
Reliable Computing 1 (3) (1995), pp. 265-274

Optimizing INTBIS on the CRAY Y-MP
CHEN'a Hu, JoE SHELDON*, R. BAKER KEARFOTT, and QING YANG

[NTBIS is a well-tested software package which uses an interval Newton/generalized bisection method to

find all numerical solutions to nonlinear systems of equations. Since INTBIS uses interval computations,

its results are guaranteed to cnntain all solutions. To efficiently solve very, large nonlinear systems on a
parallel vector computer, it is necessary to effectively utilize the architectural features of the machine [n

this paper, we report our implementations of INTBIS for large nonlinear systems on the Cray Y - M P
supercomputer. We first present the direct implementation of INTBIS nn a Cray. Then, we report our
work on optimizing INTBIS on the Cray Y - M P

OIITIIMH3aIIII INTBIS
r-I. Xy, Ax. IIIFaaOH, P. B. I~P.orr, K. ,q.vtr

CRAY Y-MP

INTBIS - - npomeamHfi TtttaTeAhtloe Tec'rnpoBaHrte nageT nporpaMMHOn) ts acnoJlbayIOtIII, ffl

UHTepBaastthafi MeTO/1 HbIOTOHa H O606LUeaH~fi MeTO/1 noaoBnmtoro aeaeHna a a a naxo,Kaenaa acex
qHC..rleHHhlX pemetlnfl C!4C'I'eM n e a a a e ~ a ~ x ypaBneaafi. Baanmapa r n u y ate) tNTBIS ncnoahayeT an-

TepBanbmae autiRc..aenn~, no,ayqaeM~e nM peaynbxaTla rapan'rrtpomaHno coaepx~ax ~ e pemettna. 2Laa

3(~bCi~KTHBHOrO peIMeHH~l OqeHb ~).rI6ILII4X ae.rIHHelT-IHbIX CHCTeM na r~apaa.aeabHOM BeKTOpHOM gOMn61oTe-
pe HeO6XO/:II4MO MaKcI.IMa/IbHO rmnom:~OmaTi, OCO6eHHO(;TH apxnTegTyp~ Mammtza. B rtacToame~ pa6o-re

onrtcaH~ peaaH3aumt [NTBIS a a a 6om, mHx aemmexzimax CHCTeM aa cynepgomnmoxepe Cray Y - M P
Cvtaqa.~a npencxaBaeHa npaMaJ~ peadln3auH$i INTBIS a a a KOMnLIOTeOOB Cray, a 3aTeM H3.aaratoTca
pe3y;mraT~a pa60-rra no onxaMH3auHa INTBIS a a a Cray Y - M P

1. Introduction
INTBIS [10] is a fully documented well-tested .portable software package written in standard
FORTRAN 77. The software package includes 46 subroutines and functions with a total
length of over 10,000 lines. The software finds all numerical solutions to nonlinear systems of
equations

F (X) = (fo(xo, x t , . . . ,x ,~-~) , f l (xO, Xl , . . . , x ,~- l) , . . . , f ,~- l (Xo, z l , . . . , x ,~ - l)) = 0 (t)

in a given box 1 X = (x0, x l , . . . , x n - 1) , where xi E xi and xi = {zi]z_i <_ xi <_ gi}. The
result of applying INTBIS is a collection of small boxes that are guaranteed to contain solutions
of the equation. This package takes into "consideration the finite precision of the computer
arithmetic operations.

In this paper, we report our work on vectorization and optimization of INTBIS on the
Cray Y-MP/864 at San Diego Supercomputer Center (SDSC). Efficient implementations of the

~) C Hu, J Sheldon, R B. Kearfl)tt, Q Yang, t995
This research was partially supported by NSF Grants No. DMS-9205680 and No. MIP-9208041

*This co-author is a NASA supported undergradua te research assistant at the University of Houston-Downtown.

