
Reliable Computing 1 (3) (1995), pp. 251-263

A general iterative sparse linear solver and its
parallelization for interval Newton methods
CHENY~ HU, ANNA FROLOV*, R. BAKER KF.~RFOTr, and QING YANG

Interval Newton/Generalized Bisection methods reliably find all numerical solutions within a given
domain. Both computational complexity analysis and numerical experiment s have shown that solving
the corresponding interval linear system generated by interval Newton's methods can be computationally
expensive (especially when the nonlinear system is large).

In applications, many large-scale nonlinear systems of equations result in sparse interval Jacobian
matrices. In this paper, we first profx)se a general indexed storage scheme to store sparse interval
matrices We then present an iterative interval linear solver that utilizes the proposed index storage
scheme It is expected that the newly proposed general interval iterative sparse linear solver will improve
the overall performance for interval Newton/Generalized bisection methods when the Jacobian matrices
are sparse. In Section 1, we briefly review interval Newton's methods. In Section 2, we review some
currently used storage schemes for sparse systems. In Section 3, we introduce a new index scheme to
store general sparse matrices. In Section 4, we present both sequential and parallel algorithms to evaluate
a general sparse Jacobian matrix. In Section 5, we present both .~xluential and parallel algorithms to
solve the corresponding interval linear system by the all-row preconditioned scheme. Condusions and
future work are discussed in Section 6.

O606IIIeHHl~Ifl ~TepaT~Bm,ift hHHeflHl~Ift
pemaTeAB pa3pe)KeHHblX CHCTeM ero
HapaAAeAmalm I AA I I4HTepBaAt, Ht,IX
MeTOAOB HBIOTOHa
r"I. Xy, A. (I)POAOB, P. B. K~Pr K. 5Ira"

[dHTepBaJIbHblfi MeTOll HblOTOtta H O ~ L u e H H b I ~ MeTO rl Ht)/IOBHHHOFO ~leMIeHH~I rapaHTHpOBaHHO H~XO--

~.J:IT Bce "..IHC~IeHHI~.Ie pemeHH..q B 3adlaHHOI~l 06Jl;aC'I'I4. Kay, aHRJIH3 BIAMHC./IHTeJIbHOH CdlO.XKHOCTH, TaK

H qHC.rleHHble 3KCHepHMeHTbl noKa3a;iH, qTO pemeHHe COOTBeTCTByR)m.e~ HHTepBa)IbHO~ JUiHe~HO~ Ctt-

CTeMId, noay~eHHo~ HHTepBa.rlbtli~MH MeTO.aaMl4 HblOTOHa, MO~KeT FIOTpe~)BaTb 3HaqtxTe.rlbHOrO 06"beMa

BHmtc~leHtt~ (OC06eHHO ec~qn He.am-le#man otc-reMa BeattKa no pa3MepaM)
Ha npagTHge CttCTeMbl Hea~Hef~H~X ypaBNeHa~ 6OJlbmOfi pa3MepH(~rH nepeago CBO~I~qTC~I g pa3-

pe.~eHHbIM HHvep~a~bH~M MaTpHUaM 5]KOrH. B aacroame~ paroTe npe21~arae~rca t~)rmeHHaa UHaeX-
CHpoBaHHaa cxeMa naM~TH aaa xpaHeHtI~ paape~KeHHi~ix HHTepBaJlbHI~X MaTpt4LI, a 3aTeM BBOLtHTC~I
HTepavttBtt~ tmTepea~ibu~t aHHe~H~ pemaTe/Ib, tlCliOJlb3ytomtt~ 3wy CxeMy O~KHaaevc~, qVO npen-
]IO2KeHHbII:l ~ o r m e H H b I ~ HTepaTHBH~oII:I HHTepBadIbHbll:I ,qHHeI~lnblI~ penJaTeab IXOBI~ICHT ormys) ~poa3-
BO~IHTeflbHOCTb MeTOAOB HblOTOHa tt o6ormeHHoro MeTOaa HOJIOBHHHOVO ae~eHn~ aa~ pa3pexeHH~X
MaTptlIl J:[KOrl4 B paaae~e 1 KpaTKO OIaHcaHM VIHTepBa~l~-Hbxe MeTO,2~ HbIOTOHa. B pa3~le,~e 2 paccMa-
TpHBa~OTCa HeKOTOpbie Hcno.qb3yeMMe B ttacToamee BpeM~l CXeMbl HaMaTH aaa pa3pe~KeHHI~x OICTeM B

@ C. Hu, A. Frolov, R. B. Kearfott, Q Yang, 1995
This research was partially supported by NSF Grant No. MIP-9208041.

