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Application of interval Newton's method to
chemical engineering problems

GoraLaN V. Batan and J. D. Seaper

The interval Newton's method in conjunction with generalized bisection, as implemented in the public
domain software program INTBIS by Kearfott and Novoa, is a method of solving single and simultaneous
nonlinear equations. In this paper, this method is used to solve 15 test problems from different
chemical engineering application areas, and an ill-scaled transcendental equation. The interval method
as implemented in INTBIS is capable of finding all the real roots of an equation within a specified
domain. The complex roots were found by representing every complex variable z = z + iy by two
real-valued variables £ and y. For polynomial equations, the computer time for INTBIS is compared to
that of the parallel-path continuation method of Morgan as implemented in the public domain software
program CONSOLS.

Unlike the parallel-path continuation method, that can find all real and complex roots without
specifying an initial domain, INTBIS requires the apriori spedfication of an initial domain. The effect of
the size of the initial domain on the computer time for INTBIS was studied for a set of multi-variable
polynomial equations.
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Hntepranbunifi Mevor HbIOTOHA B COBOKYNHOCTH C OBOBILCHHLIM METOAOM AC/NCHHA NMOMNO/MAM, PeasH-
J0BaHHLIE B CBOGOAHO ROCTynHOM maxere nporpaMm INTBIS Kapdorra u Hosoa, npeanasHavenst ais
PCILIEHHA HEMHEAHMX YPABHECHMA M HX CHCTEM. B HacTosiue#t paGoTe 3TOT METOR MPHMENRETCR MIs
petieHHA 15 TECTOBEIX 33aa4 M3 PAVIMHYHEIX OBNACTER XHMHHECKOW WHAKCHEPHM, 2 TaKXKe ILIOXO Mac-
1ITAGHPOBAHHOID TPAHLUCHACHTANLHOTO ypaBHeHHK. HHTepsaibumi Metoa, peanusosannunt 8 INTBIS,
CnocoBeH HAXORHTL BCC BCIICCTBCHRBIC XOPHH YPaBHCHMA B 3ananHod ofaacti. Kommiexcusie XopHs
HCKANHCh NMyTEM MPEACTaBACHMS KAXIOR KOMILIEKCHOM MEpeMeHHodt Z = Z + ij B BHAC ABYX belle-
CTBEHHEIX MEPEMEHHBIX Z M Y. [INA NOAMHOMMANBHMIX YpaBHenHit Bpems cuera B cucteme INTBIS
CPaBHHBA/IOCh C BPCMCHEM CYETA 1O METOAY NPOAO/UKEHHA MAPA/UICALHLX TpackTopuit Moprawa, pea-
AH30BAHHOMY B CBOGOAHO NOCTYnHOM nakete nporpamv CONSOLS.

B oTAHMME OT METOAZ NMPOAO/UKCHHA Mapa/UICIhHbIX TPACKTOPHHA, KOTOPHLIA MOXET HAXOAMTb BCC
BEWIECTBERHBIC H KOMILIEKCHBIE KOPHK 6¢3 yKaiaHHa HavanabHon obaacti, INTBIS tpebyer anpuopuoro
JANAHHA HAMANLHON obaacTy. Bausuue paiMepa 3To#t Ha4aAbHOR 06/1acTH Ha BpeMs cueta ans INTBIS
GBIO MIYYEHO Ha HaGope MOAMHOMHAJABHLIX YPABHCHHH MHOTMX MEPEMEHHLIX.

Introduction

In engineering applications, it is often necessary to find the
roots of an equation or a system of equations

Many engineering problems can be reduced to finding the solutions of a nonlinear equation
(or system of equations) f(z) = 0, usually with polynomial f. Many algorithms have been
developed for solving these equations.
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A polynomial equation of n-th order has (in general) n complex solutions {n roots of the
polynomial f). Only some of them are physically meaningful; usually, only real solutions {but
not all real solutions) are meaningful.

A typical example is a state equation. State equations usually originate from the condition
that some objective function V(z) (e.g., potential energy) attains local minimum. To describe
local minima, we can write an equation V'(z) = 0. This equation, however, describes not only
local minima, but local maxima as well, and local maxima correspond to highly unstable (and
thus, physically impossible) states. For example, a cubic equation describes the molar volume
of a fluid. This equation has three solutions, but only two of these solutions have a physical
meaning [10].

In chemical engineering, root finding is a very important and often used step during process
design and flowsheeting. Process design computations involve mathematical modeling of a
specific operating unit in a chemical plant. Flowsheeting involves mathematical modeling of
the entire chemical plant with all the operating units in it interacting with each other in a very
complex manner. Commercial software that simulates process flowsheets employ root-finding
techniques during each iteration while solving nonlinear design equations.

