c}. This set is not an interval, but measuring time is definitely an interval 

56ale. 
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If in addition to this main source of error, we take into consideration other possible 
sources of error, then the resulting set X (i) of possible values of time becomes a union of two 
small intervals: one dose to t - e ,  and a one close to ~+ ~. SdU, it is not an interval. 
Definition 2. We say chat a family 3 of sets is translafion-inusriant i f  for every X E 3, and for 
every a E R, the se~ X + a also belongs to S (this set X + a is called a translate of X ). 

Definition 8. We say that a family $ of sets is dilation.invariant i f  for every X E S, and for 
every A > O, the set AX also belongs to 3, 

Since we have already argued that each set X belongs to an interval (namely, to [ ~ -  
A, ~ + A]), each set X is bounded. It is also natural to assume that each set X is dosed. Now, 
we are ready to formulate our main result. 

1 First result: one-dimensional case 

Proposition 1. For an arb/rrary family of seu $, the following conditions are equ/valenr to 
each ocher: 

i) S is a non-empq rranalarJon, and dila~ion.invarian~ family of  bounded dosed seu ~at  
allows checking cons/stency eas/ly; 

ii) 3 is either: 

- ~he family of  all intervals, or 

- the family of  all non.degenerate intervals [a, b], a < b. 

(For reader's convenience, all the prooh are moved to the last motion). 
Comment. This result d~# not mean that in all the cams, incomplete knowledge must be 
described by intervah. It could as well be that our incomplete knowledge can be described 
by the 2-element set {-1 ,1 ) .  This Proposition proves that if we use non-interval sets to 
describe incomplete knowledge, then checking consistency of the resulting knowledge will not 
be so straightforward. 'So, if the actual knowledge corresponds to non-interval sets (domains 
representing incomplete knowledge), then we have two options: 

�9 We can replace these domains by intervals (e.g., use [ -1,  i] instead of { -1 ,  1}). 

- The main ad~ama~ of this replacement is that we will now be able to easily check 
consistency. 

- The main dL~ad~an~aA~ is that we have increased the domain, and therefore, the 
resulting estimates may be owre~mat~, Let's describe an example of this over- 
estimaUon. Suppose that we know that = ~ X - {-1,1}. In this case, we 
use [-1, I] to describe this incomplete knowledge, Suppose that we are now in- 
terested in the set Y of possible values of y - z ~, If when esdmaUng Y, we 
can only use the fact that X ~ [-I, I]~ then, as a result, we can only conclude 
that Y ~ {z2[z E [-1, 1]} ~- [0~ 1], which Is an overestimate for the desired set 
r * (et  i)} - (z}. 

�9 We can also use the original (non.lnterval) sets to describe knowledge. Then, the estimates 
will be correct, but (due to lffopodtlon i) checking condstency will be difficult. 
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5. Multi-dimensional case 

D. MISANE s V. K R E I N O V I C H  

5.1. Motivation and the formulation of the main result 

Motivations. If  we have several physical quantities ah,. �9 a:,~, it is natural to ask the following 
question: what is the set of  possible tuples :~ = (a : t , . . . ,  zn) E Rn? Definition 1 does not depend 
on the dimension. Definitions 2 and 3 can be easily adjusted to n-d imensional  case, if we 
take into consideration that in case of  n quantities, we can independently change the value of 
each of them: 

Definition 2 ~. We say that a family S o f  sets is translation-invariant i f  for every X E ,5, and for 
every d E R '~, the set X + ~ also belongs to S (this set X + d is ca/led a translate o f  X) .  

Definition 3'. We say that a family S o f  sets is dilation-invariant i f  for every X ff ,5, and 

for e v e ~  vector A with positive components Ai > O, the set A X  also belongs to S,  where 

;,x = { el e x }  and he = 
For n quantities, one of the natural situations is when we have some knowledge about each 

quantities, and these pieces of  knowledge are independent. In such a situation, whether zi is a 
possible value of  i-th quantity or not does not depend on what the values of other quantities 
are. So, in this case, a set of  values ~" = (a:l . . . .  , Zn) is possible iff each of  ah is possible. In 
mathematical terms, it means that the set S of  possible values of  a~ can be represented as a 
Cartesian product $1 x $2 x . . -  x ,-qn, where Si is a set of  possible values of i-th quantity z+ 
Hence, we arrive at the following definition: 

Definition 4. We say that a set S describes independent knowledge of z~ is S = S I x  .- .  x Sn for 
some sets Si C_ R. 

