Reliable Computing 1 (3) (1995), pp. 251—263

A general iterative sparse linear solver and its
parallelization for interval Newton methods

Cuenvi Hu, Anna Frorov®, R. Baker Kearrorr, and Qmc Yanc

Interval Newton/Generalized Bisection methods reliably find all numerical solutions within a given
domain. Both computational complexity analysis and numerical experiments have shown that solving
the corresponding interval linear system generated by interval Newton’s methods can be computationally
expensive (especially when the nonlinear system is large).

In applications, many large-scale nonlinear systems of equations result in sparse interval Jacobian
matrices. In this paper, we first propose a general indexed storage scheme to store sparse interval
matrices We then present an iterative interval linear solver that utilizes the proposed index storage
scheme It is expected that the newly proposed general interval iterative sparse linear solver will improve
the overall performance for interval Newton/Generalized bisection methods when the Jacobian matrices
are sparse. In Section 1, we briefly review interval Newton’s methods. In Section 2, we review some
currently used storage schemes for sparse systems. In Section 3, we introduce a new index scheme to
store general sparse matrices. In Section 4, we present both sequential and paralle! algorithms to evaluate
a general sparse Jacobian matrix. In Section 5, we present both sequential and parallel algorithms to
solve the corresponding interval linear system by the all-row preconditioned scheme. Conclusions and
future work are discussed in Section 6.

OO6001IeHHBI UTepaTUBHBI AMHEJHBIA
peaTeAb AASL paspeXeHHBIX CUCTeM M €ro
IapaAAeAV3alsl AAST MHTepBaAbHBIX
MeToA0B HploToHa

Y. Xv, A. @ronos, P. B. Kureorr, K. SIur

HutepsanpHbit Meton HpioToHa K OGOBIIEHHBIM METOA MOJOBHHHOTO N€E€HUA TaPAaHTUPOBAHHO HAXo-
AAT BCE YHC/EHHBIE DENICHMs B 3ajaHHOH 06/acTM. Kak aHaiu3 BHYMCIUTENBLHOH CIOXKHOCTH, TaK
M YHCIEHHBIE 3KCIIEPUMMEHTHI TMOKA3a/M, YTO PEIlEHUE COOTBETCTBYIOIIEH HHTEPBANBLHOM JHHEMHOW CH-
CTeMBi, MTONY4EHHON MHTEPBANbHLIMH MeTOAaMH HBIOTOHA, MOXET NOTPeGOBATE 3HAYUTENBLHOIO 0HbEMa
BBIMMCIEHME (OCOBEHHO eC/H HeMHeHHas CHCTeMa BEMKa 10 pasMepam)

Ha npaxTuke cHCTeMBl HEJIMHEWHBIX YPaBHEHHH GO/IBINOH PAa3MEPHOCTH HEPEAKO CBOAATCS K pas-
PEXEHHBIM HHTEpBA/AbHbIM MaTpuuaM SJxobu. B HacroAmen pabote npeanaraercs oOOOIIEHHAs! HHAEK-
CHPOBAHHAA CXE€MA MAMATH A1 XPAHEHHA pPa3sPEXEHHBIX HHTEPBAJIbHBIX MaTpHll, a 3aTeM BBOLUTCA
MTEPATHBHBIA UHTEPBAILHBIA JIMHEAHBIA PellaTeib, HCIOMBIYOWME Ty cxeMy OXunaercs, 4To mpea-
JIOKEHHBIH OOODUIEHHBINH HTEPATHBHEIN WHTEPBAIbHEIA JMHEHHBIA DEIIaTe/Nb MOBRICHT o611yl NPOU3-
BOAHTEABHOCT: MeTOA0B HblOTOHA # 0GOGLUEHHOrO METOAA MOJIOBHHHOTO ACJNCHHA /1 Pa3peXEeHHBIX
MaTpuu fxo6u B painene 1 KpaTKo ommcaHni MHTEpBAMbHHE MeToaW HbwTtoHa. B passere 2 paceva-
TPHBAIOTCS HEKOTOPHIE HCTIOABIYEMbIE B HACTOALUEE BPEMsl CXEMbl IAMATH [U1A Pa3PEKEHHBIX cucTeM B

© C. Hu, A. Frolov, R. B. Kearfott, Q Yang, 1995
This research was partially supported by NSF Grant No. MIP—9208041.
*This co-author is a NASA funded undergraduate research assistant.

