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Study on sampling techniques with CMMs 
THOMAS J. McLEAN and DAVID H .  Xu 

C~awdinate Measuring Mat hines (CMMs) coupled with computers have provided new. tx~werihl capabilities 
in the field ot manufacturing quality control Most CMMs in use today rely on tx)int sampling to evaluate 
the specified dimensions and tolerances: we measure the c~x~rdinates in several selected points, and make 
conclusions about the entire surfilce Several different sampling patterns have been pro~sed In this 
paper, we describe the.retical and experiment;d zesults on choosing the best sample pattern lot practkal 
CMM applications 
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10 Introduction: formulation of a real-life problem 
The existing Coordinate Measuring Machines (CMMs) measure the precise values of 3 - D  
coordinates x, y, and z of chosen points on a workpiece with an accuracy of 1 to 3 microns 
Isee, e.g., [1]). The  results of these measurements are used to evaluate the characteristics of 
the entire surface [1, 3-5].  For example, suppose that we have manufactured a surface that is 
supposed to be planar,  and want to evaluate how planar  the surface actually is. If  we orient 
the surface in such a way that the desired plane coincides with Oxy, then the ideal surface 
would be described by the equation z = 0. Since manufacturing is never perfect, the values 
of  z for the points on the actual surface will be different from 0. The  largest value M of 
Izl for all the points (x, y, z) from this surface characterizes its planarity. To measure this 
characteristic, we select several points (x~, y~) on the plane, measure the corresponding values 
,,f z,:, and take the largest value max  tz~l as the estimate of  M (see, e.g., [6]). 

Similarly, if we want to check whether an edge of the workpiece is linear, we place it so 
that this edge is as close to the 0x axis as possible. Then,  ideally, or all points (x, y, z) from 
this edge, we would get Y = z = 0. For a real-life manufactured edge, we have y # 0 and 
z # 0 The  distance r between the actual point (x, Y, z) and the ideal edge y = z = 0 is equal 
to r = ~ So, as a characteristic L of tinearity of the edge, we can take the largest value 
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L = max r of this distance r for all points from the edge. To  measure this characteristic, we 
choose several points xi on the line, measure the corresponding values of Yi and zi, compute 

ri = ~/y~ + z/2, and take g = max ri as an estimate of  L. The  larger the number of  points, 

the smaller is the error L - g of  this estimate. 

The  main problem with using CMM is that the larger the number of points for which we 
measure coordinates, the longer it takes to measure them. CMM is a million-dollar machine, 
and it is very expensive to use. In view of this, it is desirable to minimize the number of  points 
for which we measure coordinates. Usually, the number of points which we can measure is 
limited by economic considerations, so, we have the following problem: the total number n of 
points is given; we must select the points in such a way that the resulting error will be the 
smallest possible. In this paper, we consider the problem of choosing the points for testing 
linearity. 

For linearity, there are currently three main methods of  selecting the points xi on a given 
interval [0, X]: 

Completely random sampling, in which n values xi are chosen randomly; all n choices are 
independent, and each variables xi is uniformly distributed on the interval [0, X]. This 
method is currently the most recommended and the most thoroughly analyzed in the 
academic community. 

Randomized block sampling, in which we divide the interval [0, X] into b blocks [0, X/b], 
IX/b, 2X/b] . . . . .  [ ( b -  1)X/b,  X]. Then, we select z l , . . . ,  x(,~/b)-~ to be independent ran- 
dom variables uniformly distributed in the first block; x(,Vb), . . . ,  x2(,Vb)-I are independent 
random variables uniformly distributed in the second block, etc. 

Equal distance sequential sampling, in which the values xi are equally spaced: xi = xl  + ( i - 1 ) s  
for some step s. This method is the easiest to implement, and because of that, it is most 
widely used in practice. 

Completely random sampling can be viewed as a degenerate case of the randomized block 
sampling, for which there is only one block (b = 1). 

In this paper, we show that both from the experimental and the theoretical viewpoint, 
equal distance sequential sampling is the best. The main experimental results of this paper 
have appeared in the thesis [7] of one of  the authors (this thesis also contains statistical estimates, 
that we did not include into this paper). A brief description of  our results was given in [2]. 

21 Theoretical analysis of the problem 

2.1. The main idea 

The main idea of of  theoretical analysis is as follows: we are analyzing the shape of  the 
manufactured Objects. Manufacturing smoothes the discontinuities, and thus, the resulting 
function r(x) is smooth. From the manufacturing considerations, we can estimate how smooth 
the function r(x)  is: namely, we can get an upper bound A for the derivative r ' (x) :  Irt(x)l <_ A.  
Therefore, the function r(x)  must satisfy the following inequality: Ir(x) - r(y)l <_ A . Ix -- Yl 
for all x and y. 
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Comment. The estimate A that we can get is reasonably crude. However, this crudeness does 
not bother us very much, because, as we will see later, the choice of the sampling does not 
depend on the value of A. 