If  one of  these sets Si consists of  only one point (s~}, this means that we actually know 
the value of i-th quantity exacdy. For this zi, our knowledge about a:~ is complete. So, we 
arrive at the following definition: 

Definition 5. We  say that a set S = St  x . . .  x Sn describes independent incomplete knowledge of :c~ 
i f  each o f  the sets Si contains at least two different points. 

Proposition 2. (R n, n > 1) For an arbitrary family o f  sets ,5, the following conditions are 
equivalent to each other: 

i) S is a non-empty translation- and dilation-invariant family o f  bounded dosed sets that 
Mlows checking consistency easily, and that contains a set S describing independent 
incomplete knowledge o f  zi. 

ii) There exists r~ values ni E (0, 1} such that S coincides with the family o f  ail n-dimensional 
intervais X = [cq, bl] x . . .  • [an, bn] for which all component intervals [ai, hi] with rzi = 1 
are non-degenerate. 

Comments. 

1. In particular, if all r~i = 1, `5 coincides with the set of all non-degenerate n-dimensional 
intervals, and if all rzi = 0, then ,5 coincides with the set of all n-dimensional intervals. 

2. Similarly to Proposition 1, this result does not mean that in all the cases, incomplete 
knowledge must be described by intervals. It could as well be described by, e.g., an 
ellipsoid. This proposition proves that if we use non-interval sets (e.g., ellipsoids) to 
describe incomplete knowledge, then checking consistency of the resulting knowledge 
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will not be so straightforward. So, if we want to be able to check consistency fast, we 
must enclose ellipsoids and other sets in n-dimensional intervals, and use these enclosures 
instead of the original domains. 

5.2. The auxiliary result 
A similar result can be proven if instead of dilation-invariance, we assume that all sets from X 
are convex. 

Proposi t ion 3. I f  S is a non-empty translation-invariant family of  bounded closed convex sets 
that allows checking consistency easily, then all sets from S are parallelepipeds. 

Comment. This result explains why paralleletnpeds are often, used to describe incomplete knowledge. 

A possible meaning of convexity of  domains represent ing incomplete  knowledge.  Let's 
, onsider the case when all the knowledge about the quantities x l , . . . ,  Zn comes from measure- 
ments, and when the errors of these measurements are so small that terms quadratic in these 
errors can be neglected. This means that after processing the results of all the measurements,  
we get the (approximate) values z l , . - . ,  zn of  the quantities a:i, and we know that the errors  
Ai = Y:i - :ri of these measurements are small. 

How does the domain X representing incomplete knowledge, i.e., the set of all possible 
values of s look in this case? Since we assumed that knowledge comes only from measurements,  
X is the set of  all vectors :~ that are consistent with all the measurements. How to describe 
this consistency? Suppose that we measure a quantity y that is related to zi ,  i.e., that can be 
expressed as a function of xi: y = f ( x t , . . . ,  xn). The  measured quantity y can coincide with 
one of  the zi ,  or it could be some combination of  zi.  Assume that the result of measurement  is 
9, and that we know the bound A for the measurement error  guaranteed by the manufacturer  
of the used measuring instrument. This means that the actual value f ( z l , . . . , z ,  0 of y must 
belong to an interval [y- ,  y+]; where y+ = ~ 4- A. Since we assumed that the errors are small, 
and their  errors are  negligible, we can expand the function f ( z t , . . - ,  z,~) in Taylor  series, and 
retain only l inear  terms in this expansion: f ( : c i , . . . ,  zn) ~ f l i n ( z l , . . . ,  z,~), where we denoted 

f l i ~ ( z l , . . . ,  z,~) = f ( ~ l  . . . .  , k,~) + f , a ( ~ l , . . . ,  Y:,~)" (z~ - A z l )  + . . .  + f , ~ ( ~ , . . . ,  :~,~)- (x,~ - Axn).  
So, instead of  t h e  inequalities V- < f ( z a , . . . , z , ~ )  and f ( x ~ , . . . , z , ~ )  < y+, we consider the 
inequalities y -  < f l in (Z ' l , . . . ,  z,~) and f l i n (Z l , . . - ,  z,~) < V +. For a l inear function flin, each of  
these inequalities describes a semi-space. 

Elements from X must satisfy all inequalities that stem from all the measurements. There-  
fore, X is an intersection of  semi-spaces that correspond to all these inequalities. A semi-space 
is convex, so, this intersection is also convex. 