1Throughout the paper we will use boldface letters and capital letters to denote interval quantities and vectors,

respectively We use x and ~ to denote the lower hound and the upper bound fi)r an interval variable x , respectively

266 C. H U t j'. SHELDONt R. B. KEARFOTT t Q . YANG

software package require a clear understanding of the system environment of the machine
as well as the algorithm. The underlying algorithm in INTBIS is based on the interval
Newton/generalized bisection method. Detailed information about the algorithm can be found
in [2, 6, 7, 9]. Readers may also refer to an outline of the algorithm in [4] which appears in
this issue.

2Q System environment
The Cray Y-MP at SDSC is a shared memory MIMD (multiple instruction multiple data)
supercomputer. It has 8 CPUs, each with a 6-nanosecond clock period, providing a theoretical
peak speed of 2.7 Gflops (billions of floating-point operations per second) across all processors.

Each CPU of the Cray is a vector processor which contains a number of functional units.
Each of these functional units is designed for a special purpose and operates independently
of the others. Therefore, operations can occur in parallel on different functional units. The
functional units of the Cray are capable of d~iaiag, i.e., the output from one operation can
become the input to another functional unit. Furthermore, each of these functional units is
fully pi~lin, d, i.e., provides a way to start a new task on the functional unit before an old one
has been completed, so that the intermediate steps required to complete an operation can be
broken down into time slots of one-dock-period duration.

Here is an example to explain how the pipeline principle works. Suppose it requires
6 dock cycles (steps) to add two floating point numbers in a computer. Then, adding two
floating point N-vectors to form a new N-vector (i.e. C(i) ~ A(i) + B(i), for i = I, 2 , N)
oll a conventional (non-pipelined) computer requires 6N clock periods. A pipelined floating
point addition unit consists of 6 elements, and each element performs only one of the 6 steps
required, then provides its intermediate result to the next element, all in one clock cycle. The
6 elements of the addition unit can work concurrently, The unit needs 6 clock cycles (called
the initiation" time) to fill the pipeline (produce the first result), then it produces a result in
every clock cycle. The total time required by the pipdined addition functional unit to add
two vectors of length N will be 6 + (N - I). In general, if a task requires c clock periods
to complete; then it will require c + N - 1 clock periods on a fully pipelined functional unit
to complete N similar tasks, compared to cN clock periods on a conventional (non-pipelined)
computer. The time saved would be cN = c = N + 1 - (c - I) (N = 1). Since c _> 1 is fixed
for a given pipelined functional unit, the largerN, the more time will be saved. Therefore,
the major optimization technique used in this paper is to increase the length of vectors to be
accessed by the fully pipelined Gray functional units.

In the above discussion, we assumed that there is no memory accessing delay for the fully
pipdined functional unit to work. However, it is not always true in practice. In fact, memory
accessing latency (i.e., time necessary to fetch data from the memory) is a major bottleneck
in scientific computations nowadays. To reduce memory accessing latency, Cray's memory is
partitioned into 4 sections; each of these sections is partitioned into 8 subsections, and each
subsection, in its turn, is divided into 8 separate subsubseetions called banks, This construction
gives the Clay 256 memory banks, This memory system structure is called interlmwd memory.
Each Cray Y-MP CPU has its own path to each section of the memory. Each CPU has four
ports: two for reading, one for writing, and one for instruction buffers or I/O request, For
a CPU to access memory, it must have both an available port and an available path to that
section of memory. The bank cycle time for a Gray Y-MP is 5 clock periods, This means that

OPTIMIZING INTBIS ON THE CRAY Y--MP 267

each memory reference by a CPU makes the referenced memory bank unavailable to all ports
in all other CPUs for 5 clock periods Furthermore, each memory reference makes an entire
memory subsection unavailable to all ports of the same CPU for 5 clock periods. The time
that a CPU-memory reference must wait to re-access a memory bank is 5 clock periods. Hence,
attempts to access the same bank or subsection each tick of the clock (called bank conflict) results
in an effective memory speed of 1/5 of the possible speed. In our optimization, we also tested
memo D accessing to see if bank conflicts happened in our numerical experiments.