252 C. HU, A. FROLOV, R. B. KEARFOTT, Q. YANG

passesie 3 BBOAMTCH HOBas MHAEKCUPOBAHHASE (XM MAMSTH IS XPaHEHHA OGOGUIEHHBIX Pa3pPeXeHHBIX
MaTpuu. B pasnene 4 npencrabieHnl HOCIENOBATENLHBIA M NMAPA/UIELHBIA A/NTOPUTMBL 1S PEUIEHHA
COOTBETCTBYIOLIEA MHTEPBA/JbHOH NHHEHHON CUCTEMBI MO CTPOYHONM NPeoBYCIOBNEHHOR cXxeMe BuiBoabt
H TIaHBl Ha Gynyiuee o6CYXKAaTCA B pasnene 6.

1. Introduction

To find all numerical solutions for nonlinear systems of equations

F(X) = (fo(il?o,l‘l, .. .,:L‘N_l),fl(.’to,l‘l, .. .,:L‘N_l),...,fN_l(l‘o,.’Bl,...,.’L‘N_l)) =0 (1)

in a given box! X = (xg,X3,...,Xn_1), where z; € x; and x; = {mijz; < 7; < T;} for
0 €1 < N -1, with mathematical and numerical certainty is a very important problem in
scientific computation.

There are many methods for solving nonlinear systems of equations in the literature. In
contrast to other methods, interval Newton’s methods [5, 7, 8, 10] bound all solutions in a given
domain with mathematical certainty, even in the presence of uncertainty in the data, roundoff error,
and nonlinearities. Like the classical Newton’s method, interval Newton’s methods transform
the nonlinear system (1) into a linear interval system:

F/(X®YX® ~ x®) = _p(x®). (2)

In (2), X% and X® are input values of X and X at the k-th iteration; X® s the newly
estimated bound of X at the k-th iteration; F/(X(¥)) can be an interval extension to the
Jacobian matrix, or a slope matrix, over X&) It is known that all roots of the system (1)
that belong to the interval box X®) also belong to the interval box X® of the linear interval
system (2). The solutions of the nonlinear system (1) can be found by iteratively solving the
corresponding linear system (2), with the new iteration value X(*+1 defined as

X*+D . x(R) ﬂ X (k) (3)

For the reader’s convenience, we review the basic interval Newton/Generalized bisection
method here.
Algorithm 1: (Interval Newton/Generalized Bisection)
(1.1) Input the current interval box X*) and a guess point X B ¢ X*) (eg., the
midpoint of X¥));

(12) Evaluate the value of F(X) at X = X,

(13) Evaluate the interval Jacobian matrix F'(X) on X = X®);
(14) Find X® by solving equation (2);

(15) For j=0 to N-1 do

. (k+1) _ & (k)
Compute: x; =X x5
If x§k+1) = (@, then

there is no root in current box.

Go to step (1.8)

!Throughout the paper we will use boldface letters and capital letters to denote interval quantities and vectors,
respectively. We use £ and Z to denote the lower bound and the upper bound for an interval variable X, respectively

A GENERAL ITERATIVE SPARSE LINEAR SOLVER... 253

Else

Compute: w{**V = (’f§k+1) -

k+1
: PALay))2.

z; ;
16) Compute: diam(X®*+V) = (TN w;)1;
) Check convergence:

@ If diam(X*) < ¢, and |F(X®)| < &, where £ and ¢ are given
tolerances, then a root is found. Output the root in root list and goto
step (1.8);

@) If diam(X®) — diam(X**) < 8, where § is a given tolerance, then
bisect the longest side of current box. Put half of it in the box stack and
keep another half as the new box for the next loop of iteration. Goto
step (1.1);