5.3. A hypothesis 
Propositions 2 and 3 naturally lead to the i-ollowing Hypothesis: 

Hypothesis  (R~,n  > 1). I f  S is a non-empty translaton- and dilation-invariant family o f  
bounded closed sets that allows checking consistency easily, then all the sets from ,_q are  

parallelepipeds. 
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6. Proofs 
Proof  of Proposi t ion 1. i i )  --+ i)  is evident. So, let us prove that i) --+ i i) .  This proof  will also 

be relatively simple. Assume that ,9 is a non-empty translation- and dilation-invariant family of  
bounded closed sets that allows checking consistency easily. 

First, we will prove that all sets from S are intervals. Indeed, assume that X E S.  
Since X is closed and bounded,  it is compact. Therefore,  the set X contains its sup and inf: 
x -  = i n f X E X  and x + = s u p X E X .  Hence, 

r  x +} c x c r  z+l . (1) 

Let us prove that X = Ix- ,  x+]. Indeed,  take x E ( x - ,  x+),  and let us prove that x E X.  

Due to translation- and dilation-invariance, the sets 

x - x  (X x-)  X (1) = x -  + x+ _ x -  

and 
x + - -  x 

X (2) = x + - - ( X - x - )  
X ~- -- x- 

belong to S.  From (1) and from the definitions of X (1) and X (2), we conclude that 

r  c x(1) c r 
{x,z+} c x(~) c (z,z+t. 

Let us now apply to the sets X (1),X (2), and X the assumption that S allows checking 
consistency easily. All conditions of  Definition 1 are satisfied; indeed: 

�9 the sets X O) and X (2) have a common element x, so X (1) and X (2) are consistent; 

�9 the sets X and X (1) have a common element x - ,  so X is consistent with X(I);  

�9 the sets X and X (2) have a common element z +, so X is consistent with X (2). 

As a result, we conclude that all three sets X ,  X (1), and X (2) are consistent, i.e., that they 
have a common point  y. But all elements of  X (1) are < x, all elements of  X (2) are >_ x, so 
the only common point of X (1) and  X (2) is x. Therefore,  y = x and y E X,  i.e., x E X.  

So, we have proved two statements about X:  

�9 First, w e  have proved that { x - , x  +} C_ X C_ [ x - , x + ] .  

�9 Second, we have proved that an arbitrary real number x from ( x - ,  x +) belongs to X .  

Therefore,  X = [x- ,  x+]. 

Hence, all sets from 5" are  intervals. To complete our proof, we must show that every 
interval belongs to S.  Indeed,  S is non-empty, and we already know that all its sets are 
intervals. Let's take one of  these sets X = [ x - , x  +] ~ S ,  and let us prove that any other  

interval [a, b] also belongs to S .  Indeed,  

b - a  
- - ( X - x - )  

[a, b] = a + x + _ x -  
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so the fact that [a, b] E 8 follows from the assumption that the family 8 is dilation- and 
translation-invariant. 

Similarly, it is easy to prove that if 8 contains at least one degenerate interval [a, a], then 
S' contains all possible degenerate intervals [a, a]. [] 

Proof of Proposition 2. i i)  ~ i) is evident. So, let us prove that i) --~ ii). Assume that S is a 
non-empty translation- and dilation-invariant family of  bounded closed sets that allows checking 
consistency easily, and that contains a set 5, describing independent incomplete knowledge of  xi. 

] Let us first prove that the given set 5, (that describes independent knowledge) is an 
,-dimensional interval. 

Indeed, according to Definitions 4 and 5, 5, = 5,1 x 5,2 x - . .  x 5,n, where each of the sets 
Si contains at least two different elements. Since S is translation- and dilation-invariant, we 
can conclude that for every a E R, and for every A > 0, the sets (5,1 + a) x $2 x .--  x Sn and 

+ a))  x $2 x . - .  x S~ also belong to S. 

All resulting sets have the same 2 -nd , . . . ,  n-th components $ 2 , . . . ,  5,,~. For such sets, 

(& x 5,2 x . ~ .  x 5 , . )  o (5,~ x 5,2 x . . -  x 5 , . )  = (5,1 n 5,~) x 5,2 x . . .  x & 

so (5,, x 5'2 x - . .  x 5,n) rh (S~ x 5,2 x . . .  x 5,,,) = ~ iff $1 rhS~ = ~o. Therefore, from the fact that 
the family S allows checking consistency easily, we can conclude that the first components of  
the resulting sets also allow checking consistency easily. So, these first components satisfy the 
conditions of  part i) of Proposition 1. So, these first components are intervals. In particular, $1 
is an interval. Since 5,1 contains at least two different elements, it is a non-degenerate interval. 