12. To guarantee that all roots have been found, we need to find
all the roots

Suppose that we are using a numerical method to find a solution to a given equation f(z) = 0.
We are interested only in physically meaningful solutions, e.g., real solutions that belong to a
given interval. There are two possible outcomes:

o the method can return a value (or several values) that are supposed to be the desired
solutions; or

e the method can fail, indicating that probably the given system has no solutions within
given bounds.

We are saying “supposes to” and “probably”, because we are usually using numerical methods
that do not give guaranteed results. What cen we guarantee in these cases?

¢ If the method resulted in a value z, then we can easily check whether this z is indeed a
solution: first, we check that this = belongs to a given interval, and second, we substitute
z into f and check that f(z) is indeed equal to O (or rather, taking into consideration
the fact that computers have finite precision, that f(z) is sufficiently close to 0). If
the supposed solution z survives this test, we thus get a value that is guaranteed to be a
solution to our problem.

o The situation in which the method failed to find the solution is more difficult to check.
We would like to know whether there are no solutions at all, or whether there are
solutions, but the method failed to find them.

For general (transcendental) equations, this is difficult to find out. However, for polynomial
equations, there is a way: namely, we can use the fact that a polynomial equation of n-th
order has exactly n complex roots (if we count multiple and higher order roots corresponding
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number of times). So, if we find all n complex roots, and we check that none of them belongs
to the desired interval, then we can be sure that on the given interval, there are no solutions
to the given equation.

Similarly, to guarantee that we have found all physically meaningful solutions to a given
equation, it is desirable to find all solutions, and check that other solutions are not in the
desired area.

In view of that, it is important to be able to find all solutions (real and complex) of a
given equation, even if we know that only real solutions have a physical meaning.

13. The existing methods of finding the solutions of nonlinear
equations

The existing methods of finding the roots of nonlinear equations can be crudely divided into
two groups:

o Locol methods, such as Newton’s method. These methods start in the vicinity of a root,
and find at best one root. These method usually converge very fast, but they are not
100% reliable in the sense that they are not guaranteed to find even one root, not to say
all of them.

o Global methods, that try to find all the roots without requiring any initial guesses. An ex-
ample is a continuation method [1, T]. These methods usually require an order-of-magnitude
more computation time than local methods, but with the speed of today’s computers, this
time is becoming less and less a factor in choosing a method.

For engineering problems, we usually have a priori bounds on the roots. Therefore, it is
desirable to use fast local methods. The only reason why at present these methods are not
always used is that, as we have mentioned, the majority of existing local methods are unreliable.
So, the ideal solution would be to find reliable local methods, ie., fast local methods that result
in guaranteed bounds for the solutions. Such methods are provided by interval computations.

14. Round-off errors and interval computations

Interval computations originated from the following problem. Computers use finite {(approxi-
mate) representations of real numbers, and therefore, all computer operations with real numbers
are approximate. The resulting round-off errors build up, leading to inaccurate results.

In particular, in chemical engineering design, an iterative process is used that employs
root-finding techniques during each iteration. The number of iterations may be large, even
for nominal-sized problems. On each iteration, an additional round-off error is added to the
result. At the end, these small round-off errors can add up to a reasonable-size error.

When the initial data are precisely known, and the numerical method is exact, then
round-off is the only source of error. In this case, if we increase the length of the machine
word (and thus, the precision of computer operations), the width of the resulting interval
decreases (and tends to 0 as the length of the machine word goes to co).

In real computers, we must take round-off and propagation error into consideration. One
way to do that is to use interval arithmetic. In interval arithmetic, the basic object is not a
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number, but an interval [a,b]. A number that is precisely known is represented by a degenerate
interval [a,a]. A number whose value is not precisely known is represented by an interval of
possible values [6]. The result of applying interval computations techniques is not an approximate
value T of the desired parameter z, it is an inlerval x that is guaranteed to contain the
(unknown) value z. This interval takes into consideration the finite precision of the computers.
Due to this fact, the number of applications of interval computations to solving equations is
growing.

In particular, for engineering problems, in which we know the approximate locations of
the roots, we may want to apply interval local methods to compute the resulting guaranteed
estimates fast. In this paper, we use the (multi-dimensional) interval Newton’s method for
solving a system of nonlinear equations. This method, in conjunction with the generalized
bisection method, is implemented in the public domain software INTBIS [5].

15. Results

In chemical engineering, as we have already mentioned, round-off errors can be large for
process design and flowsheeting. Therefore, interval methods seem an attractive choice for
these problems. In this paper, we will describe the results of applying interval methods to
checmical engineering problems.

The INTBIS package itself only finds real roots of polynomial equations. The availability
of transcendental functions in the interval arithmetic library INTLIB [4] enabled us to modify
INTBIS so that it can solve transcendental equations as well. To find complex roots z, we represent
each complex variable z = x + iy by a pair of real variables z and y, and apply INTBIS to
the resulting system.