(€ If diam(X®)) - diam(X®*+1) > 6, goto step (1.1);

(18) If the box stack is not empty, then pop a box from the stack, goto step (1.1).
Otherwise, end the algorithm,

Step (1.3) of Algorithm 1 evaluates N? functions of N variables to determine the Jacobian
matrix in general. Step (14) then solves an N-dimensional linear interval system. Both steps
can be computationally expensive when N is large. In the past few years, a special techniques
using so-called praconditioners have been developed to solve interval linear systems [9]: namely,
instead of solving a linear equation Az = b, we solve an equation (YA)z = Yb fort an
appropriately chosen Y (or several equations, with different Y). These proconditioned linear solvers
require O(N?) to O(N?) computations; se, we need that many computational steps on each
iteration of the Newton's method, Among these preconditioners, the all-row preconditioned scheme
consists of using N preconditioners: namely, we find the interval estimates for all the variables
Xo,X1,...,%Xn-1 from every linear equation of the system (2), and then take the intersection
of the corresponding interval estimates %; as a solution ¥; (for 0 £ ¢ £ N - 1). The all-
row preconditioned scheme has the advantages of lower computational complexity and a fast
convergence rate for many problems. In [6, 4], we described the results of parallelization of
the all-row preconditioned scheme for large systems, In [6, 4], these methods were tried on
dense matrices, i.¢., matrices for which the majerity of coefficients are non-zero.

In many applieations, large-scale N-variable nonlinear systems of equations often generate
sparse Jacobian matrices, i, matrices which contain only € CN nonzero elements (for a
small constant C), For example, in VLSI design and structural engineering, Jacobian matrices
are block bordered and therefore, sparse; sparse matrices also appear in chemical process
flowsheeting [14], Moreover, usually, in real-life problems, Jacobian matrices are sparse. It is
surely inefficient and wasteful to use general methods for dense systems to perform step (1.3)
and (14) for a sparse Jacobian matrix.,

In this paper, we report our work on developing an interval linear solver for large-
scale general sparse systems with the all-row preconditioned scheme, and its parallelization for
interva] Newton’s methods.

2. Storage schemes for general sparse matrices

Compactly storing a sparse matrix is the first step in developing a general sparse linear solver
for interval Newton's methods. A significant amount of research has been dene on sparse
scalar matrices with special patterns (such as tridiagonal, band diagonal with bandwidth M,

254 C. HU, A. FROLOV, R. B. KEARFOTT, Q. YANG

band triangular, block diagonal, block triangular, cyclic banded, bordered block diagonal, and
others). For such patterns, efficient storage and processing algorithms have been developed,;
these algorithms, however, crucially depend on the precise pattern of sparsity of the matrix and
are, therefore, not applicable to generic sparse matrices that appear, e.g., in chemical process
flowsheeting [14].

Since a general sparse matrix may not fit any of these special patterns, storage schemes for
general sparse matrices have also been studied. Index storage schemes store non-zero matrix
elements along with auxiliary information which can be used to determine where a non-zero
element is located in the original matrix, crucial data in common matrix operations. Some
of these index methods can require storage for as much as three to five times the number
of nonzero matrix elements. Knuth describes a method in [11]; Duff describes several other
methods [2, 3]; Dongarra et al. used a scheme in [1}; and Press et al. [13] claim they favor the
scheme used by PCGPAK [12] because the row-indexed storage mode in [12] requires storage
of little more than two times the number of nonzero matrix elements. Here, we review the
two most popular general sparse storage schemes, the PCGPAK scheme and Duiff’s scheme.
The indexed storage scheme in PCGPAK: In PCGPAK, a sparse matrix is stored as two
arrays: an array called ija(k), which stores the indices (ija stands for i-j-array), and an array
sa(k) which stores selected elements of the matrix. The rules for defining the two arrays are
described below.

1. For an N x N matrix, ija(1) = N + 2.

2. In the array ija, values ¢ja(2) through ija(N + 1) are calculated in the following way:
ija(i) = ija(i — 1) + y;_1, where y;_; is the number of nonzero nondiagonal elements in
the (¢ — 1)—st row.