Due to this estimate, if we know the values r (x i )  for n values Zl < x2 < . . .  < x,~, 
then, for every other x, we can find the /nterva/ r (x)  of possible values of  x. For example, 
if x < xl, then, from I t ( x ) -  r(xl) l  <_ I x -  xl[, we can conclude that r (x )  E r(x)  = 
[r(xl) - A .  (xl -- x), r (xl)  + A .  (xl - x)]. If xi < x < xi+l, then we have two inequalities 
I t (x)  -- r(xi)[ _< A .  (x -- xi) and [r(x) - r(xi+l)l  <_ A .  (xi+l -- x) ,  from which we conclude 
:hat r(x)  E r(x)  = [ r - (x) ,  r+(x)],  where 

r - ( x )  = m a x  ( r (x i )  - A . (x - x i ) , r ( x i + l )  - A . (xi+l - x ) )  and 

r+(x)  = rain ( r ( x i ) + A . ( z - x i ) , r ( x i + l ) + A . ( x i + l  x)).  

The narrower the intervals, the better the sample. Let us describe this idea in mathematical 
terms. In this description, we will take into consideration that the measurement is never 
absolutely accurate, and therefore, the measured values ri may be slightly different from the 
actual values r (x i ) .  

2.2.  Definitions and the main result 
Def in i t i on .  

* Let X > 0 and A > 0 be positive tea/ numbers.  By 7-4,, we will denote  the set o f  all 

A - L i p s c h i t z  functions r :  [0, X] ---* [0, oo), i.e., the set o f  MI non-negative functions for  

which [r(x) - r (y) l  < A . I x - y [  for all x , y  e [0, X]. 

�9 Let a positive integer n be given. This integer is called a number of measurements. By a 

pattern ~, we mean an increasing sequence o f  n numbers  f rom the interval [0, X] (/.e., a 
sequence xi for  which 0 <_ Xl < x2 < " "  < xn <_ X) .  

�9 Let 6 > 0 be a positive real number; this n u m b e r  will be called a measurement accuracy. By  

measurement results, we mean a sequence # o f  n non-negative real numbers  r l , . . - ,  rn. W e  

say that a function r E ~ is consistent with the measurement  results ~" i f  ]r(xi) - ri] <_ 6 
for  all i = 1, 2 , . . . ,  n. We  say that the measurement  results are consistent i f  there exists a 

function r that is consistent with them. I f  a function r is consistent with measurement  

results f', then we define measurement error as the value IL - LI, where L = m a x r ( x )  and 

L = max(~i). 

�9 By a guaranteed error E(:~) o f  a pattern ~, we mean the largest possible measurement  

error for this pattern. 

P r o p o s i t i o n .  The pattern xi = (i - 1/2) .  ( X / n )  has the smallest possible guaranteed error. 

Comment. So, in the sense of minimizing guaranteed error, the equal distance sequential sampling 
is the best choice. 

Proof This proof is reasonably simple. Namely, we wilt compute the guaranteed error of  the 
pattern described in Proposition, and show that every other pattern has a larger guaranteed 
error. 
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For  this pa t te rn ,  the  step s is equal to X / n ,  and  x l  = s/2. For every n u m b e r  x ff [0, X] ,  
we can f ind x~ that  is closest to this x by tak ing  4 = Vx/s 1. One can easily see that  [x-x i t  <_ s/2. 
Let ~" be any m e a s u r e m e n t  results, and  let r E 7"4 be a funct ion that  is consistent with these 
results. Since r E 7"a,., we have r ( z )  < r(x~) + A .  ( s / 2 ) .  By def ini t ion of consistency, we have 
r(xi) < ?i + 5. There fo re ,  r(x)  < r(x~) + A ,  ( s / 2 )  _< r~i + A .  ( s / 2 )  + 6. Since ri  <_ L,  we have 
r(x)  <_ L + A .  ( s / 2 )  + (5. Th is  is t rue  for  all x,  and  therefore ,  for  L = r n a x r ( x ) ,  we have 

L <_ L + a .  (s/2) + (5. 
On the o ther  hand ,  r i  <_ r(xi) + (5 <_ maxr ( x )  + (5 = L + (5. This  inequality is t rue  for  all 

i and  therefore ,  g = m a x ~  < L + (5. Hence,  g < L + (5 4- A .  ( s / 2 ) .  

Combin ing  these two inequalities,  we conc lude  that  ]L - L[ <_ 6 + A .  (s/2). So, for  this 
pat tern ,  E ( ~ )  _< (5 + A .  ( s / 2 ) .  

Let us now show tha t  for  every o the r  pa t t e rn  • E(y  ~) > 6+A. ( s /2 ) .  Let us first p rove  tha t  
if  Yi is d i f fe ren t  f rom xi ,  then  e i ther  Yt is largest  than  s/2, or the difference between Y~+l-Yi is 
g rea te r  than  s for  some i, o r  X - y n  is g r ea t e r  than  s /2  (here s = X / n  is the step of  ou r  chosen 
pa t t e rn  a~, tha t  we are  cur ren t ly  p rov ing  to be the best). Indeed ,  if none  of  these inequali t ies 
would be true,  then  we would  have Yl <- s/2,  Yi+l - Yi _< s, and  X - y~ <_ s/2. There fo re ,  we 
would have X = Yl + (y2 - yl) + " "  + (Yn - yn-1) + ( X  - yn) <- s /2 + s + . . .  4- s + s /2  = X ,  and  
the only possibility of  equali ty is when all these inequali t ies a re  equalities, i.e., when Yl = s / 2  
and  Yi+l - Yi = s for  all i. But  in this case, we would have Yi = xi for  all i ,  and  we assumed  

that  ?7 ~ a3. 