We applied the resulting techniques to 14 chemical engineering problems described in [9]
(these problems lead to nonlinear equations typical for chemical engineering). INTBIS was also
applied to a chemical engineering problem in which the function f in the equation f(z) =0
is rational (and not polynomial) [1], and (to test the method) to the equation f(z) = 0 with a
transcendental function f [11] In order to test the method on a system of linear and nonlinear
equations, we tried it on a two-stage reactor problem [8)].

2. Method
21 INTBIS

INTBIS [5] is based on the interval Newton/generalized bisection algorithm that combines a
geometric bisection method with the interval Newton’s method (this algorithm is explained in
(3D :
In order to solve the system of (nonlinear) equations F(X) = 0 on a given box X, we
subdivide this box into smaller boxes. To each box, the interval Newton’s method is applied.
This is an iterative method, in which the box X**! on the next iteration is gbtained from the
box X* computed on the previous iteration as X**! = X* N X**+!, where X**! is computed
by solving the following system of linear interval equations:

Fl(xk)(Xk+l - Xk) = _F(xk)
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F(X*) and F'(X*) are the interval extensions of F and the Jacobian F' evaluated at X¥, and
X* is a midpoint of the box X*. To solve this system, the interval Gauss-Seidel technique is
used. If for a certain subbox, this method does not lead to a definite conclusion about whether
this box contains a root or not, then this box is further bisected. Finally, we get boxes for
each of which the interval Newton method either converges to a solution, or leads to Xk = @,
meaning that this subbox has no solutions in it.

This approach combines the exhaustiveness of the bisection method with the speed of the
Newton’s method.

22. Handling complex roots: idea and example

Classical Newton’s method can be easily generalized to complex numbers. However, the interval
Newton method is derived from the mean-value theorem, which does not hold in the complex
domain [2] Therefore, we cannot directly generalize this method to finding complex solutions.

Instead, we apply the following natural idea: we replace each complex variable z = z + 1y
by two real variables z and y. Correspondingly, instead of a single complex equation F = 0,
we consider two real equation that represent the real and imaginary parts of the complex one.
Let us illustrate this idea on equation 1 from Shacham [9]. This quartic equation describes the
fraction of the nitrogen-hydrogen feed that gets converted to ammonia (this fraction is called
fractional conversion). For 250 atm and 500°C, this equation takes the form

f(z) = 2* — 7.790752% + 14.74452* + 2.511z — 1.674 = 0.

If we substitute z = z+1y into this equation, expand (z+1y)*, and separate real and imaginary
terms, we get the following equation:

(z* — 622y? + y* — 7.7907523 + 23.37225zy? + 14.7445z% — 14.7445y% + 2.511x — 1.674)
+ (4zy — 4zy® — 23.372252%y + 7.79075y° + 29.489zy + 2.511y)i = 0.

For a complex number to be equal to 0, both its real and imaginary parts must be equal to 0.
So, we arrive at the following system of two equations:

4 — 6227 + y* — 7.790752° + 23.372252y? + 14.74452% — 14.7445y% + 2511z — 1.674 = 0,
43y — 4zy® — 23.37225x%y + 7.79075y° + 29.489zy + 2511y = 0.

For this system, INTBIS computed narrow intervals that contain all 4 known roots (these
roots can obtained, e.g., from the known analytical solution of a quartic equation): z; = 0.278,
zg = —0.384, z3 = 3.949 + 0.3167, z4 = 3.949 — 0.3161.

By definition, the fractional conversion is a number between 0 and 1. Therefore, only the
root 21 is physically meaningful.

3. Tests and their results

31 A list of test problems
Both INTBIS and CONSOLS were applied to:

1) 14 out of 15 chemical engineering problems presented in Shacham [9].
2) A Continuous Stirréed Tank Reactor (CSTR) problem due to Seader et al. [8].
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3) An equation with a rational f described in Gritton [1}; and

4) A purely mathematical transcendental equation suggested by Watson [11].

The computations were done on SUN Sparcl0 stations. Let us describe the results for each of
these groups of problems.

32. Problems from Shacham

Problems 1, 2, 4, 3, 6, 11, 12, 13, and 15 of Shacham [9] were reduced to polynomial form. The
most complicated problem was problem 2, in which Rachford-Rice equation for the isothermal-
flash calculation of a 19-component system results in an equation f(r) = 0 with an 18th
order polynomial. “This system has 18 real roots in the interval [—12,7]; only one of these
roots belongs to the interval [0, 1], and is, therefore, physically meaningful. Problems 3, 7
and 10 involved transcendental terms, while problems 8 and 9 involved fractional powers of
the dependent variable. Problem number 14 of Shacham was not included because it can be
converted to a linear equation.

