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A general iterative sparse linear solver and its 
parallelization for interval Newton methods 
CHENY~ HU, ANNA FROLOV*, R. BAKER KF.~RFOTr, and QING YANG 

Interval Newton/Generalized Bisection methods reliably find all numerical solutions within a given 
domain. Both computational complexity analysis and numerical experiment s have shown that solving 
the corresponding interval linear system generated by interval Newton's methods can be computationally 
expensive (especially when the nonlinear system is large). 

In applications, many large-scale nonlinear systems of equations result in sparse interval Jacobian 
matrices. In this paper, we first profx)se a general indexed storage scheme to store sparse interval 
matrices We then present an iterative interval linear solver that utilizes the proposed index storage 
scheme It is expected that the newly proposed general interval iterative sparse linear solver will improve 
the overall performance for interval Newton/Generalized bisection methods when the Jacobian matrices 
are sparse. In Section 1, we briefly review interval Newton's methods. In Section 2, we review some 
currently used storage schemes for sparse systems. In Section 3, we introduce a new index scheme to 
store general sparse matrices. In Section 4, we present both sequential and parallel algorithms to evaluate 
a general sparse Jacobian matrix. In Section 5, we present both .~xluential and parallel algorithms to 
solve the corresponding interval linear system by the all-row preconditioned scheme. Condusions and 
future work are discussed in Section 6. 

O606IIIeHHl~Ifl ~TepaT~Bm,ift hHHeflHl~Ift 
pemaTeAB pa3pe)KeHHblX CHCTeM ero 
HapaAAeAmalm I AA I I4HTepBaAt, Ht,IX 
MeTOAOB HBIOTOHa 
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[dHTepBaJIbHblfi MeTOll HblOTOtta H O ~ L u e H H b I ~  MeTO rl Ht)/IOBHHHOFO ~leMIeHH~I rapaHTHpOBaHHO H~XO-- 

~.J:IT Bce "..IHC~IeHHI~.Ie pemeHH..q B 3adlaHHOI~l 06Jl;aC'I'I4. Kay, aHRJIH3 BIAMHC./IHTeJIbHOH CdlO.XKHOCTH, TaK 

H qHC.rleHHble 3KCHepHMeHTbl noKa3a;iH, qTO pemeHHe COOTBeTCTByR)m.e~ HHTepBa)IbHO~ JUiHe~HO~ Ctt- 

CTeMId, noay~eHHo~ HHTepBa.rlbtli~MH MeTO.aaMl4 HblOTOHa, MO~KeT FIOTpe~)BaTb 3HaqtxTe.rlbHOrO 06"beMa 

BHmtc~leHtt~ (OC06eHHO ec~qn He.am-le#man otc-reMa BeattKa no pa3MepaM) 
Ha npagTHge CttCTeMbl Hea~Hef~H~X ypaBNeHa~ 6OJlbmOfi pa3MepH(~rH nepeago CBO~I~qTC~I g pa3- 

pe.~eHHbIM HHvep~a~bH~M MaTpHUaM 5]KOrH. B aacroame~ paroTe npe21~arae~rca t~)rmeHHaa UHaeX- 
CHpoBaHHaa cxeMa naM~TH aaa xpaHeHtI~ paape~KeHHi~ix HHTepBaJlbHI~X MaTpt4LI, a 3aTeM BBOLtHTC~I 
HTepavttBtt~ tmTepea~ibu~t aHHe~H~ pemaTe/Ib, tlCliOJlb3ytomtt~ 3wy CxeMy O~KHaaevc~, qVO npen- 
]IO2KeHHbII:l ~ o r m e H H b I ~  HTepaTHBH~oII:I HHTepBadIbHbll:I ,qHHeI~lnblI~ penJaTeab  IXOBI~ICHT ormys) ~poa3- 
BO~IHTeflbHOCTb MeTOAOB HblOTOHa tt o6ormeHHoro MeTOaa HOJIOBHHHOVO ae~eHn~ aa~ pa3pexeHH~X 
MaTptlIl J:[KOrl4 B paaae~e 1 KpaTKO OIaHcaHM VIHTepBa~l~-Hbxe MeTO,2~ HbIOTOHa. B pa3~le,~e 2 paccMa- 
TpHBa~OTCa HeKOTOpbie Hcno.qb3yeMMe B ttacToamee BpeM~l CXeMbl HaMaTH aaa pa3pe~KeHHI~x OICTeM B 
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pa3~e,7e 3 BBO/1HTCfl HOBafl HH~eKcHpOBaHHaa cxeMa riaMarH ~lJ~fl xpaHeHn~ O~)~IY,.IeHH/~IX pa3pe)KeHnmx 