*This co-author is a NASA funded undergraduate research assistant.

252 C. HU t A. FROLOV t R. B. KEARFO~F t Q. YANG

pa3~e,7e 3 BBO/1HTCfl HOBafl HH~eKcHpOBaHHaa cxeMa riaMarH ~lJ~fl xpaHeHn~ O~)~IY,.IeHH/~IX pa3pe)KeHnmx

MaTpatt. B pa3ae,ae 4 npeacTaa~eata liOClIeLtOBaTelIbHbIfi H napaaJienbH~fi aJIrOpHTMI~I a]l~ pemeHHa

COOTBeTcTBylOLUeI~ HHTepBa/IbHOI;I /IHHefiHO~ CI4CTeMbI lit) CTpOqHOH npeo6yc~loBneaHofi cxeMe B~Bo,abt

tt n a a u ~ Ha 6yaymee o6cy~Kaa*OTCa S pa3aene 6.

1. I n t r o d u c t i o n

To find all numerical solutions for nonlinear systems of equations

F(X) = (f0(x0, x l , . . . , x l , . . . , = 0 (1)

in a given box 1 X = (Xo, X l , . . . , X N _ l) , where zi E x/ and x~ = {x~[x i < x~ < 5i} for
0 < i < N - 1, with mathematical and numerical certainty is a very important problem in
scientific computation.

There are many methods for solving nonlinear systems of equations in the literature. In
contrast to other methods, interval Newton's methods [5, 7, 8, t0] bound all solutions in a given
domain with mathemat/ca/certainty, even in the presence of uncertainty in the data, roundoff error,
and nonlinearities. Like the classical Newton's method, interval Newton's methods transform
the nonlinear system (1) into a linear interval system:

F'(X(k))(:K (k) - X (k)) = -F (X(k)) . (2)

In (2), X (k) and X (/r are input values of X and X at the k-th iteration;)[(/~) is the newly
estimated bound of X at the k-th iteration; F ' (X (k)) can be an interval extension to the
Jacobian matrix, or a slope matrix, over X (k). It is known that all roots of the system (1)
that belong to the interval box X (k) also belong to the interval box ~(k) of the linear interval
system (2). The solutions of the nonlinear system (1) can be found by iteratively solving the
corresponding linear system (2), with the new iteration value X (k+l) defined as

X(k+1) = X(~) ~ ~(k). (3)

For the reader's convenience, we review the basic interval Newton/Generalized bisection

(Interval Newton/Generalized Bisection)

Input the current interval box X (k) and a guess point X (k) E X (k) (e.g., the
midpoint of X(k));

(1.2) Evaluate the value of F (X) at X = X(k);

(1.3) Evaluate the interval Jacobian matrix F ' (X) on X = X(k);

(1.4) Find 2~ (k) by solving equation (2);

(1.5) For j - -0 to N - 1 do

Compute: k+t) =
If x~ k+l) = 0, then

there is no root in current box.
Go to step (1.8)

1Throughout the paper we will use boldface letters and capital letters to denote interval quantifies and vectors,
respectively. We use x and ~ to denote the lower bound and the upper bound for an interval variable x, respectively

method here.

Algorithm 1:
(1.1/

A GENERAL ITERATIVE SPARSE LINEAR SOLVER... 253

Else
,(k+1) = (z~k+1) _(k+l) Compute: ,~j _ ~j)2;

(1.6) Compute: diam(X(k+l)) /~N-1 ~ .a �89 = kZ.#~'=0 31 '

(1.7) Check convergence:
(a) If diam(X (k+l)) < ~, and IF(X(k))l <_ ~, where ~ and ~ are given

tolerances, then a root is found. Output the root in root list and goto
step (1.8);

(b) If diam(X (k)) - diam(X (k~d)) _< 6, where 6 is a given tolerance, then
bisect the longest side of current box. Put half of it in the box stack and
keep another half as the new box for the next loop of iteration. Goto
step (I.I);

(c) If diam(X (k)) - diam(X q*+~)) > tS, goto step (1.1);
(1.8) If the box stack is not empty, then pop a box from the stack, goto step (1.1).

