
Rel iable C o m p u t i n g 1 (3) (1995), pp. 239-249

An automatic and guaranteed determination
of the number of roots of an analytic
function interior to a simple closed curve in
the complex plane
JONATHAN HERLOCKER a n d JEFFREY ELY

A well known resuk from complex analysis allows us, under suitable drcumstances, to compute the
number of roots of an analytic function, f(z), that lie inside a counterclockwise, simple dosed curve, C,
by computing the integral,

We employ interval arithmetic and automatic differentiation m give an auminatic and guaranteed
bound on the integral. Furthermore, we explore the interplay of the choice of curve (7, the location of
the roots relative m C, the number of subdivigons, and the arithmetic pre~ion used, upon the time
necer~ry to obtain .~ltisfactm-~ bounds.

ABTOMaTmIecKoe rapaHTHpOBaHHOe
olIpeAeAeH~e ~1~caa KOpHefi aHaa~T~eCKOfi
C~yHKIII~, A e . a m ~ BHyTpH IIp0CT0~
3auKHyTOfl KpHBOfl B KOMnAeKCHOITI
IIAOCKOCTH
~ . X~'^OK~', ~,~.

H3 KOMILqeKCHOrO aHa21H3a R3Bec'rHO, RTO HpH oIIpegle21eHHl~lX yCIIO~,'L.~r '.IHCJIO KopHel:I aHa/IHTHqeCIr

~yHxuH.q f(z), .~egaL~cr sHyrpa npocro~ 3aMxamfrofl XpH~O~ C, nanpaaaeHaoR npo-ra~ '-mcoBof~
CT~J/KH, MOX~.HO B~-JtIHC-TIHTI~ ~ [B H H T e t ' ~ I

l'IpHMe~s m-rrep~u~hm/~ apH~bMerHxy H as'roMa-m~ec~oe aNqtx~peam~posaaHe, M,- uoay,meM
rapaHxHpoRaHmae rpaxlatu~ 3Toro HHrerpa.nm. KpoMe Toro, ~ccaealyerca aaH~raHe s~6opa xpH~oR C,
pacuoaoaceHH~ xopHe/E no OTHomeHmo X. 6*, Ko.rlHqec'rBa pa361ieHHR H paap~anocrH HClIOnh3yeMofl
apHd~bMeTHXH Ha BpeMR, Tp~yeMoe Ra~[IIo.~ytleHHa yaoBaeTaopaTeaba~x rpanHu.

(~) j . Herlocker, J. Ely, 1995

240

1. Introduction

J. HERLOCKERt J. ELY

The argument prindp!e, a well known result f rom complex analysis, asserts that if C is a
simple, dosed, counterclockwise contour and if f (z) i s a function which is analytic inside and
on C, except possibly for a finite number of poles interior to C, and if f (z) has at most a
finite number of zeros inside C and none on C, then

1 if(z).
fc - ~ a z = N~ro(f) - Np,a,(f)

where Nr~o is the number of zeros and Npole is the number of poles of f inside C (inducting
mul~phdty) [1].

Henrici [3] observes that the a rgument principle can be used to find first approximations to
zeros of functions (which other methods may then refine) and further mentions an application
to the theory of automatic control.

The goal of this paper is to explore the tools necessary to automatically compute the
above integral, bounding all errors, both round-off and discretization, and to experiment with
various parameters that affect the time necessary to obtain a satisfactory bound.

2. Choice of contour

The choice of a contour, C , determines z as a funtion of t, that is,

= 4 t) , with t E [to, t .]

and the integral above becomes

s g(t l at,

The only types of contours considered were circles and squares.

3. Approximation technique

Ill order to approximate this numerically, we use Simpson's rule,

f,i" g(t)~t ~ ~[g(t0) + 4g(tl) + 2g(t~) +... + 2g(tn_2) + 4g(t,~_1) + g(t,O].

Complex interval arithmetic [5] is used to bound any round-off error that occurs in computing
this sum.

4. Control of discretization error

The Simpson sum is, of course, not exact even if there were no round-off error. For a read
valued function, g(t), the error inherent in the method is well known to be bounded by

M,(t. - to) s

180n 4

AN AUTOMATIC AND GUARANTEED DETERMINATION OF THE NUMBER OF ROOTS... 241

where M4 is an upper bound on 19(4)(t){, as t ranges over the interval [to, t,~]. The stress here on
the word, interval, emphasizes that interval arithmetic is ideal for computing this discretization
error as well as the round-off error of the sum, prtna~d that a p rogram is available to calculate
the fourth derivative, 9(4)(t), of g(t). Since g(t) is complex valued, we use the real and
imaginary parts of g (4) (t) to separately bound the discretization errors associated with the real
and the imaginary parts of the Simpson sum. We further observe that since the final result
is an integer (hence real) we really only need the imaginary part of the integral (which when
divided by 2~ri gives us the real value).