MaTpatt. B pa3ae,ae 4 npeacTaa~eata liOClIeLtOBaTelIbHbIfi H napaaJienbH~fi aJIrOpHTMI~I a]l~ pemeHHa 

COOTBeTcTBylOLUeI~ HHTepBa/IbHOI;I /IHHefiHO~ CI4CTeMbI lit) CTpOqHOH npeo6yc~loBneaHofi cxeMe B~Bo,abt 

tt n a a u ~  Ha 6yaymee  o6cy~Kaa*OTCa S pa3aene 6. 

1. I n t r o d u c t i o n  

To find all numerical solutions for nonlinear systems of  equations 

F(X) = (f0(x0,  x l , . . . ,  x l , . . . ,  = 0 (1) 

in a given box 1 X = (Xo, X l , . . . , X N _ l ) ,  where zi E x/ and x~ = {x~[x i < x~ < 5i} for 
0 < i < N -  1, with mathematical and numerical certainty is a very important problem in 
scientific computation. 

There  are many methods for solving nonlinear systems of equations in the literature. In 
contrast to other methods, interval Newton's methods [5, 7, 8, t0] bound all solutions in a given 
domain with mathemat/ca/certainty, even in the presence of  uncertainty in the data, roundoff  error, 
and nonlinearities. Like the classical Newton's method, interval Newton's methods transform 
the nonlinear system (1) into a linear interval system: 

F'(X(k))(:K (k) - X (k)) = -F (X(k) ) .  (2) 

In (2), X (k) and X (/r are input values of  X and X at the k-th iteration; )[(/~) is the newly 
estimated bound of  X at the k-th iteration; F ' ( X  (k)) can be an interval extension to the 
Jacobian matrix, or a slope matrix, over X (k). It is known that all roots of the system (1) 
that belong to the interval box X (k) also belong to the interval box ~(k) of the linear interval 
system (2). The solutions of  the nonlinear system (1) can be found by iteratively solving the 
corresponding linear system (2), with the new iteration value X (k+l) defined as 

X(k+1) = X(~) ~ ~(k). (3) 

For the reader's convenience, we review the basic interval Newton/Generalized bisection 

(Interval Newton/Generalized Bisection) 

Input  the current interval box X (k) and a guess point X (k) E X (k) (e.g., the 
midpoint of  X(k)); 

(1.2) Evaluate the value of  F ( X )  at X = X(k); 

(1.3) Evaluate the interval Jacobian matrix F ' ( X )  on X = X(k); 

(1.4) Find 2~ (k) by solving equation (2); 

(1.5) For j - -0  to N - 1  do 

Compute: k+t) = 
If  x~ k+l) = 0, then 

there is no root in current box. 
Go to step (1.8) 

1Throughout the paper we will use boldface letters and capital letters to denote interval quantifies and vectors, 
respectively. We use x and ~ to denote the lower bound and the upper bound for an interval variable x, respectively 

method here. 