Otherwise, end the algorithm,
Step (1.3) of Algorithm 1 evaluates N 2 functions of N variables to determine the Jacobian

matrix in general, Step (1.4) then solves an N-dimensional linear interval system. Both steps
can be computationally expensive when N is large, In the past few years, a special techniques
using so-called pr~conditionars have been developed to solve interval linear systems [9]: namely,
instead of solving a linear equation Az =- h, we solve an equation (YA) z = Yb fort an
appropriately chosen Y (or several equations, with different Y). These prsamditioned linear solvers
require O(N 2) to g)(N ~) computations; so, we need that many computational steps on each
iteration of the Newton's method, Among these preconditioners, the all,row preconditioned scheme
consists of using N preconditioners: namely, we find the interval estimates for all the variables
~-0, xl XN-~ from every linear equation of the system (2), and then take the intersection
of the corresponding interval estimates ~ as a solution ~ (for 0 ~ i _< N - 1). The all-
row preconditioned scheme has the advantages of lower computational complexity and a fast
convergence rate for many problems, In [6, 4], we descried the results of parallelization of
the all-row preconditioned scheme for large systems, In [~i, 4], these methods were tried on
dense matrices, i,e., matrices for which the majority of c~ffir are non-zero.

In many applications, large-scale N-variable nonlinear systems of equations ohen generate
sparse Jacobian matrices, i,e., matrices which cont.aln only ~ CA r nonzero elements (for a
small constant C). For example, in VLSI design and s~rucmral engineering, Jacobian matrices
are block bordered and therefore, sparse; sparse matrices also appear in chemical process
flowsheeting [14], Moreover, usually, in real-life problems, Jacobian matrices ara ~parse. It is
surely inefficient and wasteful to use general methods for dense systems to perform step (1.3)
and (1.4) for a sparse Jacobian matrix,

In this paper, w~ report, our work on developing -an interval linear solver for large-
scale general sparse systems with t.he all-row prec_onditioned scheme, and its parallelization for
interval Newt.on's met.hods,

1
t t Storage schemes for general sparse ma rices

Compactly storing a .sparse m-atri~r is ~h~ first s~r in d~v~loping a general sparse linear solver
for interval Newton's methods, A s!gnifi~an~ -amount of r~se-arch has been done on sparse
scalar matrices with special patterns (such as tridiagonal, b.and diagon-al with bandwidth M,

254 C. H U t A. FROLOV t R. B. KEARFO'FT t Q . YANG

band triangular, block diagonal, block triangular, cyclic banded, bordered block diagonal, and
others). For such patterns, efficient storage and processing algorithms have been developed;
these algorithms, however, crucially depend on the precise pattern of sparsity of the matrix and
are, therefore, not applicable to generic sparse matrices that appear, e.g., in chemical process
flowsheeting [14].

Since a general sparse matrix may not fit any of these special patterns, storage schemes for
general sparse matrices have also been studied. Index storage schemes store non-zero matrix
elements along with auxiliary information which can be used to determine where a non-zero
element is located in the original matrix, crucial data in common matrix operations. Some
of these index methods can require storage for as much as three to five times the number
of nonzero matrix elements. Knuth describes a method in [1t]; Duff describes several other
methods [2, 3]; Dongarra et al. used a scheme in [1]; and Press et al. [13] claim they favor the
scheme used by PCGPAK [12] because the row-indexed storage mode in [12] requires storage
of little more than two times the number of nonzero matrix elements. Here, we review the
two most popular general sparse storage schemes, the PCGPAK scheme and Duffs scheme.

The indexed storage scheme in PCGPAK: In PCGPAK, a sparse matrix is stored as two
arrays: an array called i ja(k) , which stores the indices (ija stands for i-j-array), and an array
sa(k) which stores selected elements of the matrix. The rules for defining the two arrays are
described below.