The Cray Y - M P at SDSC runs UNICOS, a UNIX operating system from Cray Research,
.nc Most portable programs written in standard FORTRAN 77 can be compiled by the Cray
, :77 compiler and run on the Cray Y - M P without any changes. The Cray cf77 compiler
can also analyze the source code and automatically perform some optimizations based on the
program. If there are no data dependencies, the cf77 compiler can vectorize the innermost
! ~op of a nested loop to be run on a vector processor, and can parallelize the outermost loop
t d a nested loop to be run on different processors. Our work reported in this paper only
involves the optimization of INTBIS on a single vector processor of the Cray Y-MP. In the
fi~llowing two sections, we first report the result obtained by compiler optimization, and then
report additional optimizations requiring changes in the source code.

3. Direct implementation
Although written in standard FORTRAN 77, INTBIS simulates interval operations, and so,
special consideration must be given to the Cray's special floating point arithmetic and architec-
ture.

All current digital computers store real numbers in a floating point format and perform
only floating point operations. To perform interval operations with both mathematical and nu-
merical rigor, INTBIS implements the interval arithmetic in software. A subroutine RNDOUT
is employed to simulate directed roundings in a reasonably transportable way. It is called for
each elementary operation involving intervals. The endpoints of the result interval are first
computed with the machine's usual floating point arithmetic. Then, the routine RNDOUT may
decrease the left endpoint of that approximate interval result by the absolute value of that
endpoint times a rigorous estimate for the maximum relative error in an elementary operation.
The routine RNDOUT may also similarly increase the right endpoint of that approximate
interval.

For RNDOUT to work properly, a machine-dependent parameter must be set by calling
the routine SIMINI. The routine SIMINI obtains certain machine parameters by calling the
SLATEC routines D1MACH and IIMACH. In particular, SIMINI sets the amount by which
the left endpoint is to be decreased the right endpoint is to be increased after the end points
are obtained with the usual floating point arithmetic, to guarantee that the resulting interval
will contain the result which would have been obtained with true directed roundings. If the
machine has so-called guaTcl digits (meaning that all arithmetic operations are correct up to the
last binary digit), then the results will have a maximum error of one ULP (unit in the last
place). However, Cray machines do not have guard digits, and on such machines, the use of
D1MACH is not rigorous (i.e., does not lead to an interval guaranteed to contain the desired
result) [11]. In our implementation, to get guaranteed estimates, we used a larger value of the
largest relative distance between floating point numbers than that given in D1MACH. This can
be done bv properly setting the value of MAXERR, which is the maximum number of ULP's.

268 c . H U t J. S H E L D O N , R. B. KEARFOTT t Q . Y A N G

In our implementation, we set MAXERR = 20 which was recommended by H. Schwandt and
P. Tang [8]. In effect, the technique uses part of the computer word as guard digits, to avoid
the type of subtraction error illustrated in [11].

Due to the Gray memory architecture, the Gray performs optimally with single precision.
Using double precision will severely degrade the overall performance. In addition, the Gray
Y-MP is 64-bit machine. Single precision on the Gray is 64 bits so the actual precision is
equivalent to double precision on most other machines. Therefore, we converted all double
precision variables in INTBIS into single precision.

In runing INTBIS on the Gray, we found for some sets of test data the program crashed
The problem was traced to the interval division routine XDIV, in which a mathematical
operation was being performed on a variable that had not been initialized. After making this
very minor change, the hNTBIS was properly implemented on the Gray Y-MP and ran well. In
this direct implementation, we compiled INTBIS with machine optimization and vectorization.