Algorithm 1: 
(1.1/ 
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Else 
,(k+1) = (z~k+1) _(k+l) Compute: ,~j _ ~j )2; 

(1.6) Compute: diam(X(k+l)) /~N-1 ~ .a �89 = kZ.#~'=0 31 ' 

(1.7) Check convergence: 
(a) If diam(X (k+l)) < ~, and IF(X(k))l <_ ~, where ~ and ~ are given 

tolerances, then a root is found. Output the root in root list and goto 
step (1.8); 

(b) If diam(X (k)) - diam(X (k~d)) _< 6, where 6 is a given tolerance, then 
bisect the longest side of current box. Put half of it in the box stack and 
keep another half as the new box for the next loop of iteration. Goto 
step (I.I); 

(c) If diam(X (k)) - diam(X q*+~)) > tS, goto step (1.1); 
(1.8) If the box stack is not empty, then pop a box from the stack, goto step (1.1). 

Otherwise, end the algorithm, 
Step (1.3) of Algorithm 1 evaluates N 2 functions of N variables to determine the Jacobian 

matrix in general, Step (1.4) then solves an N-dimensional linear interval system. Both steps 
can be computationally expensive when N is large, In the past few years, a special techniques 
using so-called pr~conditionars have been developed to solve interval linear systems [9]: namely, 
instead of solving a linear equation Az =- h, we solve an equation (YA) z  = Yb fort an 
appropriately chosen Y (or several equations, with different Y). These prsamditioned linear solvers 
require O(N 2) to g)(N ~) computations; so, we need that many computational steps on each 
iteration of the Newton's method, Among these preconditioners, the all,row preconditioned scheme 
consists of using N preconditioners: namely, we find the interval estimates for all the variables 
~-0, xl . . . . .  XN-~ from every linear equation of the system (2), and then take the intersection 
of the corresponding interval estimates ~ as a solution ~ (for 0 ~ i _< N -  1). The all- 
row preconditioned scheme has the advantages of lower computational complexity and a fast 
convergence rate for many problems, In [6, 4], we descried the results of parallelization of 
the all-row preconditioned scheme for large systems, In [~i, 4], these methods were tried on 
dense matrices, i,e., matrices for which the majority of c~ffir are non-zero. 

In many applications, large-scale N-variable nonlinear systems of equations ohen generate 
sparse Jacobian matrices, i,e., matrices which cont.aln only ~ CA r nonzero elements (for a 
small constant C). For example, in VLSI design and s~rucmral engineering, Jacobian matrices 
are block bordered and therefore, sparse; sparse matrices also appear in chemical process 
flowsheeting [14], Moreover, usually, in real-life problems, Jacobian matrices ara ~parse. It is 
surely inefficient and wasteful to use general methods for dense systems to perform step (1.3) 
and (1.4) for a sparse Jacobian matrix, 

In this paper, w~ report, our work on developing -an interval linear solver for large- 
scale general sparse systems with t.he all-row prec_onditioned scheme, and its parallelization for 
interval Newt.on's met.hods, 

1 
t t Storage schemes for general sparse ma rices 

Compactly storing a .sparse m-atri~r is ~h~ first s~r in d~v~loping a general sparse linear solver 
for interval Newton's methods, A s!gnifi~an~ -amount of r~se-arch has been done on sparse 
scalar matrices with special patterns (such as tridiagonal, b.and diagon-al with bandwidth M, 
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band triangular, block diagonal, block triangular, cyclic banded, bordered block diagonal, and 
others). For such patterns, efficient storage and processing algorithms have been developed; 
these algorithms, however, crucially depend on the precise pattern of sparsity of the matrix and 
are, therefore, not applicable to generic sparse matrices that appear, e.g., in chemical process 
flowsheeting [14]. 