1. For an N x N matrix, ija(1) = N + 2.

2. In the array i ja, values i ja(2) through i j a (N + 1) are calculated in the following way:
i ja(i) = i ja(i - 1) + Y~-I, where Yi-a is the number of nonzero nondiagonal elements in
the (i - 1) - s t row.

3. The number of elements in each of these arrays is i j a (N - 1) - 1.

4. In the array sa, sa(1) through sa(N) are diagonal elements of the matrix to be stored.

5. The element sa(N + 1) is an extra space. A user may store any number he/she wants.

6. The elements sa(N + 2), sa(N + 3) , . . . are all non-zero non-diagonal elements stored in
the order of their rows (and in the order of columns if they are in the same row), and'
i j a (N + 2) , . . . are the corresponding column numbers.

For example, let S be a 4 x 4 sample sparse matrix defined by

3 0 4 0
0 0 5 0

S =
t 0 D 7
0201

(4)

Using the PCGPAK scheme, the matrix 6' can be stored as:

k 1 2 3 4 5 6 7 8 9 10
i ja(k) 6 7 8 10 11 3 3 1 4 2
sa(k) 3 0 0 1 x 4 5 1 7 2

A GENERAL ITERATIVE SPARSE LINEAR SOLVER... 255

Duff ' s index storage scheme: In [2, 3], Duff defines an indexed scheme to store sparse
matrices. In DufFs scheme, three arrays are used to store a matrix. The three arrays are called
COLPTR (column pointer), ROWIND (row index), and VALUES (values o f non-zero elements).

1_ COLPTR(k) are calculated in the following way: COLPTR(1) = 1 and

COLPTR(i) = COLPTR(i - 1) + Yi-1

(where Yi-1 is the number of nonzero elements in the column (i - 1)).

2. The array VALUES stores all nonzero elements column-wise, and the array ROWIND
contains corresponding row numbers.

By using Duff's scheme, the sample matrix S can be stored as

k 1 2 3 4 5 6 7
COLPTR(k) 1 3 4 6 S
ROWIND(k) 1 3 4 1 2 3 4
VALUES(k) 3 1 2 4 5 7 1

From the above, we can see that the PCGPAK scheme stores all diagonal dements even
when most of them are zero. Three arrays are used in DufFs storage scheme. Indirect memory
references may significantly reduce the overall speed of computations. In [13], Press et al. state
that there is no standard scheme in general use. We believe that fur ther studies on indexed
storage schemes are needed to handle generic sparse matrices.

3. A new storage scheme for general sparse system
In this section, we propose standards to measure an indexed storage scheme for general sparse
matrices. An ideal indexed storage scheme for large-scale general sparse matrices should have
the following properties:

�9 It uses the least amount of memory space.

�9 The original position of an element in a matr ix can be recovered easily.

�9 Fundamental matr ix algebra can be done with minimal effort.

�9 It can be efficiently implemented on high performance computers.

�9 It minimizes memory accessing latency 2.

�9 It is easy to understand.

To address the properties listed the above, we propose the following indexed storage

scheme:

Indexed storage scheme 1: Let A = {a~,j} be an N x N sparse interval matrix, where
0 < i, j < N - 1. For a nonzero element of A , say ai,j, its row-after-row index is defined as

2We will address this in another paper

256 C. H U t A . F R O L O V t R. B. KEARFOTT t Q . YANG

iN + j ; its column-after-column storage index is defined as j N + i. The indexes will be stored
in increasing order.

According to the above definition, we can store the sample matrix S row-after-row by
checking the list So,o, So,i, s0,2, So,3, sl,0, s1,1, �9 �9 s3,3 and assigning the index iN + j for each
non-zero element si,j, 0 _< i, j _< N - 1 (In S, N = 4).

t k~,j 0 2
a ~ , j [3 1 4 65181 17[1 : I 11

Similarly, we may store the sample matrix S in the column-after-column manner as

km,~ 0 7 8
5

Let us list some advantages of storage scheme 1:

1. The indexed storage scheme stores only non-zero elements of a general sparse matrix
and associates only one index to each non-zero element. We believe that the storage
scheme uses min imum memory space to index store a genera/ sparse matrix, since any
storage schemes they must store all nonzero elements of the sparse matrix, and must
have at least one index to indicate the original position of each non-zero element.

