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An automatic and guaranteed determination 
of the number of roots of an analytic 
function interior to a simple closed curve in 
the complex plane 
JONATHAN HERLOCKER a n d  JEFFREY ELY 

A well known resuk from complex analysis allows us, under suitable drcumstances, to compute the 
number of roots of an analytic function, f(z), that lie inside a counterclockwise, simple dosed curve, C, 
by computing the integral, 

We employ interval arithmetic and automatic differentiation m give an auminatic and guaranteed 
bound on the integral. Furthermore, we explore the interplay of the choice of curve (7, the location of 
the roots relative m C, the number of subdivigons, and the arithmetic pre~ion used, upon the time 
necer~ry to obtain .~ltisfactm-~ bounds. 

ABTOMaTmIecKoe rapaHTHpOBaHHOe 
olIpeAeAeH~e ~1~caa KOpHefi aHaa~T~eCKOfi 
C~yHKIII~, A e . a m ~  BHyTpH IIp0CT0~ 
3auKHyTOfl KpHBOfl B KOMnAeKCHOITI 
IIAOCKOCTH 
~ .  X~'^OK~', ~,~. 

H3 KOMILqeKCHOrO aHa21H3a R3Bec'rHO, RTO HpH oIIpegle21eHHl~lX yCIIO~,'L.~r '.IHCJIO KopHel:I aHa/IHTHqeCIr 

~yHxuH.q f(z), .~egaL~cr sHyrpa npocro~ 3aMxamfrofl XpH~O~ C, nanpaaaeHaoR npo-ra~ '-mcoBof~ 
CT~J/KH, MOX~.HO B~-JtIHC-TIHTI~ ~ [ B  H H T e t ' ~ I  

l'IpHMe~s m-rrep~u~hm/~ apH~bMerHxy H as'roMa-m~ec~oe aNqtx~peam~posaaHe, M,- uoay,meM 
rapaHxHpoRaHmae rpaxlatu~ 3Toro HHrerpa.nm. KpoMe Toro, ~ccaealyerca aaH~raHe s~6opa xpH~oR C, 
pacuoaoaceHH~ xopHe/E no OTHomeHmo X. 6*, Ko.rlHqec'rBa pa361ieHHR H paap~anocrH HClIOnh3yeMofl 
apHd~bMeTHXH Ha BpeMR, Tp~yeMoe Ra~[ IIo.~ytleHHa yaoBaeTaopaTeaba~x rpanHu. 

(~) j .  Herlocker, J. Ely, 1995 
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1. Introduction 

J. HERLOCKERt J. ELY 

The  argument  prindp!e, a well known result f rom complex analysis, asserts that if C is a 
simple, dosed, counterclockwise contour and if f ( z ) i s  a function which is analytic inside and 
on C,  except possibly for a finite number  of  poles interior to C,  and if f ( z )  has at most a 
finite number  of  zeros inside C and none on C, then 

1 if(z). 
fc  - ~ a z  = N~ro(f) - Np,a,(f) 

where Nr~o is the number  of  zeros and Npole is the number  of  poles of  f inside C (inducting 
mul~phdty) [1]. 

Henrici [3] observes that  the a rgument  principle can be used to find first approximations to 
zeros of  functions (which other methods may then refine) and further mentions an application 
to the theory of automatic control. 

The  goal of  this paper  is to explore the tools necessary to automatically compute the 
above integral, bounding all errors, both round-off  and discretization, and to experiment with 
various parameters that affect the time necessary to obtain a satisfactory bound. 

2. Choice of contour 

The choice of  a contour, C ,  determines z as a funtion of t, that is, 

= 4 t ) ,  with t E [to, t .]  

and the integral above becomes 

s  g( t l at, 

The  only types of contours considered were circles and squares. 

3. Approximation technique 

Ill order to approximate this numerically, we use Simpson's rule, 

f,i" g(t)~t ~ ~[g(t0) + 4g(tl) + 2g(t~) +... + 2g(tn_2) + 4g(t,~_1) + g(t,O]. 

Complex interval arithmetic [5] is used to bound any round-off error that occurs in computing 
this sum. 