Since a general sparse matrix may not fit any of these special patterns, storage schemes for 
general sparse matrices have also been studied. Index storage schemes store non-zero matrix 
elements along with auxiliary information which can be used to determine where a non-zero 
element is located in the original matrix, crucial data in common matrix operations. Some 
of these index methods can require storage for as much as three to five times the number 
of nonzero matrix elements. Knuth describes a method in [1t]; Duff describes several other 
methods [2, 3]; Dongarra et al. used a scheme in [1]; and Press et al. [13] claim they favor the 
scheme used by PCGPAK [12] because the row-indexed storage mode in [12] requires storage 
of little more than two times the number of  nonzero matrix elements. Here, we review the 
two most popular general sparse storage schemes, the PCGPAK scheme and Duffs scheme. 

The indexed storage scheme in PCGPAK: In PCGPAK, a sparse matrix is stored as two 
arrays: an array called i ja(k) ,  which stores the indices (ija stands for i-j-array), and an array 
sa(k) which stores selected elements of  the matrix. The  rules for defining the two arrays are 
described below. 

1. For an N x N matrix, ija(1) = N + 2. 

2. In the array i ja,  values i ja(2)  through i j a (N  + 1) are calculated in the following way: 
i ja(i)  = i ja(i  - 1) + Y~-I, where Yi-a is the number of nonzero nondiagonal elements in 
the (i - 1 ) - s t  row. 

3. The number of  elements in each of these arrays is i j a ( N  - 1) - 1. 

4. In the array sa, sa(1) through sa(N) are diagonal elements of the matrix to be stored. 

5. The element sa(N + 1) is an extra space. A user may store any number he/she wants. 

6. The elements sa(N + 2), sa(N + 3) , . . .  are all non-zero non-diagonal elements stored in 
the order of their rows (and in the order of columns if they are in the same row), and' 
i j a (N  + 2 ) , . . .  are the corresponding column numbers. 

For example, let S be a 4 x 4 sample sparse matrix defined by 

3 0 4 0  
0 0 5 0  

S =  
t 0 D 7  
0201 

(4) 

Using the PCGPAK scheme, the matrix 6' can be stored as: 

k 1 2 3 4 5 6 7 8 9 10 
i ja(k)  6 7 8 10 11 3 3 1 4 2 
sa(k) 3 0 0 1 x 4 5 1 7 2 
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Duff ' s  index storage scheme: In [2, 3], Duff defines an indexed scheme to store sparse 
matrices. In DufFs scheme, three arrays are used to store a matrix. The  three arrays are called 
COLPTR (column pointer), ROWIND (row index), and VALUES (values o f  non-zero elements). 

1_ COLPTR(k) are calculated in the following way: COLPTR(1) = 1 and 

COLPTR(i)  = COLPTR(i  - 1) + Yi-1 

(where Yi-1 is the number  of nonzero elements in the column (i - 1)). 

2. The  array VALUES stores all nonzero elements column-wise, and the array ROWIND 
contains corresponding row numbers. 

By using Duff's scheme, the sample matrix S can be stored as 

k 1 2 3 4 5 6 7 
COLPTR(k) 1 3 4 6 S 
ROWIND(k)  1 3 4 1 2 3 4 
VALUES(k) 3 1 2 4 5 7 1 

From the above, we can see that the PCGPAK scheme stores all diagonal  dements  even 
when most of  them are zero. Three  arrays are used in DufFs storage scheme. Indirect memory 
references may significantly reduce the overall speed of  computations. In [13], Press et al. state 
that there is no standard scheme in general use. We believe that fur ther  studies on indexed 
storage schemes are needed to handle generic sparse matrices. 

3. A new storage scheme for general sparse system 
In this section, we propose standards to measure an indexed storage scheme for general sparse 
matrices. An ideal indexed storage scheme for large-scale general  sparse matrices should have 
the following properties: 

�9 It uses the least amount  of memory space. 

�9 The  original position of an element in a matr ix can be recovered easily. 

�9 Fundamental  matr ix algebra can be done with minimal effort. 

�9 It can be efficiently implemented on high performance computers.  

�9 It minimizes memory accessing latency 2. 

�9 It is easy to understand.  