2. It is easy to recover the original location of a nonzero element from its index. Suppose
the row-after-row index for a nonzero element is k. Then the element is in the (k div
N)-th row, and the (k rood N)-th column.

3. The transpose of the matrix is also very easy to determine. For example, the row-after-
row index for a nonzero element of a matrix A is k, then its logical position in A T is
in the (k mod N)-th row, and in the (k div N)-th column.

4. It is easy to perform addition and subtraction of sparse matrices. Those elements that
have the same logical position have the same index. To perform addition or subtraction,
one needs only add or subtract the corresponding elements and place the result in the
corresponding position of the result matrix. Those elements that appear in only one of
the matrices need only be inserted, along with their indices, into the resulting matrix.

5. It can be efficiently implemented on high performance parallel computers with high
scalability. Let p be the number of processors on a parallel machine. We may distribute
sparse matrix computations row-wise according to the values of (index div N) mod p
or column-wise according to the values of (index mod N) mod p. Applications of this
property can be found in Sections 4 and 5 of this paper.

6. Other advantages of the storage scheme, such as improving the performance of a memory
hierarchy, will appear in another paper of ours.

Storage scheme 1 uses two divisions to recover the original position of a non-zero element.
To make scheme 1 more efficient on a sequential computer, we modify it as follows:

A GENERAL ITERATIVE SPARSE LINEAR SOLVER... 257

Indexed storage scheme 2: Let A = {ai,s} be an N x N sparse matrix, where 0 < i, j < N - 1 .
The row-after-row index kio of a nonzero element of A, ai,j is defined as

i N + j, if ai,j is the first nonzero element in the i-th row;
k~j = j , if a<j is not the first nonzero element in the i-th row.

The indexes will be put in increasing order row-wise.

To store a nonzero element a~j of A column-after-column, we assign its index ki,j as

= f 3 N + i, if a i j is the first nonzero element in the j - th column;
k~3

' [i, if a i j is not the first nonzero element in the j - th column.

The indexes will be put in increasing order column-wise.

With the row-after-row index storage scheme 2, the sample matrix S introduced above
an be stored as:

a~j [0 I
The sample matrix S can be also stored column-after-column in scheme 2 as:

a,,~lqJ [0, 7 3 1 2 8 1

We list two additional advantages of the scheme 2. First, to sequentially recover the
original positions of nonzero elements in a sparse matrix stored by scheme 2, we only need to
perform divisions for the index of the first nonzero element in each row (or column). Second,
to interchange two rows (columns), we only need to change the indexes for the first non-zero
elements in those two rows (columns).

We recommend scheme 2 for sequential processing and scheme 1 for parallel processing.
To support this recommendation, we have compared the performance of scheme 2 (row-after-
row) with that of both the PCGPAK scheme and Duff's scheme.

In the remainder of this Section, we report our numerical experiments comparing the
performance of these storage schemes. The data set was picked from Harwell-Boeing Sparse
Matrix Collection. In the collection, the CHEMWEST set contains general sparse matrices
from modeling of chemical engineering plants at University of Pittsburgh; the FACSIMILE
set is "representative of the type of matrices which occur in spatially homogeneous prob-
lems from straight chemical kinetics calculations and mixed kinetics diffusion problems." Our
F O R T R A N - 7 7 programs were run on a VAX 4000-300 computer with VAX/VMS version
V5.5-2 operating system. The compiler is DEC FORTRAN for OpenVMS VAX Systems.

The Table 1 below reports memory space used to index store these matrices with different
schemes.

The basic operations of most iterative linear solvers (such as the Jacobi, Gauss-Seidel, and
successive overrelaxation methods, conjugate gradient, generalized minimal residual, biconjugate
gradient, and some other methods) are matrix-vector multiplications. In this multiplication, a
vector is multiplied either by a coefficient matrix or by its transpose. To test the efficiency
of our method on these multiplications, we measured the time required to multiply an index
stored matrix by a randomly generated vector (see Table 2).

