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Ockham's razor in interval identification 
Bo H .  FRIF_SEN and  VI~DIK KREINOVICH 

Since real-life measurements cannot be absolutely precise, we never know the precise value of a physical 
quantity, we only know an interval of its ix~ssible values. Due m this uncertainty, there are several 
different models that are consistent with the same measurement results. Which model should we 
ch(x~se? in this paper, we show that Ockham's raz~w principle (Emitim 4umld m~t be m~dtiplial ~anwe.eawu'~/y) 
(an lead to a natural criterion for choosing a mlxtel. As an example, we apply this criterion to data 
processing related to a reasonably simple psychological problem. 

BpI4TBa OKKaMa B m-ITepBaAbHO  
E eHTH nKattrt  
B. X. (l~r'H3m, B. KPmrloBml 

I ' IpaKTHtI~KHe H3M~eHH$1 He MOFyT ~laiTb a f co~ )TXO TOqHIaiMH. llo3~}My Mt~ xxgor / l a  He 3xaeM TOqHOe 

3HaMeHHe s BeJIHUlHHlal, HO /1Hlnb HHTeplh~/i, B KOTOpOM 3aKJn(ItleHM ~ BO3MOJKHIale 3HaqeHHR. 

~x/lar()JlapH 3T()I~ HeoHpeJledleHH(~c~rH MOryT CyUI~CTBOBaTI~ H~KO/IbKO pa3/IHtlHhlX MO~eJleH, ODBM~HMbiX 

C O~HHMH II TeMH ~f.e pe3yJlbTaTaMH H3Me~HHI4. KagywJ Ha mrx a,-,6pa-rb? B nacromue~ pa6ore 
noKa3u~aerca, q'ro npxxtmn 6pxxara OKKaraa (,,cyttmocrx xe caeayex yuxoalaTl~ ~ xeo6goaxwocrm,) 
Moater npnnecrx g ecrecrBexxoay ~pHrepxa~ sia6opa Moaea.. B r,a,~ecrae npaxepa ~Tor ~pxrepxft 
IIpHMeHHeTC~I K o~pag)oTKe JIRHHI~X B /IOCTaTOqHO npocrOl~l ncHxoJIorHtleCgOl~l 3a~aqe.  

1. Introduction 

1.1. The need for identification in interval computations 
A typical applicat ion o f  interval  computa t ions  (see, e.g., [17]) is as follows: we want  to know the  

value o f  a physical quant i ty  y, and  it is e i ther  impossible, o r  difficult  to measure  y directly. So, 

to est imate y, we measure  o the r  pa ramete rs  x l , . . . ,  xn that  a re  easy to measure ,  and then  try 

to use the m e a s u r e m e n t  results x l , . . - ,  xn to reconstruct  y. 

T o  be able to do  that,  we must  f ind an a lgor i thm f that  t ransforms the results a:i o f  

measur ing  xi  into an es t imate  ~ = f ( z l , . . . ,  zn)  for  y. 

Since measu remen t s  are  not  absolutely precise, the i r  results xi a re  d i f fe ren t  f r o m  the  

actual values xi .  Hence,  the  resul t ing est imate ~ is d i f ferent  f rom the  actual value of  y. In 

measurement ,  we usually know the upper  b o u n d  for  an  error ,  i.e., we know A i  such that  

15:i - xil < Ai .  In terval  computa t ions  help  to f ind an interval  o f  possible values of  y, i.e., help  

to find A such that  [ ~ -  Yl <- A.  

T o  apply these methods,  we need to know f ,  i.e., in o ther  words, we must  /dent/.~ the 

real-life object that  we a re  analyzing. 

(~) B. H. Friesen, V. Kreinovich, 1995 
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1.2. Identification problem: general formulation 1 

In some situations, the dependency between xi and y is already known: either from some 
approved theory, or from some previous experiments. But in many real-life situations, it is not 
known, so we must reconstruct it from the experimental data. 

In other words, for every object that we want to be identified, we must measure xi and y 
in several situations, and then reconstruct f from the measurement results. Let us denote the 
number of  measurements by N,  the results of  k-th (1 < k < N) measurement by ~ k ) , . . . ,  ~(nk), 
0 (k), and the accuracy of  these measurements correspondingly by Ai and A. 