To address the properties listed the above, we propose the following indexed storage 

scheme: 

Indexed storage scheme 1: Let A = {a~,j} be an N x N sparse interval matrix, where 
0 < i, j < N - 1. For a nonzero element of A ,  say ai,j, its row-after-row index is defined as 

2We will address this in another paper 
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iN + j ;  its column-after-column storage index is defined as j N  + i. The  indexes will be stored 
in increasing order. 

According to the above definition, we can store the sample matrix S row-after-row by 
checking the list So,o, So,i, s0,2, So,3, sl,0, s1,1, �9 �9 s3,3 and assigning the index iN + j for each 
non-zero element si,j, 0 _< i, j _< N - 1 (In S, N = 4). 

t k~,j 0 2 
a ~ , j [ 3 1 4  65181 17[ 1 : I  11 

Similarly, we may store the sample matrix S in the column-after-column manner  as 

km,~ 0 7 8 
5 

Let us list some advantages of  storage scheme 1: 

1. The  indexed storage scheme stores only non-zero elements of a general sparse matrix 
and associates only one index to each non-zero element. We believe that the storage 
scheme uses min imum memory  space to index store a genera/ sparse matrix, since any 
storage schemes they must store all nonzero elements of  the sparse matrix, and must 
have at least one index to indicate the original position of each non-zero element. 

2. It is easy to recover the original location of a nonzero element from its index. Suppose 
the row-after-row index for a nonzero element is k. Then  the element is in the (k div 
N)-th row, and the (k rood N)-th column. 

3. The  transpose of the matrix is also very easy to determine. For example, the row-after- 
row index for a nonzero element of a matrix A is k, then its logical position in A T is 
in the (k mod N)-th row, and in the (k div N)-th column. 

4. It is easy to perform addition and subtraction of sparse matrices. Those elements that 
have the same logical position have the same index. To  perform addition or subtraction, 
one needs only add or subtract the corresponding elements and place the result in the 
corresponding position of the result matrix. Those elements that appear  in only one of 
the matrices need only be inserted, along with their indices, into the resulting matrix. 

5. It can be efficiently implemented on high performance parallel computers with high 
scalability. Let p be the number  of  processors on a parallel machine. We may distribute 
sparse matrix computations row-wise according to the values of  (index div N)  mod p 
or column-wise according to the values of (index mod N)  mod p. Applications of  this 
property can be found in Sections 4 and 5 of this paper. 

6. Other advantages of  the storage scheme, such as improving the performance of a memory  
hierarchy, will appear  in another  paper  of  ours. 

Storage scheme 1 uses two divisions to recover the original position of a non-zero element. 
To  make scheme 1 more efficient on a sequential computer,  we modify it as follows: 
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Indexed storage scheme 2: Let A = {ai,s} be an N x N sparse matrix, where 0 < i, j < N - 1 .  
The  row-after-row index kio of a nonzero element of  A,  ai,j is defined as 

i N  + j,  if ai,j is the first nonzero element in the i-th row; 
k~j = j ,  if a<j is not the first nonzero element in the i-th row. 

The  indexes will be put in increasing order row-wise. 

To  store a nonzero element a~j of  A column-after-column, we assign its index ki,j as 

= f 3 N  + i, if a i j  is the first nonzero element in the j - th  column; 
k~3 

' [ i, if a i j  is not the first nonzero element in the j - th  column. 

The  indexes will be put in increasing order column-wise. 

With the row-after-row index storage scheme 2, the sample matrix S introduced above 
an be stored as: 

a~j [0  I 
The  sample matrix S can be also stored column-after-column in scheme 2 as: 

a,,~lqJ [0, 7 3 1 2  8 1 

We list two additional advantages of the scheme 2. First, to sequentially recover the 
original positions of  nonzero elements in a sparse matrix stored by scheme 2, we only need to 
perform divisions for the index of the first nonzero element in each row (or column). Second, 
to interchange two rows (columns), we only need to change the indexes for the first non-zero 
elements in those two rows (columns). 