We chose Broyden's problem [7] to analyze the behavior of the direct implementation of
INTBIS on the Cray. Broyden's problem is defined by:

f, = z,(2 + 5z~) + 1 - E xj(1 + azj)
jea',

where Ji = {j : j r i, m a x (1 , i - 5) _< j _ m i n (n , i + 1)}; the initial box is [-1,1] n. We
chose Broyden's problem because n (the dimension of the system of equations) can be changed
easily. By using the Cray flow,race utility, we generated a report detailing the time used by
each subroutine for Broyden's problem with n = 16.

Here is the report generated by the Cray flow,race for the direct implementation; we only
list the top ten most expensive routines.

Routine Name Total Time Number of Calls Percentage
SCLMLT 2.38 592294 21.14
RNDOUT 1.88 761646 16.69

MULT 1.42 206098 12.56

POLFUN I. 16 370 10.25
ADD i. 12 256915 9.92

POLJAC 0.77 180 6.80
INTGS 0.53 112 4.68

NBLPCW 0.50 1347 4.44
CASPIV 0.47 2697 4.15
POWER 0.32 88320 2.84

Totals 11.3 2044457 100

We have also run a set of other test problems. The program behavior information
provided by the Cray flowchart utility is comparable with the above.

Analyzing the behavior of the software package, we found that the five subroutines,
SCLMLT, RNDOUT, MULl', POLFUN, and ADD cost over 70% of the machine time. The
number of calls to SCLMLT, RNDOUT, MULT and ADD are about 90% of total subroutine
calls. To improve the overall efficiency of INTBIS, we definitely should take full advantage of
Cray architecture to optimize these subroutines, which consume most of the computation time.

OPTIMIZING INTBIS ON THE CRAY Y--MP 269

4. Optimization
The original flowtrace report showed that SCLMLT, which multiplies an interval by a point
value, used the most computation time, followed by RNDOUT. We worked on the SCLMLT
routine first. The structure of the routine SCLMLT is

SUBROUTINE SCLMLT(A, B, RESULT)

REAL A, B(2), RESULT(2)

END

In the subroutine SCLMLT, variable A is a scalar and B is an array that stores the upper
~nd lower bounds of an interval. The resulting interval is put into the two-element array
RESULT. The fully pipelined Cray multiplication function unit will not speed up SCLMLT
significantly; because of the pipeline initialization time, it is not advantageous to process arrays
with two elements, To take full advantage of fully pipelined Cray functional units, we searched
tbr calls to SCLMLT in INTBIS, and found that 11% of the total calls of SCLMLT was in a
loop inside the routine INTGS (interval Gauss-Seidel linear solver).

DO I0 1 = i, N

A = ...

B = ...

CALL SCLMLT(A, B, RESULT)

�9 . . = A

� 9 = B

i0 CONTINUE

Such loops are really interval vector operations analogous to level-1 BLAS (Basic Linear
Algebra Software) routines. The Cray compiler cannot vectorize loops that contain function
calls. To achieve higher speedup, we pushed the loops inside SCLMLT to form a new routine
VSCLMLT. To push the loop into SCLMLT, the parameters to SCLMLT are put into temporary
arrays, the loop is placed in VSCLMLT, and the multiple calls to SCLMLT are replaced by a
single call to VSCLMLT.

The new code has the following structure:

DO i0 1 = I, N

TEMPI(I) = . ..

TEMP2(I,I) = ...

TEMP2(2,I) = ...

I0 CONTINUE

CALL VSCLMLT(N, TF2LPI, TEMP2, TEMP3)

Routine VSCLMLT:

SUBROUTINE VSCLMLT(N, A, B, RESULT)

INTEGER N

REAL A(N), B(2,N), RESULT(2,N)

270

DO I0 I = I, N

RESULT(I,N) = ...

RESULT(2,N) = ...