Definition 1. Let's fix an integer n. It will be called the numher of variables. By measurement 
accurades we mean a tuple ( A t , . . . , A n ,  A )  o f  positive real numbers. By a measurement result 
we mean a tuple (:el . . . .  ,Yc,,,y) o f  n + I real numbers. By data D we mean a finite set 

or" measurement results (~:~k),..., 3:~k), O(k)), 1 <_ k < N (here, N denotes the number  o f  
measurement results). We say that a function f ( x l , . . . ,  xn) is consistent with the data D i f  for 

every k from 1 to N ,  there exist values x~ k) such that [x~ k) - 3~k)[ _< Ai for 1 < i < n, and 

10( ) - xk ))l _< a. 
In these terms, the problem is to find a function f that is consistent with the data. Even if 

we measure xi and y with absolute precision, this condition only restricts the value of f for N 
combinations :F-- ( a ; t , . . . , xn ) .  For other values ~, there are no restrictions on f ( x b . . . , x , , ) .  
Therefore, there are many different functions f that satisfy the above condition. Which of  
them to choose? 

At first glance, it looks like a problem that cannot be solved. However, in real life, we 
usually have some idea of  how y must depend on xi. For example, we may know that the 
dependency of y on xi is linear, i.e., that y = ClXt + - "  + C,,x,, + C,,+t for some coefficients 
Ci. Or, we can assume that f is quadratic, i.e., y = E C~j:rixj. In general, we know a function 
y = f ( C 1 , . . . ,  Cp, z l , . . . ,  xn), where p parameters Ci characterize an object. This function is 
usually called a model. 

Definition 2. By a model we mean a function f ( C l , . . . ,  Cp, xt  . . . .  , x,,) o f  n + p variables, 
where p > O. Variables C1, �9 �9 Cp are called parameters o f  the model. We  say that a function 
g : R '~ ---* R is a particular case o f  the model f ,  i f  it can be obtained from f by fixing some 
values o f  C~. 

Definition 8. Suppose that we have a finite set of  data (D1 . . . . .  DM). We say that a modal f 
is adequate with respect to this set o f  data i f  for each j from 1 to M,  there exists a particular 
case o f  this model that is consistent with the data Dj.  

Comment. In other words, a model f is adequate if for every object that we analyze, we can 

find the values of  Ci for which the correspondent function f(C,a~) is consistent with the 
measurement results for this particular object. 

1.3. What if several models are adequate? Ockham's razor 

What it" data are consistent with several models? Which of them to choose? 

One of the cases when this happens is as follows: suppose that we have a model with p 
parameters C t , . - . ' ,  Or. Some objects are not consistent with this model, so a generalization is 
being developed, that has more parameters. Of course, if the data is consistent with the original 

1For more details see [5, 10-12, 14, 15, 18, 21, 22, 24-81]. 
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model, then it is also consistent with the generalized model. So, if the data is consistent with 
the original model, then we actually have two models that fit the data: the original model and 
the generalized one. In such a situation, it makes no sense to consider a generalized model, 
with the larger number  of parameters,  since the simpler one suffices. 

This principle was first proposed by William of Ockham (also spelled Occam) around 1320, 
who said that entities should not be multiplied unnecessarily. This principle is called Ockham's razor. 

1.4. The existing applications of Ockham's razor 
This principle has been applied a lot in physics (for a brief survey of physical applications, see, 
e.g., [9]). We will just mention (see, e.g., [9, 16]) that when General Relativity first appeared,  
it contained one additional parameter  A (also called cosmological constant). However, since all 
the experiments were consistent with the assumption that A = 0, Einstein decided to use only 
the model with A = 0. Later on, in 1961, another  generalization of  General Relativity was 
proposed by C. Brans and R. Dicke [2] under  the name of a scalarqensor theory. This theory 
contained an additional parameter  1/w. Again, all future experiments were consistent with this 
parameter  being equal to 0, therefore at present, the mainstream viewpoint is that we must 
use only the simplest model, i.e., General Relativity itself. 

These and similar applications are applications to the situation when one of  the models 
has more parameters  than another one (e.g., it is a generalization of  another  one). In the 
general interval framework,  this situation was described (with numerous examples) in [5, 12, 
24, 25, 27, 28]. 