50 Computing derivatives

If the function, f(z), is a polynomial, then it is easy to code if(z). Likewise, given either the
circular or square contours mentioned above, z(t) and ~ are also easy to code, hence 9(t)
is easy to code as

g(t) = f'(z(t)) az(t)

but control of the discretization error inherent in Simpson's rule requires us to compute g(4)(t).
Automatic differentiation [4] is clearly the tool of choice here. When coupled with interval
arithmetic, automatic differentiation will automatically bound Ig(4)(t)l as t ranges over the
interval [to, tn].

6Q Software tools

We used the VPI software package [2]. This is a collection of classes, written in C++ [7], built
around a variable precision, real data type called a f l o a t . Directed rounding makes it possible
to build intervals (class i n t e r v a l) on top of the afloats, complex intervals (compivl) on top
of intervals, and variable degree taylor series (c t a y l o r) on top of complex intervals. This last
class is VPI's implementation of automatic differentiation. While VPI supports other data types
as well (e.g. matrix), the afloat, interval, compivl, and ctaylor classes suffice for this
problem.

71 Circles vs. squares

The use of a square with sides parallel to the axes proved to be ten times faster than the
corresponding calculation using the inscribed circle. We presume this to be largely an artifact
of very slow sine and cosine routines in the VPI interval math package. After this observation,
only squares were used as contours. The choice of squares, while limiting in some situations,
is perfectly adequate in others such as Henrici's algorithm for using the argument principle to
locate zeros [3].

242 j. HERLOCKER, J. ELY

81 How much precision?
We hypothesized that the discretization error would greately overshadow round-o f fe r ro r , hence
we expected that the main mechanism for "tightening up" a result would be to increase the
number of subdivisions ra ther than to increase the precision of the arithmetic. We were
concerned, however, that if the number of subdivisions were extremely large, this might lead
to significant round~off (more terms in the sum, each with a round-off er ror to contribute),
but this proved not to be a major factor in our experiments which sometimes required several

thousands of subdivisions.

91 Frequency of calculating discretization error
Suppose we wish to approximate

fol g (t) ~t
as we have described, using N = 100 subdivisions of the interval [0, 1]. At one extreme, we can
compute this with one application of Simpson's rule, computing the Simpson sum and then the
discretization er ror based on 9(4)([0, 1]). At the other extreme, we could use the same number
of subdivisions, 100, but apply Simpson's rule over [0, .02] with 2 subdivisions, then apply it
over [.02, .04] with 2 subdivisions, then [.04, .06], and so on until, finally, we apply Simpson's
rule over [.98, 1.00] with 2 subdivisions. The desired result is the sum of the fifty values. The
difference is that in the first case we compute 9(a)(t) only once as t ranges over the entire
interval [0, 1], while in the second approach, we calculate 9(4)(t) fifty different times but each
of these bounds is taken as t ranges over only a small interval. We expect the former to be

faster but the lat ter to be tighter.

(It should be noted that, if t ranges over too wide an interval, we may not be able to bound

9(4)(t) at all. The reason is that since divisions are involved, (recall that 9(t) = /'(=(t))/(=(t)) d=(t)'~at/' if
t ranges over too wide an interval, we may wind up, in the course of the calculation, trying to

divide by an interval that contains zero.)

Let N = the total number of subdivisions.

Let n = the number of subintegrals to cover the range of t.

Let m = the number of subdivisions per subintegral.

Obviously, N = n * m.

In our example above, N = 100. The first strategy calls for n = 1 and m = 100. The
second strategy calls for n = 50 and m = 2. This problem only requires the final result to
bracket a unique integer, hence we do not need a very tight bound on the computat ion (width
< 1), still, are we better off, in an effort to achieve such ~tightness" as we do require, to use

the former or later approach?

In a typical test case, we compared ra = 16 against ra = 2. We found the minimal n in
each instance that would t rap the integral to a unique integer (i.e. the number of roots in the
square). When m = 16, the minimal n required was 208, hence N = 16 * 208 = 3328. For
m = 2, the minimal n was 226 and N = 2 * 226 = 452. As this was also three times faster, we

followed the m = 2 strategy in all subsequent experiments.