I0 CONTINUE

END

C . H U t j'. S H E L D O N t R . B . K E A R F O T T t Q . Y A N G

In INTBIS, the routine RNDOUT is called by each single interval (a 2-element array)
operation to guarantee rigor. In addition to the vectorization of SCLMLT in INTGS, RND-
OUT was also vectorized with the same method; we used VRNDOUT (Vector RNDOUT) in
VSCLMLT instead of RNDOUT. We obtained the following statistics after ~ectorization of
SCLMLT and RNDOUT in INTGS:

Routine Name Total Time Number of Calls Percentage
SCLMLT 2.22 19 86
RNDOUT 2.01

527711
762798 17.98

MULT 1.39 206082 12.40
POLFUN 1.17 370 10.49

ADD 1.09 256781 9.77
POLJAC 0.78 180 7.00
NBLPCW 0.50 1346 4.51
CASPIV 0.49 2697 4.34
INTGS 0.39 112 3.51

POWER 0.31 88320 2.81

Totals 11.2 1989176 100

Comparing the flowcharts, we found that the number of function calls to SCLMLT went
down from 2044457 to 1989176. This optimization saved 55,281 function calls to SCLMLT.
This means that we only vectorized about 11% of the calls to subroutine SCLMLT in another
routine INTGS. However, we can see an improvement: the total time (as reported by flowtrace)
fell from 11.3 seconds to 11.2 seconds. Although the time saved is insignificant (about 1%), it
indicates that our approach is in a right direction.

The same method was applied to the routine MULT in CASPIV and in INTGS, and to
the routine ADD in INTGS; calls to RNDOUT in MULT and ADD were replaced with calls
to VRNDOUT in VMULT and VADD. After each vectorization the final result was compared
to the original to guarantee accuracy of the changes, and a flowtrace report was generated.

After vectorization of MULT and RNDOUT in CASPIV, we have the following measure-
ments:

O I q ' I M I Z I N G I N T B I S O N T H E C R A Y Y - - M P 271

Routine Name Total Time Number of Calls Percentage
SCLMLT 2.00 441137 18.66
RNDOUT 1.96 734572 18.28-
POLFUN 1.16 370 10.79

ADD 1.13 256883 10.56
MULl" 1.13 162792 10.54

POLJAC 0.77 180 7 19
NBLPCW 0.51 1346 4.72

INTGS 0.40 112 3.75
CASPIV 0.37 2697 3.48
POWER 0.32 88320 2.95

Totals 10.7 1845578 100

This optimization saved 143.598 function calls.

After vectorization of MULT and RNDOUT in INTGS, we have the results shown below:

Routine Name
RNDOUT
SCLMLT
POLFUN

ADD
MULT

POLJAC
NBLPCW
CASPIV
INTGS

POWER

Totals

Total Time
1.87
1.87
1.19
I . I 0
0.99

Number of Calls
694194
400757

370
256883

[142602
180 0.78

0.51
0.38
0.35
0.33

10.4

1346
i
I 2697

112
I f 88320

f . . .

I 1751360 I

Percentage
17.99
17.98
11.47
10.54
9.55
7.50
4.86
3.68
3.36
3.15

} lOO

This optimization saved 94,218 function calls.

After vectorization of ADD and RNDOU'I" in INTGS the measurements become:

Routine Name
SCLMLT
RNDOUT
POLFUN

MULT
ADD

POLJAC

Total Time
1.86
1.70

} 1.17
i i oo
i 0.85
t 0.77

Number of Calls
400757
629666

370
142602
192355

180

Percentage
18.91
17.26
11.91
10.14
8.62
7.82

NBLPCW ! 0.51 1346 5.15
CASPIV 0.37 2697 3.78
POWER 88320 3.39

60993
0.33

i
' 0.22
i
i . - I . . .

Totals r I i 9.8:3 ! 1630370 100

DAXPY 2.20

272 C. HUt J. SHELDONr R. B. KEARFOTT t Q . YANG

This optimization saved 120,990 function calls.