3. The number of elements in each of these arrays is tja(N — 1) — 1.
4. In the array sa, sa(l) through sa(N) are diagonal elements of the matrix to be stored.
5. The element sa(N + 1) is an extra space. A user may store any number he/she wants.

6. The elements sa(N +2), sa(N +3),... are all non-zero non-diagonal elements stored in
the order of their rows (and in the order of columns if they are in the same row), and’
ija(N +2),... are the corresponding column numbers.

For example, let S be a 4 X 4 sample sparse matrix defined by

3
0
S’=1
0

OO

4
)
0
0

O OO

Using the PCGPAK scheme, the matrix S can be stored as:

k |1]2(3]4]5[6[7]8]9]10
ija(k) 718101133 1]4] 2
sa(k) 13]0]0) 1]z |4|5]1]7]2

A GENERAL ITERATIVE SPARSE LINEAR SOLVER... 255

Duff’s index storage scheme: In [2, 3], Duff defines an indexed scheme to store sparse
matrices. In Duff’s scheme, three arrays are used to store a matrix. The three arrays are called

COLPTR (column pointer), ROWIND (row index), and VALUES {values of non-zero elements).
1. COLPTR(k) are calculated in the following way: COLPTR(1) =1 and
COLPTR(z) = COLPTR(Z — 1) + iy
(where y;_; is the number of nonzero elements in the column (i — 1)).

2. The array VALUES stores all nonzero elements column-wise, and the array ROWIND
contains corresponding row numbers.

By using Duffs scheme, the sample matrix S can be stored as

k 1121314[5][6]7
COLPTR(k) |1]3]4]6]8
ROWIND(k) [113 |4|1]2]3|4
VALUES(k) [3]1]2{4{517}1

From the above, we can see that the PCGPAK scheme stores all diagonal elements even
when most of them are zero. Three arrays are used in Duff’s storage scheme. Indirect memory
references may significantly reduce the overall speed of computations. In [13], Press et al. state
that there is no standard scheme in general use. We believe that further studies on indexed
storage schemes are needed to handle generic sparse matrices.

3. A new storage scheme for general sparse system

In this section, we propose standards to measure an indexed storage scheme for general sparse
matrices. An ideal indexed storage scheme for large-scale general sparse matrices should have
the following properties:

o It uses the least amount of memory space.

o The original position of an element in a matrix can be recovered easily.

Fundamental matrix algebra can be done with minimal effort.

It can be efficiently implemented on high performance computers.

e It minimizes memory accessing latency®.

[t is easy to understand.

To address the properties listed the above, we propose the following indexed storage
scheme:
Indexed storage scheme 1: Let A = {a;;} be an N x N sparse interval matrix, where
0 <4, <N—1. For a nonzero element of A, say a,;, its row-after-row index is defined as

2We will address this in another paper

256 C. HU, A. FROLOV, R. B. KEARFOTT, Q. YANG

iN + J; its column-after-column storage index is defined as jIN +4. The indexes will be stored
in increasing order.

According to the above definition, we can store the sample matrix S row-after-row by
checking the list 809, 501, So,2, 50,3, 51,0, S1,1, - - -, 93,3 and assigning the index iN + j for each
non-zero element 8;;, 0 <4, <N -1 (In S, N =4).

ki; 1012167811131
a,;'j345172

[$13

p—t

Similarly, we may store the sample matrix S in the column-after-column manner as

Fmm 101 2(7(8]9]14]15
Amn 8111245 7] 1

Let us list some advantages of storage scheme 1:

1. The indexed storage scheme stores only non-zero elements of a general sparse matrix
and associates only one index to each non-zero element. We believe that the storage
scheme uses minimum memory space to index store a general sparse matrix, since any
storage schemes they must store all nonzero elements of the sparse matrix, and must
have at least one index to indicate the original position of each non-zero element.

2. It is easy to recover the original location of a nonzero element from its index. Suppose
the row-after-row index for a nonzero element is k. Then the element is in the (k div
N)-th row, and the (¢ mod N)-th column.