A N A U T O M A T I C A N D G U A R A N T E E D D E T E R M I N A T I O N O F T H E N U M B E R O F R O O T S . . , 243

10. Errors vs. subdivisions: an example

Consider the exper iment pictured in Figure 1 and its accompanying data in Table 1. Here

f (z) = ~ 3 z 2 - z - 2, with roots at 2, (-1+ivY) The square contour has center 2.5 + 0i
2

and radius r = �89 + 2 -11. We began with two subintegrals per side of the square (n = 2) and
doubled this until we had a sufficiently high value to guarantee the trap of the number of
roots to a unique integer. Then we used a bisection method to determine the minimum value,
o*, of n necessary to compute the trap. Notice in Table 1 that the er ror in computing the
~impson sum (which is solely due to round-off) is insignificant with respect to the the er ror
associated with discretization. While there is also a round-off component in computing the
discretization error term, we believe this supports our previous hypothesis about the relative
un-importance of round-off er ror in this problem.

Root at -�89 + 2-~i

Root at 2

C o m p l e x Plane

r-

, 2 .0 + Oi
i

-T i
i

t_ _1

Root at 2 + 0i

Contour of Integration

Figure 1.

Initially, this round-off error remains more or less constant, varying from 7.48512E-13 to
54623E-14 . Once we have reached a power of 2 that will successfully locate the number of
roots ('n = 2048), and we begin bisecting to find the minimal value of n, our round-off e r ror
jumps by a factor of 10 a. Up to now, since r = � 8 9 -11 and n has been a small power of

2, the end points of each subinterval have been exactly representable on the computer. When
,. is no longer a power of 2, the end points are no longer exactly representable, we insert
round-off er ror into the calculation, and this is magnified by further computations. Still, a
round-off er ror of 10 -1~ presents no serious problem.

Next consider the progression of the discretization error as we increase n. Table 1 shows
that in the early stages doubling n improves the discretization error by a factor of 103 to 104!
This is much better than the factor of 16 suggested by the n 4 term in Simpson's er ror formula.
The explanation seems to be that M4 is being calculated much more tightly as we double n,
and this fur ther explains our earlier observation that m = 2 leads to the fastest computat ion
even though we are computing the fourth derivative more frequently.

11. Roots near the contour

If f (z) has a root on the contour, then 9(t) = f ' (z (t)) ~ is singular and the argument f(z(t)) at
principle is not applicable. What, we wondered, will happen if f (z) has a root close to but not

244 J. H E R L O C K E R t J. ELY

r~ Width of Simpson sum interval Width of discretization interval

2 5 .04485E- 13 1.28869E+29
4 2 .66454E-13 2.0944E+25
8 1 .5099E- 13 6.78944E+21

16 9.50351E-14 2.90748E+18
32 6 .75016E- 14 1.30382E+15
64 5 .4623E- 14 1.28571E+12

128 7 .28306E- 14 2.0t12E+09
256 9 .03722E-14 3.68387E+06
512 t . 70863E- 13 7065.2

1024 3 .66596E- 13 t3.5919
2048 7.48512E-13 0.0639715
1536 t . 67348E- 10 0.427248
t280 t . 20802E- 10 1.83239
1408 1.43207E- 10 0.788859
1344 1.32E-10 1.18829
1376 1.37153E-10 0.965446
1360 1.34938E- 10 1.07032
1368 1.35862E- t0 1.0t635
1372" 1.36706E-10 0.990526
1370 1.36362E- 10 1.00334
1371 1.26903E- t0 0.699263

min imum # of subintegrals per side = 1372

Table 1.

on the contour [3]? Consider, again, the function f (z) = z 3 - z 2 - z - 2. We first construct
a square with center d = 2 -1~ units from the root at 2 (center = 2 + 2 -1~ + 0i). The radius
of the square is initially taken as r = d + E , E = 2 -1, which well encompasses the root at

2. We then find the minimal number of subdivisions, n*, necessary to trap the number of
roots to a unique integer. In this case n* = 4 (see the top row of Table 2). We then repeat
the exper iment with a square having the same center but radius, r = d + 2 -2, which brings
the border of the new square closer to the root (E has been halved) and again we compute
n*. Repeatedly halving E brings the boundary closer to the root and computing n* each time
gives the data in Table 2.