So, we have p roven  tha t  if  the  pa t t e rn  !7 is d i f fe ren t  f rom s then e i ther  Yl > s/2, or 
Yi~-l-Yi > s for  some i, o r  X - y n  > s/2. Let us show that  in all three  cases, E(17) > (54-A-(s /2) .  

�9 First, let us cons ider  the  case when Yl > s/2. Let the measu remen t  results consist of  
identical  numbers  '?i = - 6 ;  then,  g = -(5. Let r(x) be equal to 0 when  x > Yl, 
and  to A .  (Yl -- x)  for  x < Yl- T h e n ,  as one can easily check, r is consistent with ?'. 
L = m a x r ( x )  = A.y~ ,  so L - L  = (5+A.yl.  Since y~ > s/2, we have L - L  >_ (5+A.(s/2). 
By defini t ion,  E(y-) > L - L, a n d  therefore ,  E(y-') > (5 + A .  ( s /2 ) .  

�9 Second,  let us cons ider  the case when Yi+l - Y~ > s for  some i Let the m e a s u r e m e n t  
results consist of  ident ical  number s  r~ = -(5; then.  g = -(5 Let r(x) be equal  to 0 
when x r [y~,yi--1], to ~ -  ( x - y i )  for  Yi < x G ( y i + y i + l ) / 2 ,  and  to A .  ( Y i ~ - l - x )  
fol (Yi + y i + t ) / 2  _< x _< Y~+I. T h e n ,  as one can easily check, r is consistent with 7 v, 
L = m a x r ( x )  = A .  (Yi+l - y~)/2,  so L - L = ~ + A .  (Yi~-I - y:)/2. Since Y~+I - Y~ > s, we 
have L - L  > (5+A.(s/2). By def ini t ion,  E ( ~  >_ L-L,  and  therefore,  E(y-') > ( 5 + A . ( s / 2 ) .  

�9 T h e  th i rd  case is p roven  similar ly to the first two; we have r(x) = 0 for  x < y,~, and  
r(x) = A .  ( x -  yn) for  x > yn. 

In all th ree  cases, we have E(y-') > (~ + A .  ( s / 2 )  >. E ( Z ) .  So, the proposi t ion is proven.  

3. Experimental results 
We tested d i f fe ren t  s ampl ing  
of  S tanda rds  a n d  Te c h n o lo g y  
fol lowing specimens: 

techniques on the expe r imen ta l  da ta  f rom the Nat ional  Inst i tute  
(NIST) pro jec t  [1]. These  da ta  include 12 measu red  lines on the 

�9 specimens A - H  used by Genera l  Electric Co. as their  s t anda rd  p lanar  specimens; 
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�9 specimen NAS: a NAS 979 standard artifact, 

a glass %ptical flaC specimen REP. This specimen was measured using a "light box" to 
certify its surf'ace flatness. 

All the lines were measured using a Sheffield Cordax CMM available in the Automated  
M:mut:acturing Research Facilkv (AMRF) of" NIST. For each line, a set of 400 readings over an 
approximately 2-inch distance was recorded. The  largest deviation from linearky among these 
!00 measurements was taken as the actual value of L. Then,  several (n) points were chosen 
at~ording to the principles of equal distance, completely random, and randomized samplings, 
and tl~e maximum of" measured values over these chosen points was taken as L. We tested 
each method with r~ = 3, 4 . 5 ~ . . . ,  40. The  plots that describe the dependency of" the ratio L/L 
hneasured Straightness" L to true straightness L) are given. For the majori ty of  them, equal 
-pacing does lead to a smaller er ror  than the alternative two patterns. 

This is especially clear when rt is small. Indeed, in this case, s = X/n is reasonably large 
so. ~ .  ( s /9)  >> 6, and hence, the error  component A .  (s/2) that is influences by the choice 
of the pattern is the major  component  of" the total er ror  L - L When rt increases, 6 (the 
measurement error  of" the CMM) becomes the major  component  of the er ror  L - L. In this 
case, the choice of" the pat tern becomes rather  irrelevant. The  CMM measurement  e r ror  is 
random, so on several graphs, we see random fluctuations of  the total er ror  for large ft. 
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SA_\IPLE SIZE VS. Sq%klGHTNESS (F) 
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Figure 6 
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S;L\IPLE SIZE VS. STR.~Gi~rNtcSS (REPI) 
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4. Conclusions 
We have shown that when we check linearity of an edge of a workpiece by measuring 
coordinates of several sample points with a Coordinate Measuring Machine, the guaranteed 
error is the smallest when we use equal distance sampling. 
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