What to do if we have several competing models with the same number  of  parameters? 
This situation was analyzed only for the case when we have one object (and hence one data 
D). For probabilistic errors, criteria for choosing a model were analyzed in [1, 9, 20, 32], and 
for interval data in [5, 12, 24]. So, we arrive at the following problem: 

1.5.  Formulation of the main problem 
Suppose that we have several models with the same number  of parameters,  and all of  these 
models are consistent with the experimental data about several objects. Which of these models 
should we choose? 

1.6. What we are planning to do 
In this paper,  first, we will describe the selection of a model as a mathematical problem. In 
the simplest case, when each model has a single physically meaningful parameter ,  the natural  
invariance conditions lead to a unique choice criterion (Section 2). This criterion can be 
interpreted in terms of Ockham's razor (Section 3). This interpretation enables us to generalize 
this criterion to the case of  several parameters.  A psychological example is given in Section 4. 

In a special Appendix,  we will also illustrate the difficulties of  applying Ockham's razor. 
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2 Selecting a model as a mathematical problem: the 
simplest case 

2.t. Main idea 
Ockham's razor, intuitively speaking, can be understood as follows: the more information we 
need to provide in o rder  to specify a part icular  case of  the model, the worse the model. Ideal 
model should require the smallest possible amount  of  information to specify a part icular  case. 
In the above-mentioned applications of  the Ockham's razor idea, we chose a model with the 
smallest number  of parameters;  this model is considered to be the simplest and therefore, the 
one chosen. This simple principle does not work if  we compare  several models with the same 
number  of  parameters.  In this case, to describe the simplicity of  a model, we must take into 
consideration not only how many parameters  must be specified in order  to select a unique 
model, but also, how different  it is to specify these parameters.  Crudely speaking, if in one 
model, we have narrow intervals for parameters  G'i, then this model  is much easier to specify 
this model  than a competit ive model  in which an interval of  possible values of  parameters  is 
much larger.  In this section, for a simplest case, we will describe this idea in mathematical  

terms. 

First, let us describe what we mean by a "simplest case". 

2.2. What we mean by "the simplest case" 
Since we have identified complexity with the number  of  parameters,  the model is the simplest 
if it contains exactly one parameter .  Such models, in their turn, can be (crudely) divided into 

two groups: 

�9 In some one-parameter  models, the pa ramete r  has no direct physical meaning.  

�9 In some other models, the paramete r  has a direct physical meaning: it actually represents 
the value of some physical quantity. For example,  if we consider a l inear model V = G'- I 
for the dependency of  voltage V on the current  I, then the parameter  G' has the known 
meaning of  resistance. 

If  we compare  two models for which parameters  have no direct physical meaning,  then we 
usually have no intuition on whether  the interval of  possible values is "large" or "narrow". In 
case the parameters  have a direct physical meaning,  we often have some unders tanding of  

whether the accuracy is good or  not. This intuition definitely helps in choosing a model, so, 
we would like to formalize it. 

2.3. Unit-invariance: a way to formalize physical intuition 
One important  feature of  physical quantities that we will use is that usually, the choice of  a 
unit in which we measure this quantity is ra ther  arbitrary: for example,  we can measure length 
in centimeters or  in inches. If  in a model, we have resistance measured in ohms, then it is 
reasonable to demand  that  the same model, but with resistance expressed in kilohms, will be 

of the same quality. 
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The idea of  such "invariance relative to the choice of  a unit" has been successfully used 
in physics, starting from the pioneer work [23]. Together  with other physical conditions, 
unit-invariance can explain the fundamental physical equations such as Maxwell's equation 
that describe electromagnetism, Schroedinger's equations that describe quantum mechanics, and 
Einstein's equations that describe space-time geometry [7, 8, 13]. We will see that in our  
problem, unit invariance also leads to a unique comparison criterion. 

Let us describe unit-invariance in mathematical terms. If  we change a unit to a one that 
is A times smaller, then the resulting numerical values are multiplied by A. For example, if 
instead of  inches, we consider cm, that are ~ 2.54 times smaller, then, instead of  2 in, we get 
2 .2 .54 cm. So, if we have two intervals [a-,  a +] and [A- a - ,  A. a+], and we do not know what 
units were used to describe these intervals, then they could be one interval, but expressed in 
two different units. Therefore, in this case, we have no reasons to choose one of  these intervals 
as "narrower". On the other hand, if one interval is a proper subset of  another, then the first 
interval is clearly narrower. So, we arrive at the following definition. 