The total number of function calls saved by these five optimizations is 414, 087; approx-
imately 20 percent of the original number of function calls was eliminated. The total time
savings as reported by flowtrace was 1.47 seconds; a speedup of 1.15. By comparing the above
table with the table in Section 3, we find that the speedup was obtained by only vectorizing
:32% of SCLMLT calls, 17% of RNDOUT calls, 31% of MULT calls, and 25% of ADD calls.
fogether with POLFUN, these four subroutines cost about 67% of total computation time and
about 84% of the total number of function calls. Much higher speedup is expected if these
routines are optimized over the entire package INTBIS. At this time, we think that would be
better to redesign a vector version of INTBIS rather than modify these routines over the entire
package. Therefore, we stopped any further vectorizations.

We also tested the effects of different n for Broyden's problem, with the original version
and our partially vectorized version of INTBIS. The following table compares the times (with
compiler optimizations - cf77 -Zp -Wf'-o aggress'). The array size (MN2) was set to 64. Original
program time is the time for the non-vectorized version. Vectorized program time is the time
for the vectorized version.

n Original (seconds)
8 0.4677

16
32
64

Vectorized (seconds)_
0.4547

Speedup
1.03

4.7684 4.4597 1.07
20.8699 18.7790 1.11

119.2850 105.4345 1.13

The above data tell us that the larger n, the greater the speedup. This is consistent with our
analysis in Section 2. It also shows that, as the problem size increases, the cost of computation
increases rapidly. It suggests that parallelization may be required in solving large-scale nonlinear
systems of equations with INTBIS.

The following table was generated as above, but MN2 was set to 65 in both the original
program and the vectorized version to see if possible memory bank conflicts were a problem.

Problem Size Original (seconds) Vectorized (seconds) Speedup
8 0.4569 0.4538' 1.01

16 4.6886 4.4196 1 06
32 20.6211 18.7981 I.I0
64 117.6258 105.5723" I.II

There is no significant difference in runing time among the above two tables. Hence, we
believe there is no serious memory bank conflict for our test problem.

While the time savings reported by flowtrac~ do not fully reflect advantages obtained by
compiling for full vectorization, they do show the improvement that can be gained by reducing
the overhead caused by many function calls, Along this line, an optimization technique called
"inlining" moves the contents of a very small subprogram into the calling program to reduce
the overhead of subroutine calls. The following table was generated as above, (MN2 = 65) and
RNDOUT was inlined in the vectorized program.

OPTIMIZING hNTBIS O N THE CRAY Y--MP

Problem Size Original(seconds) Vectorized (seconds) Speedup
8 0.4569 0.3684 1.24

I6 4.6886 3.7130 1.26
32 20.6211 16.3853 1.26
64 117.6258 95.6795 1.23

273

The above table shows that inlining RNDOUT significantly improves the speed and at the same
time, does not add much to the program size: The vectorized program size (without RNDOUT
nlined) was 993552 bytes, and the size with RNDOUT vectorized was 994408 bytes.

St Conclusions and future work
Our work of implementing INTBIS on the Cray shows that the interval software package
INTBIS can be implemented and further optimized on the Cray Y-MP supercomputer to
efficiendy solve nonlinear systems of equations.

Generally, our observations and vectorization work follow a well-known pattern: replace-
ment of subroutine calls and loops by higher-level linear algebra routines. This Suggests that
interval versions of the level 1, 2, and 3 BLAS would be appropriate, when restructuring codes
such as INTBIS to run on high-performance computers. Indeed, we anticipate that, using such
structure, with interval BLAS routines optimized to particular routines, we will obtain more im-
pressive speedups than those reported here. We intend eventually to include portable versions
of such BLAS routines with INTLIB [8]. Eventually, we can even provide language support
for an interval vector data type in our Fortran 90 modUle system of [5]. Such vector support
is also being written into Fortran-XSC [12], though details of how it will be implemented on
particular machines are not yet known.