4. Control of discretization error 

The  Simpson sum is, of course, not exact even if there were no round-off error. For a read 
valued function, g(t), the error  inherent in the method is well known to be bounded by 

M,(t. - to) s 

180n 4 
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where M4 is an upper  bound on 19(4)(t){, as t ranges over the interval [to, t,~]. The  stress here on 
the word, interval, emphasizes that interval arithmetic is ideal for computing this discretization 
error as well as the round-off error of the sum, prtna~d that a p rogram is available to calculate 
the fourth derivative, 9(4)(t), of  g(t). Since g(t) is complex valued, we use the real and 
imaginary parts of g (4) (t) to separately bound the discretization errors associated with the real 
and the imaginary parts of the Simpson sum. We further observe that since the final result 
is an integer (hence real) we really only need the imaginary part  of the integral (which when 
divided by 2~ri gives us the real value). 

50 Computing derivatives 

If the function, f(z),  is a polynomial, then it is easy to code if(z). Likewise, given either the 
circular or square contours mentioned above, z(t) and ~ are also easy to code, hence 9(t) 
is easy to code as 

g(t) = f'(z(t)) az(t) 

but control of the discretization error inherent in Simpson's rule requires us to compute g(4)(t). 
Automatic differentiation [4] is clearly the tool of choice here. When coupled with interval 
arithmetic, automatic differentiation will automatically bound Ig(4)(t)l as t ranges over the 
interval [to, tn]. 

6Q Software tools 

We used the VPI software package [2]. This is a collection of classes, written in C++  [7], built 
around a variable precision, real data type called a f l o a t .  Directed rounding makes it possible 
to build intervals (class i n t e r v a l )  on top of the afloats, complex intervals (compivl)  on top 
of intervals, and variable degree taylor series ( c t a y l o r )  on top of complex intervals. This last 
class is VPI's implementation of automatic differentiation. While VPI supports other data types 
as well (e.g. matrix), the afloat, interval, compivl, and ctaylor classes suffice for this 
problem. 

71 Circles vs. squares 

The  use of a square with sides parallel to the axes proved to be ten times faster than the 
corresponding calculation using the inscribed circle. We presume this to be largely an artifact 
of very slow sine and cosine routines in the VPI interval math package. After this observation, 
only squares were used as contours. The  choice of squares, while limiting in some situations, 
is perfectly adequate in others such as Henrici's algorithm for using the argument  principle to 
locate zeros [3]. 



242 j. HERLOCKER, J. ELY 

81 How much precision? 
We hypothesized that  the discretization error  would greately overshadow round-o f fe r ro r ,  hence 
we expected that the main mechanism for "tightening up" a result would be to increase the 
number  of subdivisions ra ther  than to increase the precision of the arithmetic. We were 
concerned, however, that if  the number  of subdivisions were extremely large, this might  lead 
to significant round~off (more terms in the sum, each with a round-off  er ror  to contribute), 
but this proved not to be a major  factor in our experiments which sometimes required several 

thousands of  subdivisions. 

91 Frequency of calculating discretization error 
Suppose we wish to approximate  

fol g ( t ) ~t 
as we have described, using N = 100 subdivisions of  the interval [0, 1]. At one extreme, we can 
compute this with one application of  Simpson's rule, computing the Simpson sum and then the 
discretization er ror  based on 9(4)([0, 1]). At  the other  extreme, we could use the same number  
of  subdivisions, 100, but  apply Simpson's rule over [0, .02] with 2 subdivisions, then apply it 
over [.02, .04] with 2 subdivisions, then [.04, .06], and so on until, finally, we apply Simpson's 
rule over [.98, 1.00] with 2 subdivisions. The  desired result is the sum of  the fifty values. The  
difference is that in the first case we compute 9(a)(t) only once as t ranges over the entire 
interval [0, 1], while in the second approach,  we calculate 9(4)(t) fifty different times but each 
of  these bounds is taken as t ranges over only a small interval. We expect the former  to be 

faster but the lat ter  to be tighter. 

(It should be noted that, if  t ranges over too wide an interval, we may not be able to bound 

9(4)(t) at all. The  reason is that since divisions are involved, (recall that 9(t) = /'(=(t))/(=(t)) d=(t)'~at/' if  
t ranges over too wide an interval, we may wind up, in the course of the calculation, trying to 

divide by an interval that  contains zero.) 

Let N = the total number  of subdivisions. 

Let n = the number  of  subintegrals to cover the range of  t. 

Let m = the number  of subdivisions per  subintegral. 

Obviously, N = n * m.  

In our example  above, N = 100. The  first strategy calls for n = 1 and m = 100. The  
second strategy calls for n = 50 and m = 2. This problem only requires the final result to 
bracket a unique integer,  hence we do not need a very tight bound on the computat ion (width 
< 1), still, are we better off, in an effort to achieve such ~tightness" as we do require, to use 

the former or later approach? 