We recommend scheme 2 for sequential processing and scheme 1 for parallel processing. 
To support this recommendation,  we have compared the performance of scheme 2 (row-after- 
row) with that of both the PCGPAK scheme and Duff's scheme. 

In the remainder  of  this Section, we report  our numerical experiments comparing the 
performance of these storage schemes. The  data set was picked from Harwell-Boeing Sparse 
Matrix Collection. In the collection, the CHEMWEST set contains general sparse matrices 
from modeling of chemical engineering plants at University of Pittsburgh; the FACSIMILE 
set is "representative of the type of matrices which occur in spatially homogeneous prob- 
lems from straight chemical kinetics calculations and mixed kinetics diffusion problems." Our  
F O R T R A N - 7 7  programs were run on a VAX 4000-300  computer with VAX/VMS version 
V5.5-2 operating system. The  compiler is DEC FORTRAN for OpenVMS VAX Systems. 

The  Table 1 below reports memory space used to index store these matrices with different 
schemes. 

The  basic operations of  most iterative linear solvers (such as the Jacobi, Gauss-Seidel, and 
successive overrelaxation methods, conjugate gradient, generalized minimal residual, biconjugate 
gradient, and some other methods) are matrix-vector multiplications. In this multiplication, a 
vector is multiplied either by a coefficient matrix or by its transpose. To  test the efficiency 
of our method on these multiplications, we measured the time required to multiply an index 
stored matrix by a randomly generated vector (see Table 2). 

The  Table 3 reports time required to multiply the transpose of an indexed stored matrix 
by a vector. 
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N 

67 
132 
156 
167 
183 
183 
183 
183 
381 
479 
497 
655 
680 
68O 
680 
760 
760 
760 

Nonzero PCGPAK 
elements Method 

294 722 
414 1084 
371 1058 
507 1324 

1069 2142 
1069 2142 
1069 2142 
1069 2142 
2157 5078 
1910 4766 
1727 4440 
2854 7012 
2646 5296 
2646 5296 
2646 5296 
5976 11956 
5976 11956 
5976 11956 

DuWs 
Method 

656 
961 
899 

1182 
2322 
2322 
2322 
2322 
4696 
4300 
3952 
6364 
5973 
5973 
5973 
12713 
12713 
12713 

Table 1. Memory space used 

Scheme 2 

588 
828 
742 

1014 
2138 
2138 
2138 
2138 
4314 
3820 
3454 
5708 
5292 
5292 
5292 
11952 
11952 
11952 

N 

67 
132 
156 
167 
183 
183 
183 
183 
381 
479 
497 
655 
680 
680 
680 
760 
760 
760 

Nonzero 
elements 

294 
414 
371 
507 

1069 
1069 
1069 
1069 
2157 
1910 
1727 
2854 
2646 
2646 
2646 
5976 
5976 
5976 

PCGPAK 
Method 
0.0E+00 
0.0E+00 
2.0E-03 
1.0E-03 
3.0E-03 
4.0E-03 
4.0E-03 
2.0E-03 
5.0E-03 
6.0E-03 
6.0E-03 
8.0E-03 
1.0E-02 
2.0E-03 
6.0E-03 
1.3E-02 
1.2E-02 
1.3E-02 

DufFs 
Method 
3.7E-02 
4.5E-02 
4.7E-02 
4.6E-02 
5.1E-02 
5.6E-02 
5.0E-02 
5.5E-02 
9.2E-02 
1.1E-01 
1.2E-01 
1AE-01 
1.4E-01 
1.5E-01 
1.4E-01 
1.6E-01 
1.6E-01 
1.7E-01 

Scheme 2 

0.0E+00 
1.0E-03 
1.0E-03 
0.0E+00 
3.0E-03 
1.0E-03 
1.0E-03 
2.0E-03 
7.0E-03 
6.0E-03 
7.0E-03 
1.0E-02 
9.0E-03 
1.0E-02 
9.0E-03 
2.0E-02 
2.0E-02 
1.9E-02 