Similarly, we can conclude that each of  the components Si is a non-degenerate interval 
and therefore, that S = 5,1 x --.  x 5,n is an n-dimensional interval. 

2. We have just proved that S contains an n-dimensional interval. By applying appropriate 
translations and dilations in each dimension, we can conclude (similarly to Proposition 1) that 
every non-degenerate n-dimensional interval [ belongs to S. 

3. Let us now prove that every set X E S is convex. 

By definition of  convexity, it means that if ff E X,  b E X,  and a E (0, 1) is a real number, 

then K = a 8  + (! - a ) b  E X. To prove this inclusion, let us construct the following intervals 

X~ 1) and X~'2): 

�9 If  ai < hi, then ai < ci < bi. In this case, we take X} 1) = [ai, c/] and X} 2) = [ci, hi]. 

�9 If  a~ > bi, then ai > c / >  bi. In this case, we take X} 1) = [ci, ai] and X} 2) = [bi, c./]. 

�9 If  ai = bi, then ai = ci = hi. In this case, we take X} *) = [ci - 1, ci] and X} 2) = [c/, c / +  1]. 

In all three cases, X} 1) and X} 2) have the following properties: 

�9 ai E X[ 1) and bi E X~2}; 

�9 X} 1) and X} 2) are non-degenerate intervals; 

�9 X} 1) I~IX} 2) = {Ci} .  
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Let us now consider n-dimensional intervals 

X (~) = X }  1) x - . .  x X ~  (1) (2) 

and 
X (2) = X[ 2) x . . -  x X~ (2). (3) 

According to Part 2 of  this proof, X (1) E `9 and X (2) E `9. Because of the properties of 2}  1) 

and X} 2), we have g = ( a l , . . . ,  an) E X (1), b E X (2), and 

2 (1) ["1 2 (2) = ( X }  1) x . - -  x 2 (1))  A ( X }  2) x . . .  x 2 n  (2)) 

= ( x }  1) n x }  x . . .  • n = { c J  •  x { c ~  = { 4 .  

Let us now apply to the sets X (1), X (2), and X the assumption that ,9 allows checking 
consistency easily. All conditions of Definition 1 are satisfied; indeed: 

�9 the sets X (1) and X (2) have a common element 6", so X (1) and X (2) are consistent; 

�9 the sets X and X (1) have a common element d, so X is consistent with X(1); 

�9 the sets X and X (2) have a common element b, so X is consistent with X (2). 

As a result, we conclude that all three sets X, X (1), and X (2) are consistent, i.e., that they have 
a common point. But the only common point of  X O) and X (2) is E Therefore, 6. E X.  So, X 
is convex. 

4. Let us now prove that every set X E S satisfies the following recombination property: for every 

i from 1 to n, if d =  (a l , . . . ,a i - l ,  ai, a~+l,...,an) E X,  and b= (bl,.. . ,b~-t,b~,bi+l,.. . ,bn) E 
X, then 6"= (al , .  - . ,  a i - b  b~, ai+l, .  �9 a,~) E X.  

Comment. In other words, instead of  each component ai of g E X,  we can substitute the 

corresponding component of  any other vector b E X,  and still get an element of  X.  This 
operation is a particular case of what is happening when two DNA's from two parents are 
transformed into a single DNA of a child. This procedure has been formally described under 
the name of recombination in the first algorithms that simulated biological evolution [2, 3], and it 
is actively used in genetic algorithms that use a simulated evolution to solve optimization problems 
[4-8,  11]. 

To prove the recombination property, let us consider the following intervals X} l) and 
)(/(2): 

* If  a, < bi, then X{ 1) = [ai, hi] and X~ 2) = [b,, bi + 1] ; 

�9 If  ai > hi, then X} 1) = [bi, ai] and X} 2) = {hi - 1, bi] ; 

�9 If  ai = bi, then Y = K, so the desired conclusion 6. E X 

In this case, there is no need to construct the intervals 

For j # i, we will consider the following intervals X} 1) 

�9 If  % < bj, then X] 1 )=  [ % -  1, aj] and 2 ]  2 ) =  [aj, bj] 

�9 If  aj > bj, then X} 1 ) =  [aj, aj + 1] and X} 2) = [bj, aj] 

immediately follows from d E X.  

X}k). 

and X~2): 
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�9 If  aj = bj, then X~ 1) = [aj, aj + 1] and X~ 2) = [bj, ad]. 

In all three cases, these intervals )(3(- 1) and XJ 2), j -- 1, 2 , . . . ,  i , . . . ,  n, satisfy the following 
properties: 

�9 aj E X] 1) and bj ~ )(3(.2); 

�9 X} t) and X} 2) are non-degenerate intervals; 

�9 X} 1) M X} 2) = {c~} for all j (including j = i). 