2.4. Definitions and the main result 
Definition 4. Let I denote the set o f  all positive intervals, i.e., intervals a C_ (0, oo). By a 
pre-ardering, we mean a transitive reflexive relation ~_ on the set I .  We will use the following 
denotations: 

�9 a , , ~ b  i fa"<_b  and b_~ a. 

�9 a - < b i r a - ~ b  a n d b 2 ~ a .  

Let a pre-ordering be given. 

�9 We say that the pre-ordering is natural i f  a C b implies a -~ b. 

�9 We say that the pre-ordering is unit-invariant i f  for every a-  < a + and for every A > O, 
[a-,  a+] ~ [ha- ,  Aa+]. 

Proposition L There exists exact/y one natural unit-invariant pre-ordering: [a-, a +] --< [b-, b +] 
i f f  d(a) < d(b), where d(a) = (a + - a - ) / ( a  + + a - )  and d(b) = (b + - b- ) / (b*  + b-).  

Proof The parameter d(a) can be rewritten as 

( a + / a - )  - 1 = 1 2 

+ i + l 

The function 1 - 2 / ( x  + 1) is strictly increasing, so, d(a) <_ d(b) iff a+/a  - < b+/b - .  Hence, to 
prove Proposition 1, it is sufficient to prove that [a-,  a +] _-< [b-, b +] iff a+/a  - <_ b+/b - .  Let us 
consider three possible cases: 

�9 Let a+/a - = b+/b - .  Then, if we define A = b - / a - ,  we get A. a • = b • Hence, due to 
unit-invariance, a ,,o b. 

�9 Now, let a+/a  - < b+/b - .  Let us again take ,~ = b - / a - .  Then, )~. a -  = b-,  and 
A- a + < b +. Since ~ is unit-invariant, we get a = [a- ,  a +] ,,o [b-, A. a+]. From A- a + < b +, 
we conclude that [b-, A. a +] C [b-, b +] and hence, that [b-, A. a +] -< [b-, b +] = b. So, 
a ~ [b-, A. a +] -< b, and a -< b. 
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* Similarly, from a + / a  - > b+/b - ,  we conclude that b -< a. 

From these three cases, we conclude that [a-,  a +] _--< [b-, b +] iff a + / a  - < b+/b - .  O 

2.5.  Resulting recommendation 
So, in this simplest case, we choose a model for which the "relative width" of the interval a of  
possible value of  the parameter is the smallest. 

2.6. This idea is only applicable if the parameters of the model have 
direct physical meaning 

We deduced this idea in the assumption that the parameter of  the model has a direct physical 
meaning. Let us show that this idea is not always applicable to the situations in which the 
parameter of  the model is not directly physically meaningful (we are thankful to the anonymous 
referee who provided us with the idea o f  this example). 

Let us consider the dependency between the voltage and the current. We assume that 
V is a linear function of  I .  In natural physical terms, this assumption can be described by a 
model V = C �9 I with a physically meaningful parameter C = R. Instead of  this physically 
meaningful parameter, we can reformulate the model in a mathematically equivalent form 
V = (C'I - 10) �9 I .  The  new parameter 6'1 does not have any direct physical meaning, so, the 
formal transformation (71 --* ,~C'I does not correspond to any physically meaningful "change 
of a unit". If, in spite of  that fact, we apply the above-describe criterion to compare the 
two mathematically equivalent models, we will arrive at the absurd conclusion that the second 
model is mush better: indeed, if, e.g., C E C = [0.9, 1.1], then 6'1 E C1 = [10.9, 11.1], so 
d(Cl)  = 0.01 << d(C)  = 0.1. 

Let us now interpret this result in terms of  Ockham's razor. 

31 Ockham's razor as a criterion for choosing a model: 
a heuristic idea 

3.1. Main idea 
As we have already mentioned, Ockham's razor can be understood as follows: the more 
information we need to provide in order to specify a particular case of the model, the worse is 
the model. Ideal model should require the smallest possible amount of  information to specify 
a particular case. In the above-mentioned physical applications of  the Ockham's razor idea, 
we estimated this amount  of  information as the number of parameters. With this estimate 
in mind, the absence of  "unnecessary entities" means that we take a model with the smallest 
possible number of  parameters. This estimate is, however, too crude to distinguish between the 
two models with exactly the same number of  parameters. In this case, it is reasonable to take 
into consideration not only how many parameters we must fix to specify a particular case of 
a model, but also how many b~s we must specify (i.e., how many binary digits (O's and l's) we 
must use to get a computer description of  a specification). 
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For example, if we have two models, both with one parameters, and in one of them 6"1 
ranges from 0 to 1, in another from 0.99 to 1, then it sounds reasonable to conclude that 
the first model has an unnecessarily wide parameter range, and therefore, the second model is 
preferable. 