A look at this data and that of other similar experiments, suggests that for simple
roots (multiplicity t), if d < E, n*(r) ~ small constant, but for 0 < E < d, we have
n*(d+ E/Z) ~ 2n*(d+E), where n* is viewed as.a function of the radius, r. This result holds
even when d = 0, i.e. when the square is centered on the root, for then 0 = d < E always,
and n*(r) ~ small constant. Figure 2 pictorially summarizes this discussion.

12. Meeting the goal of automatic computation
As an illustration, Code Segment 1 shows a typical p rogram that a user might supply for
polynomial functions. The well known synthetic division scheme is used to evaluate the

AN AUTOMATIC AND GUARANTEED DETERMINATION OF THE NUMBER OF ROOTS... 245

E n* E n ~" E n* E n*

2 -1 4 2 -6 2 2 -11 5 2 -16 87
2 -2 3 2 -T 2 2 -12 7 2 -17 173
2 -3 3 2 -s 2 2 -13 13 2 - ls 343
2 -4 2 2 -9 3 2 -14 23 2 -19 685
2 -~ 2 2 - l~ 3 2 -15 45 2 -~~ t369

r = d + E
d = 2 - t~

Table 2.

polynomial, f , and its derivative, f ' [6] in order to compute, the value of f ' / f when z is given.
bipce this segment must also supply information about the fourth derivative of R = f ' / f ,
we use an extension of automatic differentiation which we have implemented in a C++ class
called c t a y l o r . The data structure for this class is largely just an array of taylor series
coefficients, < Ro, Rx, R2, R3, R4 >, where Ro = (f ' / f) , R1 = d(f ' / f) /dt , etc. Because all of
the variables in the code segment are declared as type c~:ay:l.or, C++ will invoke taylor series
arithmetic routines (part of VPI) when performing the various addition, multiplication, and
division operations that appear in the segment.

In this code segment, the user has been obliged to supply code that computes f '(z) as well
as f(z). While it is easy to code f ' when f is a polynomial and not too terribly difficult other-
wise, still, this requirement is at odds with our goal of having an automatic computation, which
should only require the user to code f(z). Furthermore, it seems aesthetically disconcerting to
use the machinery of automatic differentiation to compute derivatives for f(z) while making
the taylor series for f and to compute derivatives for ft(z) while making the taylor series for
ft, but not to use automatic differentiation to compute f ' from f . If this could be done, then
the automatic differentiation would automatically compute f ' , leaving the user responsible for f
only.

At first glance, it might appear that if f is represented by the taylor series coeffi-
cients < fo, f l , f2, f3, f4 >, then we can merely extend the number of terms by one to get
<)Co, f l , f2, f3, f4, fs >, extract the last five to get < f l , f2, f3, f4, f5 >, and that these will be
the taylor series coefficients for ft. This is not correct for two reasons. First, it is not the first,
second, third, fourth, and fifth derivatives that are stored, but rather those values divided by
the appropriate factorial, i.e. the taylor coeffcients. This can be easily fixed by mutliplying
each extracted term by the appropriate integer (= the degree of the derivative associated with
the term). The second flaw in this line of reasoning is that the automatic derivatives are with
respect to the variable t, while f ' is with respect to the variable z. This is also easily fixed
if we maintain square contours, for then d(t) is linear (on each side of the square), dz/dt is
constant and this constant can be factored out of successively higher derivatives as the automatic
differentiation proceeds. The result of these corrections, is that for

g(t) = dz(t)

246 J. H E R L O C K E R t J. ELY

E d
: : Center

Root

r = d + E

d < _ E

n ' (r) ~ small constant

E d

E
2

r = d + E

E < d

n*(d + ~) ~ 2n*(d + E)

Figure 2.

we can compute the associated taylor coefficients for 9 from those of f , via the taylor series
division of

< f~, 2f2, 3f3,, 4f4, 5f5 >

< fo, f l , f2, f3, f4 >
~ri;'iZ]~r o o

< 9o,9t,92,93,94 > .

Multiplying 94 by 4! gives us the fourth derivative, 9(4)(t), that we need for our discredzation
bound.