The Table 3 reports time required to multiply the transpose of an indexed stored matrix
by a vector.

258 C. H U I A. FROLOV, R. B. KEARFOTT t Q . YANG

N

67
132
156
167
183
183
183
183
381
479
497
655
680
68O
680
760
760
760

Nonzero PCGPAK
elements Method

294 722
414 1084
371 1058
507 1324

1069 2142
1069 2142
1069 2142
1069 2142
2157 5078
1910 4766
1727 4440
2854 7012
2646 5296
2646 5296
2646 5296
5976 11956
5976 11956
5976 11956

DuWs
Method

656
961
899

1182
2322
2322
2322
2322
4696
4300
3952
6364
5973
5973
5973
12713
12713
12713

Table 1. Memory space used

Scheme 2

588
828
742

1014
2138
2138
2138
2138
4314
3820
3454
5708
5292
5292
5292
11952
11952
11952

N

67
132
156
167
183
183
183
183
381
479
497
655
680
680
680
760
760
760

Nonzero
elements

294
414
371
507

1069
1069
1069
1069
2157
1910
1727
2854
2646
2646
2646
5976
5976
5976

PCGPAK
Method
0.0E+00
0.0E+00
2.0E-03
1.0E-03
3.0E-03
4.0E-03
4.0E-03
2.0E-03
5.0E-03
6.0E-03
6.0E-03
8.0E-03
1.0E-02
2.0E-03
6.0E-03
1.3E-02
1.2E-02
1.3E-02

DufFs
Method
3.7E-02
4.5E-02
4.7E-02
4.6E-02
5.1E-02
5.6E-02
5.0E-02
5.5E-02
9.2E-02
1.1E-01
1.2E-01
1AE-01
1.4E-01
1.5E-01
1.4E-01
1.6E-01
1.6E-01
1.7E-01

Scheme 2

0.0E+00
1.0E-03
1.0E-03
0.0E+00
3.0E-03
1.0E-03
1.0E-03
2.0E-03
7.0E-03
6.0E-03
7.0E-03
1.0E-02
9.0E-03
1.0E-02
9.0E-03
2.0E-02
2.0E-02
1.9E-02

Table 2. Time required for matrix-vector multiplication

A GENERAL ITERATIVE SPARSE LINEAR SOLVER... 259

N Nonzero PCGPAK Duffs Scheme 2
elements Method Method

67 294
132 414
156 371
167 507
183 1069
183 1069
183 1069
I83 1069
381 2157
479 1910
497 1727
655 2854
68O 2646
68O 2646
680 2646
760 5976
760 5976
760 5976

2.00E-03
3.00E-03
0.00E+00
1.00E-03
1.00E-03
1.00E-03
1.00E-03
3.00E-03
7.00E-03
5.00E-03
6.00E-03
1.00E-02
7.00E-03
8.00E-03
5.00E-03
1.56E-02
1.20E-02
1.50E-02

2.00E-03
1.00E-03
0.00E+00
2.00E-03
4.00E-03
4.00E-03
5.00E-03
2.00E-03
9.00E-03
4.00E-03
4.00E-03
9.00E-03
9.00E=03
8.00E-03
5.00E-03
1.40E-02
1.60E-02
1.70E-02

0.00E+00
0.00E+00
0.00E+00
0.00E+00
2.00E-03
O.OOE+O0
3.00E-03
2.00E-03
6.00E-03
4.00E-03
6.00E-03
1.00E-02
8.00E-03
9.00E-03
7.00E-03
1.80E-02
1.70E-02
1.80E-02

Table 3. Time required for matrix-transpose times a random vector

4. Evaluating general sparse Jac0bian matrices
With the storage schemes defined in the previous section, we propose efficient algorithms to
evaluate the interval Jacobian matrix F ' (X (k)) in step (1.3) of Algorithm 1. We assume that
the analytical form of the Jacobian F I is known, and the Jacobian matrix is general sparse.
Algorithm 2 below evaluates a sparse interval Jacobian matrix F ' (X (a)) = f'id (X(k)), and stores
it row-after-row with scheme 2.