What if we have two intervals, [0.9, 1.1] and [99, 101]? The absdut~ range (i.e., the length 
of the interval of possible values of G'I) is larger for the second model, but intuitively, it sound 
reasonable to conclude that the second model is preferable, because it has a smaller rdat/ae 
range: in the second model, we already know the parameter with the precision of 1%, while 
in the first model, the accuracy of an a priori knowledge of this parameter is 10%. 

So, it is reasonable to compare rdati~ ranges, i.e., to compare the percentages with which 
the values of these parameters can deviate from the average. 

32. For models with one parameter, how to choose a model? 

If the interval of possible values of some parameter C1 is [(7i-, G'+], then the average is 
(C/- + 6'+)/2, the absolute deviation from the average is ( 6 " + -  6"/-)/2, and the relative 
deviation d from the average equals [(6"+ - 6"/-)/2]/[(6" + + 6"/-)/2] = (6"+ - 6"~)/(6"+ + 6"/-). 
For models that have one parameter, we will use this value d as a criterion for choosing a 
model: namely, we choose a model with d --~ rain. 

This is exactly the criterion that we came up with in Section 2. 

3.3.  Analogy 
To justify our reasoning, let us invoke the following analogy: when we speak about measuring 
devices, we can say that one of them is more accurate (or more precise) than another. For 
example, a complicated system that measures distance from Earth to Moon with a centimeter 
precision (relative accuracy about 10 -m) is certainly much more precise than a ruler that enables 
its user to measure distances from 0 to 10 cm with a millimeter precision (i.e., with relative 
precision 1%). So, when we compare precisions, we do not usually compare absolute precisions, 
we compare relative ones. 

3.4. How is d related to the number of bits 
We started with the idea of using the number of bits as a criterion, and then "jumped" to 
relative deviation from the average d. Is there a formal relationship between these two notions? 
HeuristicaLly, yes. 

For real-life objects, values of the parameters Ci will be obtained from measurement results. 
If we make all the measurements with a relative accuracy/5 (i.e., if A41~d <_ ~ and A/I~I ~ 8), 
then we get the resulting values Ci also with a similar relative precision. Strictly speaking, this is 
not always true, but in general, if we start with the real numbers that are known with 3 decimal 
digits (i.e., with precision 0.1%), then we get the results with 8 (or in the worst case 2) valid 
decimal digits (unless, of course, the algorithm is really badly numerically unstable). So, every 
specification of the model is obtained with relative accuracy/5 and hence with absolute accuracy 

d~s = [(C + + Ci-)/218. Therefore, spedfications that differ by this amount may really 
describe the same object. Therefore, there are only (G + - C / - ) / d a ~  different specifications: 
the ones that correspond to the values C1 = C/-, C/- +dab., 6'i- +2dab. , . . . ,  C/- +jdab. , .  �9 C~ +. 
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The  more possible specifications, the more bits we must use to describe a specification. 
Namely, with one bit, we can describe two possible cases (corresponding to 0 and 1), with 
b bits, we can describe 2 b different binary numbers, and therefore, 2 b cases. Hence, to 
describe S specifications, we need b bits, where 2 b = S, i.e., we need b = log 2 S bits. Since 

S "~ ( C ~ -  C ~ ) / d ~  ~, [ ( C ~ " -  C~) / (C~  + Ci-)]/(0.56),  we thus need b ~, log 2 ( ( C ~ " -  

C?)/(C~- + C~')) - log26 + 1 = log2d - log~5 + 1 bits. So, the smaller d, the fewer bits we 
need. 