Since the original INTBIS was designed for conventional machines, there is much room
for modification to achieve ultra performance on the Cray or other multi-vectorprocessor
computers. To continue this research, we will create a new version of INTBIS which takes full
advantage of the hardware architecture. First, we will redefine the data structure. Instead of
defining N intervals as N 2-element arrays, we will define them as an (N, 2) array. The new
data structure can be processed most efficiently by the fully pipelined functional units of vector
processors. Operations on a single vector processor will be vectorized as much as possible, and
the length of vector operands will be taken as large as possible. In solving large-scale problems,
sparse Jacobian matrices are often involved. The original INTBIS does not provide special
considerations for general sparse systems. We will incorporate our recent result in [4] into the
new version of INTBIS. We expect the revised INTBIS to be able to solve large-scale nonlinear
systems of equations on multi-vectorprocessor supercomputers efficiently in parallel.

Acknowledgement
-['he authors wishes to acknowledge the referees for their careful reading and useful suggestions,
and to the San Diego Supercomputer Center for providing us time allocation on the Cray Y-MP
to carry out this research.

274

References
C. HUt J. SHELDONr R. B. KEARFOTI" t Q . YANG

[I] Can, Q., Yang, Q., and Hu, C. Parallel all-raw preconditioned interval linea7 ;olver for nonlinear
equati~ms on multiproces;oT. Parallel Computing 20 (1994), pp. 1249-1268

[2] Hansen, E. R. and Sengupta, S. Bounding solutions of systems of equations rasing interval arithmetic.
BIT 2 l (198t), pp. 203-211.

i3] Hu, C., Bayoumi, M., Kearfott, R. B., and Yang, Q. A paralMized algorithm for all-row
preconditioned h, terval Newton~generalized bisection method. In: *Proc. SIAM 5th Cons on Paral.
Proc for Sci. Comp.", 1991, pp. 205-209.

[4] Hu. C., Frolov, A., Kearfott, R. B., and Yang, Q. A general iterative sparse linear solver and
paralMization for interval Newton's mettu~. This issue of j. Reliable Computing.

[5] Kearfott, R. B. A Fortran 90 environment for research and prototyping of enclosure algorithms for
nonlinear equations and global optimization. ACM Trans. Math. Software, to appear.

[6] Kearfott, R. B. Abstract generalized bisection and a cost bound. Math. Comput. 49 (179) (1987),
pp. 187-202.

[7] Kearfott, R. B.
pp. 197-220.

[8] Kearfott, R. B.,
standard functara

[9] Kearfott, R. B.,

Some tests of generalized bisection. ACM Trans. Math. Software 13 (3) (1987),

Dawande, M., Du, K., and Hu, C. INTLIB: A portable interval FORTRAN-77
l/brary. ACM Trans. Math. Software, to appear.

Hu, C., and Novoa, M. A review of preconditioners for the interval Gauss-Seidel
method. Interval Computations 1 (1991), pp. 59-85.

[10] Kearfott, R. B. and Novoa, M. ,4 program for generalized bisection. ACM Trans. Math. Software
16 (2) (1990), pp. 152-157.

[11] Kulisch, U. and Miranker, W. L. A new approach to scientific computation. Academic Press, 1983.

[12] Walter, W. V. Fortran-XSC: A Fortran-like language for verified scientific computing. In: "Scientific
Computing with Automatic Result Verification", Academic Press, New York, etc, 1993.

Received:
Revised version:

February 28, 1994
January 9, 1995

C. Hu, J. SHELDON
Department of Computer and Mathematical Sciences

University of Houston-Downtown
Houston, Texas 77002, USA

R. B. K ~ F o T r
Department of Mathematics

University of Southwestern Louisiana
U.S.L. Box 4-1010

Lafayette, LA 70504-1010, USA
E-marl: rbk@usl, edu

Q. YANG
Department of Electrical and Computer Engineering

University of Rhode Island
Kingston, Rhode Island 02881, USA