In a typical test case, we compared  ra = 16 against ra = 2. We found the minimal n in 
each instance that  would t rap the integral  to a unique integer (i.e. the number  of roots in the 
square). When m = 16, the minimal  n required was 208, hence N = 16 * 208 = 3328. For 
m = 2, the minimal n was 226 and N = 2 * 226 = 452. As this was also three times faster, we 

followed the m = 2 strategy in all subsequent experiments.  
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10. Errors vs. subdivisions: an example 

Consider the exper iment  pictured in Figure 1 and its accompanying data in Table 1. Here 

f (z)  = ~ 3  z 2 - z -  2, with roots at 2, (-1+ivY) The  square contour has center 2.5 + 0i 
2 

and radius r = �89 + 2 -11. We began with two subintegrals per  side of  the square (n = 2) and 
doubled this until we had a sufficiently high value to guarantee the trap of the number  of  
roots to a unique integer. Then we used a bisection method to determine the minimum value, 
o*, of n necessary to compute the trap. Notice in Table 1 that the er ror  in computing the 
~impson sum (which is solely due to round-off) is insignificant with respect to the the er ror  
associated with discretization. While there is also a round-off  component  in computing the 
discretization error  term, we believe this supports our  previous hypothesis about the relative 
un-importance of  round-off  er ror  in this problem. 

Root at -�89 + 2-~i 

Root at 2 

C o m p l e x  Plane 

r- . . . . . . .  

, 2 .0 + Oi 
i 

-T i 
i 

t_ . . . . . .  _1 

Root at 2 + 0i 

Contour of Integration 

Figure 1. 

Initially, this round-off  error  remains more or less constant, varying from 7.48512E-13 to 
54623E-14 .  Once we have reached a power of  2 that will successfully locate the number  of 
roots ('n = 2048), and we begin bisecting to find the minimal value of n, our round-off  e r ror  
jumps by a factor of  10 a. Up to now, since r = � 8 9  -11 and n has been a small power of  

2, the end points of  each subinterval have been exactly representable on the computer.  When 
,. is no longer a power of 2, the end points are no longer exactly representable, we insert 
round-off er ror  into the calculation, and this is magnified by further  computations. Still, a 
round-off er ror  of  10 -1~ presents no serious problem. 

Next consider the progression of the discretization error  as we increase n. Table 1 shows 
that in the early stages doubling n improves the discretization error  by a factor of  103 to 104! 
This is much better than the factor of 16 suggested by the n 4 term in Simpson's er ror  formula. 
The  explanation seems to be that M4 is being calculated much more tightly as we double n, 
and this fur ther  explains our earlier observation that m = 2 leads to the fastest computat ion 
even though we are computing the fourth derivative more frequently. 

11. Roots near the contour 

If f (z)  has a root on the contour, then 9(t) = f ' ( z ( t ) ) ~  is singular and the argument  f(z(t)) at 
principle is not applicable. What,  we wondered, will happen if f (z)  has a root close to but not 
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r~ Width of Simpson sum interval Width of discretization interval 

2 5 .04485E-  13 1.28869E+29 
4 2 .66454E-13 2.0944E+25 
8 1 .5099E-  13 6.78944E+21 

16 9.50351E-14 2.90748E+18 
32 6 .75016E- 14 1.30382E+15 
64 5 .4623E-  14 1.28571E+12 

128 7 .28306E-  14 2.0t12E+09 
256 9 .03722E-14 3.68387E+06 
512 t . 70863E-  13 7065.2 

1024 3 .66596E-  13 t3.5919 
2048 7.48512E-13 0.0639715 
1536 t . 67348E-  10 0.427248 
t280 t . 20802E-  10 1.83239 
1408 1.43207E- 10 0.788859 
1344 1.32E-10 1.18829 
1376 1.37153E-10 0.965446 
1360 1.34938E- 10 1.07032 
1368 1.35862E- t0 1.0t635 
1372" 1.36706E-10 0.990526 
1370 1.36362E- 10 1.00334 
1371 1.26903E- t0 0.699263 

min imum # of subintegrals per  side = 1372 

Table 1. 

on the contour [3]? Consider, again, the function f (z)  = z 3 - z 2 - z - 2. We first construct 
a square with center d = 2 -1~ units from the root at 2 (center = 2 + 2 -1~ + 0i). The  radius 
of the square is initially taken as r = d + E ,  E = 2 -1, which well encompasses the root at 

2. We then find the minimal number  of subdivisions, n*, necessary to trap the number  of 
roots to a unique integer.  In this case n* = 4 (see the top row of Table 2). We then repeat  
the exper iment  with a square having the same center but radius, r = d + 2 -2, which brings 
the border  of the new square closer to the root (E has been halved) and again we compute 
n*. Repeatedly halving E brings the boundary closer to the root and computing n* each time 
gives the data in Table 2. 