3. The transpose of the matrix is also very easy to determine. For example, the row-after-
row index for a nonzero element of a matrix A is &, then its logical position in AT s
in the (¢ mod N)-th row, and in the (k div N)-th column.

4. It is easy to perform addition and subtraction of sparse matrices. Those elements that
have the same logical position have the same index. To perform addition or subtraction,
one needs only add or subtract the corresponding elements and place the result in the
corresponding position of the result matrix. Those elements that appear in only one of
the matrices need only be inserted, along with their indices, into the resulting matrix.

5. It can be efficiently implemented on high performance parallel computers with high
scalability. Let p be the number of processors on a parallel machine. We may distribute
sparse matrix computations row-wise according to the values of (index div N) mod p
or column-wise according to the values of (index mod N) mod p. Applications of this
property can be found in Sections 4 and 5 of this paper.

6. Other advantages of the storage scheme, such as improving the performance of a memory
hierarchy, will appear in another paper of ours.

Storage scheme 1 uses two divisions to recover the original position of a non-zero element.
To make scheme 1 more efficient on a sequential computer, we modify it as follows:

A GENERAL ITERATIVE SPARSE LINEAR SOLVER... 257

Indexed storage scheme 2: Let A = {a;;} be an N x N sparse matrix, where 0 < 4,7 < N—1.
The row-after-row index k;; of a nonzero element of A, a;; is defined as

k= iN 43, if a;; is the first nonzero element in the ¢-th row;
1 Js if a;; is not the first nonzero element in the i-th row.

The indexes will be put in increasing order row-wise.

To store a nonzero element a;; of A column-after<olumn, we assign its index &;; as

- jN 41, if a;; is the first nonzero element in the j-th column;
"I i, if a;; is not the first nonzero element in the j-th column.

The indexes will be put in increasing order column-wise.
With the row-after-row index storage scheme 2, the sample matrix S introduced above
an be stored as:

k;10]2]6]8]3]13
a,;|3]|4|5]1]7] 21

The sample matrix S can be also stored column-after-column in scheme 2 as:

k;1012]7][8]1]14]3
a,;13(1]2]4]5] 7)1

We list two additional advantages of the scheme 2. First, to sequentially recover the
original positions of nonzero elements in.a sparse matrix stored by scheme 2, we only need to
perform divisions for the index of the first nonzero element in each row {or column). Second,
to interchange two rows (columns), we only need to change the indexes for the first non-zero
elements in those two rows (columns).

We recommend scheme 2 for sequential processing and scheme 1 for parallel processing.
To support this recommendation, we have compared the performance of scheme 2 (row-after-
row) with that of both the PCGPAK scheme and Duff's scheme.

In the remainder of this section, we report our numerical experiments comparing the
performance of these storage schemes. The data set was picked from Harwell-Boeing Sparse
Matrix Collection. In the collection, the CHEMWEST set contains general sparse matrices
from modeling of chemical engineering plants at University of Pittsburgh; the FACSIMILE
set is “representative of the type of matrices which occur in spatially homogeneous prob-
lems from straight chemical kinetics calculations and mixed kinetics diffusion problems.” Our
FORTRAN—-T77 programs were run on a VAX 4000—-300 computer with VAX/VMS version
V5.5—2 operating system. The compiler is DEC FORTRAN for OpenVMS VAX Systems.

The Table 1 below reports memory space used to index store these matrices with different
schemes.

The basic operations of most iterative linear solvers (such as the Jacobi, Gauss-Seidel, and
successive overrelaxation methods, conjugate gradient, generalized minimal residual, biconjugate
gradient, and some other methods) are matrix-vector multiplications. In this multiplication, a
vector is multiplied either by a coefficient matrix or by its transpose. To test the efficiency
of our method on these multiplications, we measured the time required to multiply an index
stored matrix by a randomly generated vector (see Table 2).

The Table 3 reports time required to multiply the transpose of an indexed stored matrix
by a vector.