3.5. For models with several parameters, how to choose a model? 
An idea 

If we have a model with p parameters  C z , . . . ,  C v. and the range of i-th parameter  is [Ci-', 67+t, 
then for each parameter ,  we have Si m (C + -C~ ' ) /5  ~ di/(df/2) different possible specifications, 
where by ei, we denoted the relative deviation di = (C '+ - C~')/(C + + C~') of  i-th parameter  
Ci from its average value. Then,  totally, we have S = 81 x Sz x Sa x . . .  x S v different possible 
specifications. Since S ~ di/(tS/2), we have S ~ (dx . . .  ~ ) / ( 6 / 2 )  v. The  bigger the product  
d l . . .  d v, the bigger S and therefore, the bigger the number  of  bits b m log 2 S bits that we 
need to specify a particular case of  the model. Therefore,  it is reasonable to choose a mode 
for which the product d l . . .  d~ is the smallest possible. 

3.6. For models with several parameters, how to choose a m0dd? A 
proposed method 

For every model f ( C ,  ~), and for each of  its parameters  Ci, let us denote by C'~-, the smallest 
possible value of Ci that is consistent with one of  the data (i.e., with one of  the objects). By 

Ci +, we will denote the biggest possible value of 6'i for all vectors C for which this model 
is consistent with one of  the objects. By a relative range di of i-th parameter  6'i, we mean a 
value (6  + - C ~ - ) / ( C ~  + C~-). For each model, we can thus compute the product d r . . .  dr. We 
recommend to choose a model for which this product is the smallest possible. 

Comment. Our  arguments  were based on approximate  equalities. Therefore,  if the product  
computed for one model is only slightly smaller than the product computed for another  model, 
it can well be that the second model is actually better. In other words, the proposed choice 
criterion is really convincing only if for some model the product is really much smaller than 
fi)r other competing models. 

40 Example: computational complexity in the human 
mind 

"Fhe problem on which we want to show the use of  the criteria proposed in the previous section 
is motivated by the desire to know how the human  mind works. One of the ways to find out 
exactly what algorithm the human brain is using to solve problems from some problem set is 
to measure the time spent by a human  brain for different problems from this set. 

There  are two main groups of  algorithms (see, e.g. [4]): polynomial-time algorithms 
and exponential-time algorithms. Polynomial time means that the time required to solve a 
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problem of size r~ is limited by a polynomial of  n. Usually, this time grows as C n  k for some 
integer k. Exponential time means that the computation time grows as a n for some a > 0. 
Polynomial-time algorithms are usually considered feasible because even for reasonably large n 
(e.g., 100 < n < 1000), C n  ~ is still within our reach. Exponential-time algorithm are usually 
considered infeasible because, e.g., 2 z~176 already exceeds the lifetime of the Universe. 

It is thus interesting to find out whether the human mind uses a polynomial or an 
exponential algorithm to solve a certain problem. 

As an example of  such a problem, we took the Tower of Hanoi problem. In this problem, 
there are three pads, and n disks of different size. Initially, all the disks are on the first pad 
in the order of their sizes: the largest disk is at the bottom, the smallest one if on the top. 
On each step, we can take a top disk from one of the pads and place it on top of  some other 
pad. The objective is to rearrange the disks in such a way that all the disks are located on 
the third pad (in the same order as they were initially located on the first pad). 

This problem is well known to be exponential-time: there is an algorithm that solves this 
problem in time 2 n - 1, and it can be proved that no algorithm can solve it faster (see, e.g., 
[19]). The algorithm is simple, so a person who knows the algorithm can make the moves real 
fast. 

In this analysis, we tested ten subjects who did not know the algorithm. They were three 
females and seven males, ages from 14 to 66, with educational background from high school 
to Master's degree. As a result, for n = 3, we got the following times (in seconds): 74, 43, 37, 
61, 126, 61, 38, 31, 70, 25. The  smallest time was 25 sec, the biggest 126 sec. 

We tested these results against two classes of models: exponential-time model t (n )  = a n, 
and polynomial-time models t (n )  = C n  k for different k. We have t E [25, 19.6]. Since we have 
only one value of  n (n = 3), both models are evidently consistent with the experimental data: 
for any t, we can take a = t 1/3 and (7 = t / 3  k. 

For an exponential model, a = t 1/3. Therefore, the interval of  possible values of  a is 
[251/3, 1261/~] ~ [3, 5]. Hence, the midpoint is ~ 4, and the relative range is ~ 1/4 = 0.25. 

For a polynomial-time model, (7 = t / 3  k. Therefore, the interval of possible values of  (7 is 
[25/3 k, 126/3k], the midpoint is 75.5/3 k, and the relative range is 50.5/75.5 ~ 2/3.  