A look at this data and that of other similar experiments,  suggests that for simple 
roots (multiplicity t), if d < E, n*(r) ~ small constant, but for 0 < E < d, we have 
n*(d+ E/Z) ~ 2n*(d+E), where n* is viewed as.a function of  the radius, r.  This result holds 
even when d = 0, i.e. when the square is centered on the root, for then 0 = d < E always, 
and n*(r) ~ small constant. Figure 2 pictorially summarizes this discussion. 

12. Meeting the goal of automatic computation 
As an illustration, Code Segment 1 shows a typical p rogram that a user might supply for 
polynomial functions. The  well known synthetic division scheme is used to evaluate the 
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E n* E n ~" E n* E n* 

2 -1 4 2 -6 2 2 -11 5 2 -16 87 
2 -2 3 2 -T 2 2 -12 7 2 -17 173 
2 -3 3 2 -s 2 2 -13 13 2 - ls  343 
2 -4 2 2 -9 3 2 -14 23 2 -19 685 
2 -~ 2 2 - l~ 3 2 -15 45 2 -~~ t369 

r = d + E  
d = 2 - t~ 

Table 2. 

polynomial, f ,  and its derivative, f '  [6] in order to compute, the value of f ' / f  when z is given. 
bipce this segment must also supply information about the fourth derivative of R = f ' / f ,  
we use an extension of automatic differentiation which we have implemented in a C++  class 
called c t a y l o r .  The data structure for this class is largely just an array of taylor series 
coefficients, < Ro, Rx, R2, R3, R4 >,  where Ro = ( f ' / f ) ,  R1 = d(f ' / f ) /dt ,  etc. Because all of  
the variables in the code segment are declared as type c~:ay:l.or, C++  will invoke taylor series 
arithmetic routines (part of  VPI) when performing the various addition, multiplication, and 
division operations that appear in the segment. 

In this code segment, the user has been obliged to supply code that computes f '(z) as well 
as f(z). While it is easy to code f '  when f is a polynomial and not too terribly difficult other- 
wise, still, this requirement is at odds with our goal of having an automatic computation, which 
should only require the user to code f(z). Furthermore, it seems aesthetically disconcerting to 
use the machinery of automatic differentiation to compute derivatives for f(z) while making 
the taylor series for f and to compute derivatives for ft(z) while making the taylor series for 
ft,  but not to use automatic differentiation to compute f '  from f .  If  this could be done, then 
the automatic differentiation would automatically compute f ' ,  leaving the user responsible for f 
only. 

At first glance, it might appear that if f is represented by the taylor series coeffi- 
cients < fo, f l ,  f2, f3, f4 >,  then we can merely extend the number of  terms by one to get 
< )Co, f l ,  f2, f3, f4, fs >,  extract the last five to get < f l ,  f2, f3, f4, f5 >, and that these will be 
the taylor series coefficients for ft.  This is not correct for two reasons. First, it is not the first, 
second, third, fourth, and fifth derivatives that are stored, but rather those values divided by 
the appropriate factorial, i.e. the taylor coeffcients. This can be easily fixed by mutliplying 
each extracted term by the appropriate integer (= the degree of the derivative associated with 
the term). The second flaw in this line of reasoning is that the automatic derivatives are with 
respect to the variable t, while f '  is with respect to the variable z. This is also easily fixed 
if we maintain square contours, for then d(t) is linear (on each side of  the square), dz/dt is 
constant and this constant can be factored out of successively higher derivatives as the automatic 
differentiation proceeds. The  result of these corrections, is that for 

g(t)  = dz( t )  
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E d 
: : Center 

Root 

r = d + E  

d < _ E  

n ' ( r )  ~ small constant 

E d 

E 
2 

r = d + E  

E < d  

n*(d + ~)  ~ 2n*(d + E)  

Figure 2. 

we can compute the associated taylor coefficients for 9 from those of f ,  via the taylor series 
division of 

< f~, 2f2, 3f3,, 4f4, 5f5 > 

< fo, f l ,  f2, f3, f4 > 
~ri;'iZ]~r o o 

< 9o,9t,92,93,94 > . 