258 C. HU, A. FROLOV, R. B. KEARFOTT, Q. YANG

N | Nonzero | PCGPAK | Duffs | Scheme 2
elements | Method | Method

67 294 722 656 588
132 414 1084 961 828
156 371 1058 899 742
167 507 1324 1182 1014

183 1069 2142 2322 2138
183 1069 2142 2322 2138
183 1069 2142 2322 2138
183 1069 2142 2322 2138
381 2157 5078 4696 4314
479 1910 4766 4300 3820
497 1727 4440 3952 3454
655 | 2854 7012 6364 3708
680 | 2646 5296 5973 5292
680 | 2646 5296 5973 5292
680 | 2646 5296 5973 5292
760 | 5976 11956 12713 11952
760 . 5976 11956 12713 11952
760 | 5976 11956 12713 11952

Table 1. Memory space used

N | Nonzero | PCGPAK | Duffs | Scheme 2
elements | Method | Method

67 294 00E+00 | 3.7TE-02 | 0.0E+00
132 414 0.0E+00 | 45E-02 | 1.0E-03
156 371 20E-03 | 4.7TE-02 | 10E-03
167 507 10E--03 | 4.6E-02 ; 0.0E+00
183 1069 30E-03 | 51E~02 | 3.0E-03
183 1069 40E-03 | 56E-02| 10E-03
183 1069 40E-03 { 50E-02| 10E-03
183 1069 20E-03 | 5.5E-02 | 20E-03
381 2157 50E—-03 | 9.2E-02 | T.0E-03
479 1910 6.0E-03 | 1.1E-01 | 6.0E-03
497 1727 6.0E-03 | 1.2E-01 | TOE-03
655 2854 80E-03 | 14E-01| 1.0E-02
680 2646 10E-02 | 14E-01 | 9.0E-03
680 2646 20E-03 | 1.5E-01 | 10E-02
680 2646 6.0E~03 | 14E-01 | 9.0E-03
760 5976 13E-02 | 1.6E—~01 | 2.0E-02
760 5976 12E-02 | 1.6E-01 | 2.0E-02
760 5976 13E-02 | 1L.7E-01 | 1.9E-02

Table 2. Time required for matrix-vector multiplication

A GENERAL ITERATIVE SPARSE LINEAR SOLVER...

N | Nonzero | PCGPAK Duff’s Scheme 2
elements | Method Method

67 294 200E-03 | 2.00E-03 | 0.00E+00
132 414 3.00E-03 { 1.00E—-03 | 0.00E+00
156 371 0.00E+00 | 0.00E+00 | 0.00E+00
167 507 1.00E-03 | 2.00E—-03 | 0.00E+4-00
183 1069 1.00E-03 | 4.00E-03 | 2.00E—03
183 1069 1.00E~03 | 4.00E-03 | 0.00E+00
183 1069 1.00E—-03 | 5.00E-03 | 3.00E—03
183 1069 3.00E-03 { 200E—~03 | 2.00E-03
381 2157 7.00E-03 | 9.00E-03 | 6.00E-03
479 1910 5.00E—-03 | 4.00E—03 | 4.00E-03
497 1727 6.00E-03 | 4.00E-03 | 6.00E—-03
655 2854 1.00E-02 | 9.00E—-03 | 1.00E-02
680 2646 7T00E-03 | 9.00E-03 | 8.00E-03
680 2646 8.00E-03 | 8.00E-03 | 9.00E—-03
680 2646 5.00E-03 | 5.00E—03 | 7.00E-03
760 5976 156E—02 | 1.40E-02 | 180E-02
760 5976 1.20E-02 | 1.60E-02 | 1.7T0E-02
760 5976 150E-02 | 1.70E—02 | 1.80E—02

Table 3. Time required for matrix-transpose times a random vector

4, Evaluating general sparse Jacobian matrices

259

With the storage schemes defined in the previous section, we propose efficient algorithms to
evaluate the interval Jacobian matrix F'(X*) in step (1.3) of Algorithm 1. We assume that
the analytical form of the Jacobian F' is known, and the Jacobian matrix is general sparse.
Algorithm 2 below evaluates a sparse interval Jacobian matrix F/(X®) =/, ;(X %)), and stores
it row-after-row with scheme 2.