Table 2. Time required for matrix-vector multiplication 
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N Nonzero PCGPAK Duffs Scheme 2 
elements Method Method 

67 294 
132 414 
156 371 
167 507 
183 1069 
183 1069 
183 1069 
I83 1069 
381 2157 
479 1910 
497 1727 
655 2854 
68O 2646 
68O 2646 
680 2646 
760 5976 
760 5976 
760 5976 

2.00E-03 
3.00E-03 
0.00E+00 
1.00E-03 
1.00E-03 
1.00E-03 
1.00E-03 
3.00E-03 
7.00E-03 
5.00E-03 
6.00E-03 
1.00E-02 
7.00E-03 
8.00E-03 
5.00E-03 
1.56E-02 
1.20E-02 
1.50E-02 

2.00E-03 
1.00E-03 
0.00E+00 
2.00E-03 
4.00E-03 
4.00E-03 
5.00E-03 
2.00E-03 
9.00E-03 
4.00E-03 
4.00E-03 
9.00E-03 
9.00E=03 
8.00E-03 
5.00E-03 
1.40E-02 
1.60E-02 
1.70E-02 

0.00E+00 
0.00E+00 
0.00E+00 
0.00E+00 
2.00E-03 
O.OOE+O0 
3.00E-03 
2.00E-03 
6.00E-03 
4.00E-03 
6.00E-03 
1.00E-02 
8.00E-03 
9.00E-03 
7.00E-03 
1.80E-02 
1.70E-02 
1.80E-02 

Table 3. Time required for matrix-transpose times a random vector 

4. Evaluating general sparse Jac0bian matrices 
With the storage schemes defined in the previous section, we propose efficient algorithms to 
evaluate the interval Jacobian matrix F ' ( X  (k)) in step (1.3) of Algorithm 1. We assume that 
the analytical form of the Jacobian F I is known, and the Jacobian matrix is general sparse. 
Algorithm 2 below evaluates a sparse interval Jacobian matrix F ' ( X  (a)) = f'id (X(k)), and stores 
it row-after-row with scheme 2. 

Algorithm 2: (sequential algorithm) 

(2.1) m = 0 

(2.2) For i = 0 to n -  1 do First~ = 1; 

(2.3) F o r i = 0  t o n - l d o  
For j = 0  t o n - l d o  

If f'~,d ~ O then 
If  First~ = 1 then 

Indexrn = i * n + j 
a,n = f'~d(X (k)) 
m = m + l  
Firsq = 0 

else 
Indexm --- j 
am = fq,j(X Ck)) 
ra = r a +  1 

endif 
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The  major  computation of the above sequential algorithm is to evaluate fti,j(X(/C)) for 
different i and j .  Since there is absolutely no data dependency in evaluating ffi,j(X (k)) for 
different i and j ,  we may evaluate the Jacobian matrix for large-scale problems in parallel. 
tn the following parallel program,  p is the number  of processors available, and each available 
processor has its own processor-id (which is called my-id). The  algorithm stores the Jacobian 
matrix row-after-row with scheme 1. 

Algori thm 3: (parallel algorithm) 

(3.1) Do a l l m = 0  

(3.2) For i = 0 to n - 1 do 
F o r j = O  t o n - l d o  

I f  f ' i j  ~ 0 then 
Indexm = i * n + j 
m = r a + l  

endif  

(3.3) F o r l = 0  t o m - 1  do 
If  my-id = l mod  p, then 

i = Indexl div n 
j = Index/ rood n 
a, = f'i,j (X (k)) 

endif  

(3.4) All-to-all broadcast al 

Remark: Step (3.4) provides the interval Jacobian matrix to all p processors. It is a very expensive 
communication step. However, because the parallel iterative linear solver (Algorithm 5 from 
the next section) does not require the entire Jacobian matrix on each processor, we can 
communicate only part  of the matrix. 