Since 1/4 << 2/3 ,  according to our criterion, this means that our data support the (correct) 
exponential-time model. 

This same example also shows that choosing relative range as opposed to absolute was a good 
idea, because the absolute accuracy of the polynomial model 50.5/3 k tends to 0 as k ~ oo, 
and therefore, is smaller than for the correct exponential-time model. 

Warning. The above example is only given as an illustration. As we have mentioned in 
Section 2, our simple choice of  the model is reasonable only if we have already made a pre- 
section of the models, and we are already left only with the models in which the parameters 
have direct physical meaning. The following example, proposed by the referee, illustrates this 
warning: Suppose that in addition to the above-described two models, we consider the model 
t(r~) = a k~ for different k, then we would have a -  = 251/(sk), a + = 1251/(3k). As k ~ cx~, 
we have a~- --~ 1, a~. ~ 1 and hence, d([a~, a+]) ~ 0. So, we end up with a meaningless 
conclusion that models with large k are better than the original exponential model (that is 
mathematically absolutely equivalent to each of  them). 
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5. Appendix: problems with 0ckham's razor 
Let us show on two examples that there are  some problems with using Ockham's razor. The  
first example will be about real numbers,  the second one about logic in general. 

5.1. An example with real numbers 
As we have already mentioned,  one of  the reasonable applications of Ockham's razor  idea  is as 
follows [27, 28]: if  we have a model, and  the data  is consistent with the assumption that  one 
of  its parameters  is equal to 0, then we can assume that  this value is 0. 

The  problem appears  if  this condition is satisfied for two different parameters  Ci. To  
illustrate it, let us consider the simplest possible case: a l inear model  with two parameters  y = 
ClX 1 "[" C2x2 . Let  US assume that we have only one measurement  result (5:t, x2, Y) = (1, 1, 1.5), 
and  that  the accuracies are  (0, 0,0.5) .  This means that  the measurements of  xi were very 
precise, so xi = xi, and  the interval of  possible values of  y is [1, 2]. This da ta  is evidently 
consistent with the assumption that  6'1 = 0, so we can take C1 = 0. On the other  hand,  this 
same da ta  is consistent with the assumption that  C2 = 0, so we can take 6'2 = 0. We have two 
different  models: y = C l x l  and y = C2x2. If  we try to equate both C1 and C2 to O, we get  a 
model  f = O, that  is not consistent with the data. 

In general,  the problem is as follows: by applying this principle to different  Ci, we get  
different models; and  if  we try to equate both Ci to O, we may end up with a wrong model. 

52. Second example: general logic 
A natural  way to reformulate  Ockham's  razor in terms of logic and set theory is as follows. In  
these terms, an ent/ty can be unders tood as a set. So, the idea is: if for two sets X and  Y that  
are  described by different  formulas, it is possible to assume that X = Y, then we should take 

X = Y .  

Let us formalize this seemingly natural  formalization and show that it leads to a contra- 
diction. 

Defini t ion 5. Let ZF denote a standard axiomatic o f  set theory (see, e.g., [6]). We say that a 
model  M of  ZF is an Ockham model i f  for  every two formulas r  and r  for which the 
sets {x[r  and {x[ r  exist, and it is consistent with ZF that {x[r  = {x[~b(x)}, this 

equality holds in M .  

Proposi t ion 2. There  exist no Ockham models. 

Proof Indeed,  since ZF is incomplete,  there exists an undecidable formula F ,  i.e., a formula  
for which neither  F ,  nor its negation -~F can be deduced from ZF. This implies that F is 
consistent with ZF, and  that  ~ F  is also consistent with ZF. Let us take X + = {x E {0}IF},  
X -  = {x E {0}]-~F}, and  Y = {0}. The  formula F is true if  and only i f X  + = Y .  The  
formula F is false iff  X -  = Y. Since F is consistent with ZF, it is therefore consistent with 
ZF that X + = Y. Hence, in an Ockham model, we would have X + = Y, and thus F. is true. 
Similarly, f rom the fact that  --,F is consistent with ZF, we will c ondude  that  in an Ockham 
model, X -  = Y, and thus, F is false. So, in an Ockham model, F is simultaneously true and 
false. This  contradiction shows that  there are  no Ockham models. [] 

Comment. As one can easily see, our arguments  apply not only to ZF but practically to all known 

axiomatic set theories. 
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