Multiplying 94 by 4! gives us the fourth derivative, 9(4)(t), that we need for our discredzation 
bound. 

The  code for 9 can be found in Code Segment 2. Now the user need only supply code 
to compute f and not bother with ft.  The  revised code when f is a polynomial is also found 
in Code Segment 2. If a function other than a polynomial is called for, the user need only 
change the code that computes f and not worry about f l  (or 9)- 

Interestingly enough, while automation was our  motivation here, we gain an efficiency 
also. The  synthetic division approach required d = deg ree f  multiplications for f and d -  1 for 
f '  tbr a total of 2 d -  1. Each of these multiplications is between two 5-term taylor series arrays. 
Such multiplications require 1 + 2 + 3 + 4 + 5 = 15 multiplications of the base type, complex 
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numbers (recall the procedure for multiplying two power series). Hence a total of  (2d - 1) * 15 
complex number multiplies are required by the synthetic division strategy. The  new strategy 
requires only d taylor series multiplications, each of  which will take 1 + 2 + 3 + 4 + 5 + 6 = 21 
complex number multiplications (recall that we need 1 more term in our taylor series), to 
compute f ,  and 4 more complex multiplications when the terms of f are extracted to make 
the terms of  f '  for a total of d * 21 + 4. So this new approach requires about 21/30 = 70% 
of the multiplications of synthetic division. In practice we found that the new version (Code 
Segment 2) took about 80% of the time of the synthetic one. 

Code Segment I 

ctaylor F(c%aylor~ z) 

// the complex function to integrate 

/ /  F(z(z)) = (f'(z(t)) / f(z(t)) ) 

// z(Z) any function of t 

// the user must code f and f' 

// here, synthetic division is used for f,f', f a polynomial 
{ 

int k ; 

ctaylor f,fprime,R ; 

f = coeff[degree] ; 

if (degree > O) fprime = f ; else fprime = 0 ; 

for (k = degree - I ; k >= 0 ; k--) { 

f = f*z + coeff[k] ; 

if (k > O) fprime = fprime*z + f ; 
} 

R = fprime / f ; 

return R ; 
} 

Code Segment 2 

ctaylor f(ctaylor~ z) 

// the user m~st code f only 
{ 

ctaylor Poly = coeff[degree] ; // ~tarts poly as a constant 

for (k = \degree - 1 ; k >= 0 ; k--) { 

Poly = Poly*z + coeff[k] ; // this will make Poly same deg at z 
} 

return Poly ; 
} 
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c t a y l o r  g ( c t a y l o r ~  z)  
/ /  g ( z ( t ) )  = ( f ' ( z ( t ) )  / f ( z ( t ) )  ) * ( d z ( t ) / d t )  
/ /  z ( t )  linear 

// ff computed to same hum terms as z 

// fprime to I less term 

// Result to same num terms as fprime 

// the user need NOT code this 
{ 

int k ; 

J. HERLOCKER, J. ELY 

ctaylor ff = f(z) ; // calling the user supplied code for f 

ctaylo r fprime = ctaylor(ff.term[l], O, ff.degree - i) 

for (k = 2 ; k <= ff.degree ; k++) { 

fprime.term[k-l] = k*ff.term[k] ; 
} 

ff.degree-- ; // ensures result computed to same num terms as fprime 

ctaylor R = fprime / ff ; 

ff.degree++ ; // ensures reclamation of all storage in ff 

return R ; 
} 

13. Summary 
In order  tO compute the number  of  roots of an analytic function, f ,  that are inside a square, 
we have used Simpson's rule to approximate  the winding number  integral. Low precision, 
interval arithmetic generally proved adequate to bound the round-off errors and automatic 
differentiation permitted us to bound the discretization error. Not surprisingly, discretization 
error greatly overshadowed round-off  error. The  number  of subdivisions to adequately bound 
the result proved quite small as long as the root was closer to the center of the square than to 
the boundary, but worsened dramatically when this was not the case. We have quantified this 
deterioration for roots of order  1, but have not pursued a complete study. Finally, considerable 
care was taken to adapt  automatic differentiation so that the user need only supply code for 
the function f ,  and not for f '  also. 
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