5. Iterative general sparse linear solver 
The  interval Jacobi method, interval Gauss-Seidel method, and some other iterative interval 
linear solvers have been used to perform step (1.4) of  Algorithm 1 for bounding equation (2). 
Preconditioned schemes [9] have also been proposed to improve the efficiency for dense interval 
systems. Among them the all-row preconditioned interval linear solver [9, 6, 4] bounds every 
variable x~ from each of the n equations of  (2), then takes the intersection for the n different 
(some of  them may be same) interval values of  x4, thus forming :~i- It has lower computational 
complexity and a faster convergence rate for marly interval linear systems. With the Jacobian 
matrix index stored by Algori thm 2, we propose the all-row preconditioned interval iterative 
linear solver for sparse systems as3: 

Algori thm 4: (sequential algorithm) 

(4.1) F o r i = 0  t o n - 1  do 
bi = f~(Xk) 

3The operation O is used in Algorithms 4 and 5. It is defined as a G b = [_a, g] O [b, b] = [_a - b, ~ - b]. 
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(4.2) i = 0 

(4.3) For l = O  t o r n - l d o  
If  I n d e x / <  n, then 

j = Index/ 
b~ = b~ + a / x ~  

else 
i = Index/ div n 
j = Index/ rood n 
b~ = b~ + a~xj 

endif 

(4.4) i = 0 

(4.5) F o r / = 0  t o m - 1  do 
ff I n d e x / <  n, then 

j = Index/ 
- b,ea~x~ 
xit = Xi + az 

else 
i = Index/ div n 
j = Index/ rood n 

b,oa~x~ 

endif 

(4.6) For j = 0  t o n - l d o  

:~j ~ kl li=O 

Associated with Algorithm 3, the following algorithm bounds X(~) in (2) with parallel 
computations, 

Algorithm 5: (parallel algorithm) 

(5.1) F o r i = 0  t o n - l d o  
y~ =~ 

(5.2) For l = 0 to rn - 1 do 
i = Index/ div n 
If  my-id = i rood p, then 

bi = f,(Xk) 
j = Index/ rood n 
bi = bi + a/xj  

endif 

(5.3) F o r l = 0  t o m - 1  do 
i = Index/ div n 
If  my-id = i rood p, then 

j = Index/ rood n 

yj = yj N(x# + ~) 
endif 
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(5.4) All-to-all broadcast yj for j = 0 to n - 1 

(5.5) Replace yj  with yj (local) ('] yj  (incoming) 

(5.6) X d -----yj for j = 0  to n - -  1 

After the completion of Algorithm 5, there will be a copy of X (k+l) in the local memory 
of every processor. As written, Algorithms 4 and 5 each complete only one iteration for 
solving the linear interval system (2). One may want to perform more such iterations before 
reevaluating the interval Jacobian matrix by Algorithm 2 or 3 over X (k+l). 

6~ Conclusions and future work 
The computationally most expensive procedures when using interval Newton's methods to 
solve nonlinear systems of equations are evaluations of its Jacobian matrix and solving the 
corresponding interval linear systems. The matrix storage schemes, Jacobian evaluation and 
linear solver algorithms in this paper are specifically designed for general sparse systems. The 
comparison with previous algorithms (based on dense systems) make us believe that the methods 
proposed in this paper will save both memory space and computation time. 

With the paraUelized algorithms, one may be able to effectively solve real-life very large- 
scale systems (that in applications are usually sparse) in parallel. 

We are currently implementing parallel algorithms proposed in this paper on real parallel 
computers in order to compare the performance of these algorithms with other schemes. We 
will continue this research as follows: 

�9 Study how to balance work load for Algorithms 3 and 5 to achieve high efficiency. 

�9 Develop preconditioned linear solvers, other than the all-row preconditioned scheme, with 
the general sparse storage scheme. 
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