Algorithm 2: (sequential algorithm)

(2.1) m = 0

(2.2) For i = 0 to n - 1 do First~ = 1;

(2.3) F o r i = 0 t o n - l d o
For j = 0 t o n - l d o

If f'~,d ~ O then
If First~ = 1 then

Indexrn = i * n + j
a,n = f'~d(X (k))
m = m + l
Firsq = 0

else
Indexm --- j
am = fq,j(X Ck))
ra = r a + 1

endif

260 c . HU t A. FROLOV t R. B. KEARFOTT, Q. YANG

The major computation of the above sequential algorithm is to evaluate fti,j(X(/C)) for
different i and j . Since there is absolutely no data dependency in evaluating ffi,j(X (k)) for
different i and j , we may evaluate the Jacobian matrix for large-scale problems in parallel.
tn the following parallel program, p is the number of processors available, and each available
processor has its own processor-id (which is called my-id). The algorithm stores the Jacobian
matrix row-after-row with scheme 1.

Algori thm 3: (parallel algorithm)

(3.1) Do a l l m = 0

(3.2) For i = 0 to n - 1 do
F o r j = O t o n - l d o

I f f ' i j ~ 0 then
Indexm = i * n + j
m = r a + l

endif

(3.3) F o r l = 0 t o m - 1 do
If my-id = l mod p, then

i = Indexl div n
j = Index/ rood n
a, = f'i,j (X (k))

endif

(3.4) All-to-all broadcast al

Remark: Step (3.4) provides the interval Jacobian matrix to all p processors. It is a very expensive
communication step. However, because the parallel iterative linear solver (Algorithm 5 from
the next section) does not require the entire Jacobian matrix on each processor, we can
communicate only part of the matrix.

5. Iterative general sparse linear solver
The interval Jacobi method, interval Gauss-Seidel method, and some other iterative interval
linear solvers have been used to perform step (1.4) of Algorithm 1 for bounding equation (2).
Preconditioned schemes [9] have also been proposed to improve the efficiency for dense interval
systems. Among them the all-row preconditioned interval linear solver [9, 6, 4] bounds every
variable x~ from each of the n equations of (2), then takes the intersection for the n different
(some of them may be same) interval values of x4, thus forming :~i- It has lower computational
complexity and a faster convergence rate for marly interval linear systems. With the Jacobian
matrix index stored by Algori thm 2, we propose the all-row preconditioned interval iterative
linear solver for sparse systems as3:

Algori thm 4: (sequential algorithm)

(4.1) F o r i = 0 t o n - 1 do
bi = f~(Xk)

3The operation O is used in Algorithms 4 and 5. It is defined as a G b = [_a, g] O [b, b] = [_a - b, ~ - b].

A GENERAL ITERATIVE SPARSE LINEAR SOLVER... 261

(4.2) i = 0

(4.3) For l = O t o r n - l d o
If I n d e x / < n, then

j = Index/
b~ = b~ + a / x ~

else
i = Index/ div n
j = Index/ rood n
b~ = b~ + a~xj

endif

(4.4) i = 0

(4.5) F o r / = 0 t o m - 1 do
ff I n d e x / < n, then

j = Index/
- b,ea~x~
xit = Xi + az

else
i = Index/ div n
j = Index/ rood n

b,oa~x~

endif

(4.6) For j = 0 t o n - l d o

:~j ~ kl li=O

Associated with Algorithm 3, the following algorithm bounds X(~) in (2) with parallel
computations,

Algorithm 5: (parallel algorithm)

(5.1) F o r i = 0 t o n - l d o
y~ =~

(5.2) For l = 0 to rn - 1 do
i = Index/ div n
If my-id = i rood p, then

bi = f,(Xk)
j = Index/ rood n
bi = bi + a/xj

endif

(5.3) F o r l = 0 t o m - 1 do
i = Index/ div n
If my-id = i rood p, then

j = Index/ rood n

yj = yj N(x# + ~)
endif

262 C. HUt A. FROLOV t R. B. KEARFOTT/ Q. YANG

(5.4) All-to-all broadcast yj for j = 0 to n - 1

(5.5) Replace yj with yj (local) ('] yj (incoming)

(5.6) X d -----yj for j = 0 to n - - 1

After the completion of Algorithm 5, there will be a copy of X (k+l) in the local memory
of every processor. As written, Algorithms 4 and 5 each complete only one iteration for
solving the linear interval system (2). One may want to perform more such iterations before
reevaluating the interval Jacobian matrix by Algorithm 2 or 3 over X (k+l).