So, if" we use formulas (2) and (3) to define n-dimensional intervals X (1) and X (2), we will have 
5 E X (1), b E X (2), and X O) N X (2) = {if}. Applying the condition that the family ,5 allows 
checking consistency easily, we conclude that ~" E X.  

5. Let us now prove that an arbitrary set X from the given class ,5 is an n-dimensional 
interval. 

Indeed, since X is bounded and closed, it is compact, and so, for each i, the set X 
contains the points in which the i-th coordinate attains its supremum and infimum. Let's 
denote these supremum and infimum by x + and x~- correspondingly. Then,  there is a point 
x ~+0 E X with coordinates ( . . . ,  x /+, . . . )  (i.e., for w h i c h  (x(+i))i = x + , 5 i ) ,  and there is another  
point ~ - i )  E X ,  with coordinates ( . . . ,  x~-, . . . ) .  

Now, we can apply recombination property to the points ~+1) E X and x -'(+2) E X,  and 
( x l , x 2 , . . . ) .  Similarly, by combining different pairs of get points from X with coordinates + + 

vectors ~ •  E X and x ~• E X,  we get 3 more points, with coordinates correspondingly 
(x +, x 2 , . . ) ,  (x-~, x+, . . . ) ,  and (x~, x 2 , . . . ) .  We can recombine each of these 4 elements with 
one of the elements ~• E X and get 8 vectors with coordinates (x~, x ~ , x ~ , . . . )  that all 
belong to our set X.  Repeating this procedure n times, we conclude that X contains all 
2 n points with coordinates (x~, x~ . . . . .  x~). In other words, X contains all vertices of  an 
n-dimensional interval I = [x 1, x +] x . . .  x [x~, x+]. 

We have already proven (in Part 3 of  this proof) that X is convex. Therefore,  X contains 
the convex combination of these vertices, i.e., X contains the entire n-dimensional interval I :  
[ C X.  On the other hand, since x~- and x + have been chosen as the infimum and supremum 
ofx~,  we have x~ E [x~-,x +] for all i and for all aTE X.  Therefore,  i f a ? E  X,  then aTE I ,  
i.e., X _C I .  Since we already know that /- C_ X,  we conclude that X = I ,  and X is an 
n-dimensional interval. [] 
Proof  of Proposition 3. This result is a simple corollary of a known result from combinatorial 
geometry, 

1. Let us first prove that our Definition 1 can be proved to be equivalent to the so-called 
2-HelIy property (see, e.g., [1, 9]): /f every two sets from ,5 have a common point, ttum any finite number 
of sets from $ also have a common point. 
Comment. The name of this property came from Helly theorem from combinatorial geometry. 

Proof of Statement i. Assume that `5 allows checking consistency easily, and the sets X(1 ) , . . . ,  X (s) 
from ,5 have pairwise non-empty intersections. To  prove that 

X (~) n - . .  n X ~) r 

let's start with a consistent class {X (1), X(2)}. Since ,5 allows checking consistency easily, and 
X (3) is consistent with both sets X (1) and X (2), we can conclude that X (1) M X (2) C X (3) ~ ~0. 
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Now, likewise, we can add X (4), and conclude that X O) N X (2) N X (3) N X (4) ~ ~. Adding the 
sets X (i) one by one, we finally conclude that X (1) n �9 - �9 N X (s) ~ ~. 

Vice versa, assume that 2-Hel ly  property is true, X (1) N- -- N X (s) ~ ~, and X (i) N X ~ 
for all i from 1 to s. Then, X (i) N X  (j) ~ ~ for all i , j  and therefore, due to 2 -He l ly  property, 
X (1) N .- .  n X (s) N X ~ ~. The  equivalence is proven. 

2. It is known ([1], p. 237; [17]) that the translates of a compact convex set X satisfy a 2-HeUy property 
if and only if X is a parallelepiped. So, a convex compact set X can be a reasonable representation 
of incomplete knowledge iff X is a parallelepiped. [] 

7. Conclusions 
In this paper, we give a characterization of the set of all intervals and (in multi-dimensional case) 
the set of all parallelepipeds as natural and useful settings in mathematical modeling. Namely, 
we show that these two sets can be uniquely characterized by the condition of invariance with 
respect to shifts and dilations (that correspond to change the unit measure and the starting 
point) plus the possibility to check easily the consistency of incomplete knowledge. 
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