Algorithm 2: ({sequential algorithm)

21) m=0

(22) Fori=0ton~1 do First; = 1;

(23) Fori=0wn-—14do

For j=0ton—1do
If f’i,j :;é 0 then
If First; = 1 then

Index,, =i*xn+j

am = £,5(X")
m=m+1
First; =0

else
Index,, = j
am = f'5;(X®)
m=m+1

endif

260 C. HU, A. FROLOV, R. B. KEARFOTT, Q. YANG

The major computation of the above sequential algorithm is to evaluate f';;(X®) for
different i and j. Since there is absolutely no data dependency in evaluating f; ;(X*)) for
different 7 and j, we may evaluate the Jacobian matrix for large-scale problems in parallel.
In the following parallel program, p is the number of processors available, and each available
processor has its own processor-id (which is called my-id). The algorithm stores the Jacobian
matrix row-after-row with scheme 1.

Algorithm 3: (parallel algorithm)
(31) Doallm=20

(32) Fori=0ton~1do
For j=0ton-1do
Iff’i,jséO then
Index,, =i*n+j
m=m+1
endif

(33) Forl=0tom—-1do
If my-id = [mod p, then
1 = Index; div n
7 = Index; mod n
= f’,‘,j (X(k))
endif

(3.4) All-to-all broadcast a;
Remark: Step (3.4) provides the interval Jacobian matrix to all p processors. It is a very expensive
communication step. However, because the parallel iterative linear solver (Algorithm 5 from
the next section) does not require the entire Jacobian matrix on each processor, we can
communicate only part of the matrix.

5. Iterative general sparse linear solver

The interval Jacobi method, interval Gauss-Seidel method, and some other iterative interval
linear solvers have been used to perform step (1.4) of Algorithm 1 for bounding equation (2).
Preconditioned schemes [9] have also been proposed to improve the efficiency for dense interval
systems. Among them the all-row preconditioned interval linear solver [9, 6, 4] bounds every
variable X; from each of the n equations of (2), then takes the intersection for the n different
(some of them may be same) interval values of x;, thus forming X;. It has lower computational
complexity and a faster convergence rate for many interval linear systems. With the Jacobian
matrix index stored by Algorithm 2, we propose the all-row preconditioned interval iterative
linear solver for sparse systems as”:
Algorithm 4: (sequential algorithm)
(41) Fori=0wn-—1do
bi = f,(Xk)

3The operation © is used in Algorithms 4 and 5. It is defined as aob = [g, @ © [b,b] =[a-ba -}

A GENERAL ITERATIVE SPARSE LINEAR SOLVER...

42) i=0

(43) Forl=0tom—1do
If Index; < n, then

7 = Index;
b; = b; + aix;
else

1 = Index; div n

j = Index; mod n

b;=b; + ax;
endif

44) i=0

(45) Forl=0tom—1do
If Index; < n, then

7 = Index;
ij‘ =z; + ——‘——J‘bieaa"x‘
else

1 = Index; div n

j = Index; mod n

X, =T + h‘%&
endif

(46) For j=0ton—1do
% = (287 %) Nx;

261

Associated with Algorithm 3, the following algorithm bounds X* in (2) with parallel

computations.
Algorithm 5: (parallel algorithm)
(51) Fori=0ton-1do
Yi=X
(52) Forl=0tom—1do
1 = Index; divn
If my-id = i mod p, then

b; = £;(Xy)

7 = Index; mod n

b; =b; + aiX;
endif

(53) Fori=0tom-1do
1 = Index; div n
If my-id = 7 mod p, then
j = Index; mod n
y; = ¥;N(z; + 2G2%)
endif

262 C. HU, A. FROLOV, R. B. KEARFOTT, Q. YANG

(54) All-to-all broadcast y; for j =0 ton~1
(55) Replace y; with y; (local) N} y; (incoming)