6~ Conclusions and future work
The computationally most expensive procedures when using interval Newton's methods to
solve nonlinear systems of equations are evaluations of its Jacobian matrix and solving the
corresponding interval linear systems. The matrix storage schemes, Jacobian evaluation and
linear solver algorithms in this paper are specifically designed for general sparse systems. The
comparison with previous algorithms (based on dense systems) make us believe that the methods
proposed in this paper will save both memory space and computation time.

With the paraUelized algorithms, one may be able to effectively solve real-life very large-
scale systems (that in applications are usually sparse) in parallel.

We are currently implementing parallel algorithms proposed in this paper on real parallel
computers in order to compare the performance of these algorithms with other schemes. We
will continue this research as follows:

�9 Study how to balance work load for Algorithms 3 and 5 to achieve high efficiency.

�9 Develop preconditioned linear solvers, other than the all-row preconditioned scheme, with
the general sparse storage scheme.

Acknowledgments
We wish to acknowledge the referees for their careful reading and useful suggestions.

References
[1] Dongari'a, J. et al. Solving linear systems on vector and shared memory computers. SIAM, 1991.

[2] Duff, I. Direct methods for sparse matrices. Oxford University Press, 1986.

[3] Duff, I. Sparse matrix test problems. ACM Trans. Math. Software 15 (1) (1989), pp. 1-14.

[4] Gan, Q., Yang, Q., and Hu, C. Parallel all-row preconditioned interval linear solver for nonlinear
equations on multiprocessor. Parallel Computing 20 (9) (1994), pp. 1249-1268.

A GENERAL ITERATIVE SPARSE LINEAR SOLVER... 263

[5] Hansen, E. R. and Sengupta, S. Bounding solutions of systems of equations using interval arithmetic.
BIT 21 (1981), pp. 203-211.

[6] Hu, C., Bayoumi, M., Kearfott, R. B., and Yang, Q. A paralMized algorithm for all-row
preconditioned interval Newton~generalized bisection method. In: "Proc. SIAM 5th Conf. on Paral.
Proc. for Sci. Comp.', SIAM, 1991, pp. 205-209.

[7] Keartbtt, R. B. Abstract generalized bisection and a cost bound. Math. Comp. 49 (179) (1987),
pp. 187-202.

[8] Kearfott, R. B. Some tests of generalized bisection. ACM Trans. Math. Software 18 (3) (1987),
pp. 197-220.

[9] Kearfott, R. B., Hu, C., and Novoa, M. A review of preconditioners for the interval Gauss-Seidel
method. Interval Computations 1 (1991), pp. 59-85.

[10] Kearfott, R. B. and Novoa, M. A program for generalized bisection. ACM Trans. Math. Software
16 (2)(1990), pp. 152-157.

[11] Knuth, D. The art of computer programming, Vol. i, Fundamental algorithms. Addison-Wesley,
1968.

[12] PCGPAK user's guide. Scientific Computing Associates, New Haven.

[13] Press, W. et al. Numerical recipes. Cambridge, 1992.

[14] Schnepper, C. and Stadther, M. Application of a parallel interval Newton~generalized bisection
algorithm to equation-based chemical process flowsheeting. Interval Computations 4 (1993), pp. 40 -
64.

Received: March 1, 1994
Revised version: September 9, 1994

C. H u
Department of Computer and Mathematical Sciences

University of Houston-Downtown
Houston, Texas 77002, USA

A. FROLOV
Department of Computer and Mathematical Sciences

University of Houston-Downtown
Houston, Texas 77002, USA

R. B. KE*RrOrr
Department of Mathematics

University of Southwestern Louisiana
U.S.L. Box 4-1010

Lafayette, LA 70504-1010, USA
E-mail: rbk�9 edu

Q. YANG
Department of Electrical and Computer Engineering

University of Rhode Island
Kingston, Rhode Island 02881, USA