The code for 9 can be found in Code Segment 2. Now the user need only supply code
to compute f and not bother with ft. The revised code when f is a polynomial is also found
in Code Segment 2. If a function other than a polynomial is called for, the user need only
change the code that computes f and not worry about f l (or 9)-

Interestingly enough, while automation was our motivation here, we gain an efficiency
also. The synthetic division approach required d = deg ree f multiplications for f and d - 1 for
f ' tbr a total of 2 d - 1. Each of these multiplications is between two 5-term taylor series arrays.
Such multiplications require 1 + 2 + 3 + 4 + 5 = 15 multiplications of the base type, complex

AN AUTOMATIC AND GUARANTEED DETERMINATION OF THE NUMBER OF ROOTS... 247

numbers (recall the procedure for multiplying two power series). Hence a total of (2d - 1) * 15
complex number multiplies are required by the synthetic division strategy. The new strategy
requires only d taylor series multiplications, each of which will take 1 + 2 + 3 + 4 + 5 + 6 = 21
complex number multiplications (recall that we need 1 more term in our taylor series), to
compute f , and 4 more complex multiplications when the terms of f are extracted to make
the terms of f ' for a total of d * 21 + 4. So this new approach requires about 21/30 = 70%
of the multiplications of synthetic division. In practice we found that the new version (Code
Segment 2) took about 80% of the time of the synthetic one.

Code Segment I

ctaylor F(c%aylor~ z)

// the complex function to integrate

/ / F(z(z)) = (f'(z(t)) / f(z(t)))

// z(Z) any function of t

// the user must code f and f'

// here, synthetic division is used for f,f', f a polynomial
{

int k ;

ctaylor f,fprime,R ;

f = coeff[degree] ;

if (degree > O) fprime = f ; else fprime = 0 ;

for (k = degree - I ; k >= 0 ; k--) {

f = f*z + coeff[k] ;

if (k > O) fprime = fprime*z + f ;
}

R = fprime / f ;

return R ;
}

Code Segment 2

ctaylor f(ctaylor~ z)

// the user m~st code f only
{

ctaylor Poly = coeff[degree] ; // ~tarts poly as a constant

for (k = \degree - 1 ; k >= 0 ; k--) {

Poly = Poly*z + coeff[k] ; // this will make Poly same deg at z
}

return Poly ;
}

248

c t a y l o r g (c t a y l o r ~ z)
/ / g (z (t)) = (f ' (z (t)) / f (z (t))) * (d z (t) / d t)
/ / z (t) linear

// ff computed to same hum terms as z

// fprime to I less term

// Result to same num terms as fprime

// the user need NOT code this
{

int k ;

J. HERLOCKER, J. ELY

ctaylor ff = f(z) ; // calling the user supplied code for f

ctaylo r fprime = ctaylor(ff.term[l], O, ff.degree - i)

for (k = 2 ; k <= ff.degree ; k++) {

fprime.term[k-l] = k*ff.term[k] ;
}

ff.degree-- ; // ensures result computed to same num terms as fprime

ctaylor R = fprime / ff ;

ff.degree++ ; // ensures reclamation of all storage in ff

return R ;
}

13. Summary
In order tO compute the number of roots of an analytic function, f , that are inside a square,
we have used Simpson's rule to approximate the winding number integral. Low precision,
interval arithmetic generally proved adequate to bound the round-off errors and automatic
differentiation permitted us to bound the discretization error. Not surprisingly, discretization
error greatly overshadowed round-off error. The number of subdivisions to adequately bound
the result proved quite small as long as the root was closer to the center of the square than to
the boundary, but worsened dramatically when this was not the case. We have quantified this
deterioration for roots of order 1, but have not pursued a complete study. Finally, considerable
care was taken to adapt automatic differentiation so that the user need only supply code for
the function f , and not for f ' also.

References
[1] Churchill, R., Brown, J., and Verhey, R. Complex variables and applications. McGraw-Hill, New

York, 1976.

[2] Ely, j. The VPI software package for variable precision interval arithmetic. Interval Computations 2
(1993), pp. 135-153.

AN AUTOMATIC AND GUARANTEED DETERMINATION OF THE NUMBER OF ROOTS. . . 2 4 9

[3] Henrici, P. Applied and computational complex analysis. Vol. i. Wiley, New York, 1974.

[4] Kagiwada, H., Kalaba, R., Rasakhoo, N., and Spingarn, K. Numerical derivatives and nonlinear
analysis. Plenum, New York, 1986.

[5] Moore, R. E. Methods and applications of interval analysis. SIAM, Philadelphia, 1979.

[6] Press, W., Flannery, B., Teukolsky, S., and Vetterling, W. Numerical recipes in C. Cambridge
University Press, Cambridge, MA, 1988.

[7] Stroustrup, B. The C++ programming language. Addison-Wesley, Reading, Mass., 1986.

Received: March t, 1994 Department of Mathematical Sciences
Revised version: December 14, t994 Lewis and Clark College

Portland, OR 97219
USA

E-maih herlock@iclark, edu
j eff@iclark, edu