(56) x;=y,forj=0ton-1
After the completion of Algorithm 3, there will be a copy of X**1) in the local memory
of every processor. As written, Algorithms 4 and 5 each complete only one iteration for
solving the linear interval system (2). One may want to perform more such iterations before
reevaluating the interval Jacobian matrix by Algorithm 2 or 8 over Xt

6. Conclusions and future work

The computationally most expensive procedures when using interval Newton’s methods to
solve nonlinear systems of equations are evaluations of its Jacobian matrix and solving the
corresponding interval linear systems. The matrix storage schemes, Jacobian evaluation and
linear solver algorithms in this paper are specifically designed for general sparse systems. The
comparison with previous algorithms (based on dense systems) make us believe that the methods
proposed in this paper will save both memory space and computation time.

With the parallelized algorithms, one may be able to effectively solve real-life very large-
scale systems (that in applications are usually sparse) in parallel.

We are currently implementing parallel algorithms proposed in this paper on real parallei
computers in order to compare the performance of these algorithms with other schemes. We
will continue this research as follows:

e Study how to balance work load for Algorithms 3 and 5 to achieve high efficiency.

¢ Develop preconditioned linear solvers, other than the all-row preconditioned scheme, with
the general sparse storage scheme.

Acknowledgments

We wish to acknowledge the referees for their careful reading and useful suggestions.

References

[1] Dongarra, J. et al. Solving linear systems on vector and shared memory computers. SIAM, 1991.
{2] Duff, L. Direct methods for sparse matrices. Oxford University Press, 1986.
{3] Duff, I Sparse matrix test problems. ACM Trans. Math. Software 15 (1) (1989), pp. 1-14.

[4] Gan, Q. Yang, Q., and Hu, C. Parallel all-row preconditioned interval linear solver for nonlinear
equations on multiprocessor. Parallel Computing 20 (9) (1994), pp. 1249—1268.

A GENERAL ITERATIVE SPARSE LINEAR SOLVER... 263

[5] Hansen, E. R. and Sengupta, S. Bounding solutions of systems of equations using interval arithmetic.
BIT 21 (1981), pp. 203—211.

[6] Hu, C, Bayoumi, M., Kearfott, R. B, and Yang, Q. A parallelized algorithm for all-row
preconditioned interval Newton/generalized bisection method. In: “Proc. SIAM 5th Conf. on Paral.
Proc. for Sci. Comp.”, SIAM, 1991, pp. 205—209.

[7] Kearfott, R. B. Abstract generalized bisection and a cost bound. Math. Comp. 49 (179) (1987),
pp. 187—202.

[8] Kearfotr, R. B. Some tests of generalized bisection. ACM Trans. Math. Software 13 (3) (1987),
pp. 197-220.

[9] Kearfott, R. B, Hu, C., and Novoa, M. A review of preconditioners for the interval Gauss-Seidel
method. Interval Computations 1 (1991), pp. 59—-85.

[10] Kearfott, R. B. and Novoa, M. A program for generalized bisection. ACM Trans. Math. Software
16 (2) (1990), pp. 152—157.

{11] Knuth, D. The art of computer programming, Vol. 1, Fundamental algorithms. Addison-Wesley,
1968.

[12] PCGPAK user’s guide. Scientific Computing Associates, New Haven.
[13] Press, W. et al. Numerical recipes. Cambridge, 1992.

[14} Schnepper, C. and Stadther, M. Application of a parallel interval Newton/generalized bisection
algorithm to equation-based chemical process flowsheeting. Interval Computations 4 (1993), pp. 40—
64.

Received: March 1, 1994 C. Hu
Revised version: September 9, 1994 Department of Computer and Mathematical Sciences

University of Houston-Downtown
Houston, Texas 77002, USA

A. FroLov
Department of Computer and Mathematical Sciences

University of Houston-Downtown
Houston, Texas 77002, USA

R. B. KearrorT

Department of Mathematics
University of Southwestern Louisiana
USLL. Box 4—1010

Lafayette, LA 70504—1010, USA
E-mail: rbk@usl.edu

Q. Yanc

Department of Electrical and Computer Engineering
University of Rhode Island

Kingston, Rhode Island 02881, USA