For problems with polynomial f, apriori bounds for roots are known:

1A | Ammonia synthesis [-1,4] +[-1,1]s

1B | Ammonia synthesis [-3,5] +[0, 3)s

4 | Azeoteric point [0, 6]

5 | Adiabatic flame temp [—9000, 5000] | +[-9000, 9000}:
6 | Beattie-Bridgeman EOS [0,2] +[-5,5}%

11 | Chemical Equilibrium [0,0.7} +{—04,04}¢

12 | Viral EOS [~100,300] | +[~100, 100}i
13 | Redlich-Kwong EOS (0,0.1] +{-0.1,0.1}

15 | Sinkage depth of a sphere | [~1, 3]

These bounds were given to INTBIS as the initial boxes. In problems 4 and 15, it is
known that all the roots are real, so imaginary parts were not used.

Both INTBIS and CONSOLS found all real and complex roots for each problem, except
for problem number 2, where INTBIS had some difficulty in solving the 18th order polynomial:
many subboxes were left unresolved after many bisections.

The CPU times (in sec) for solving the polynomial equations using INTBIS and CONSOLS8

are as follows:

Problem INTBIS | CONSOLS8
1A Ammonia synthesis 2.200 0.217
1B Ammonia synthesis 2.717 0.183
4 Azeotropic point 0.033 0.133
3 Adiabatic flame Temp 0.150 0.167
6 Beattie-Bridgeman EOS 1.267 0.200
11 Chemical Equilibrium 3.117 0.183
12 Viral EOS 1.050 0.133
13 Redlich-Kwong EOS 0.400 0.150
15 Sinkage depth of a sphere | 0.033 0.167
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3.3. Problems from Seader et al.

In Seader et al. [8], continuation methods are used to solve a systein of nonlinear and linear
equations resulting from the 1985 AIChE Student Contest Problem. The example describes
an acid-catalyzed esterification reaction carried out continuously in two reactors. The resulting
system of equations consists of two linear equations, four quadratic equations, and one cubic
equation. According to Bezout’s Theorem [7], such a system has (in general) 48 roots. For this
particular system, only one root has a physical significance, all the others are either complex
with non-zero imaginary parts, or negative.

On our Sparcl0 workstation, CONSOLS found all 48 roots in about 134 sec. INTBIS was
used to determine the real positive root only. The following initial box for variables z; was
determined by apriori knowledge and supplied to INTBIS:

Iy T2 I3 Z4 Ts Zg x7
[70,90] | [6,8] | (50,70] | [6,8] | (0,1] | [3,4] | [0,1]

It took INTBIS about 32 sec to find the desired root.
The apriori box spans approximately 20% on either side of the root. If we did not have

this apriori information, we would end up with an apriori box spanning 40% to 50% on either
side of the root. In this case, INTBIS CPU time increases to 100—150 sec.

34. A problem by Gritton

Gritton {1] used a global-fixed point homotopy method to calculate the chemical equilibrium
in ammonia synthesis (above-described problem 1 from [9]). The original problem consists of
solving the equation -
8(4 — z)2z?
(6 - 32)*2 - z)
In the previous approach, we reduced this problem to the polynomial equation. However, a
modified INTBIS can be applied to the original equation as well.
This equation has a singularity at x = 2, when the denominator becomes 0. The initial
(apriori) interval for z is {—5,2.5]. INTBIS found both real roots £ = —0.384 and z = 0.278,
and also found the singularity at 2.

—0.186 = 0.

35. Testing on a transcendental equation

Watson [11] suggested the following transcendental equation: exp(—z?) - sin(z) = 0. The roots
of this equation coincide with the roots of the equation sin(z) = 0, but the exponential term
introduces a large variation of the function in the interval [—-25,25]. INTBIS found all the
roots in this interval. Outside this interval, the left-hand side cannot be computed even with
double precision variables: it produces either an underflow error (for z < ~25), or an overflow
error {for z > 25).

3.6. Effect of size of initial region on the INTBIS CPU time

The effect of the size of initial region on the INTBIS CPU time was studied for the two-stage
reaction problem of Seader et al. [8]. The results are as follows:
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% on either | Time | ftest | function

side of root | {in sec) | calls calls
1 1.68 43 90

2 3.35 123 191

5 8.43 412 477

10 20.73 | 1098 1188

20 39.62 | 2351 2302

30 58.00 | 3813 3404

40 90.67 | 6301 5198

50 152.5 | 11108 8729

75 213.0 | 15684 | 12018

100 465.2 | 33423 | 26558

The dependency of all three parameters (time, ftest calls, and function calls) on the width of
the initial region was similar and approximately quadratic. Therefore, for this method, narrow
initial bounds will lead to substantial saving of the CPU time.

4, Conclusions and recommendations

The facts that INTBIS searches for all the roots (exhaustively) and takes into consideration
round-off errors makes INTBIS an attractive choice for application in chemical engineering
design programs. INTBIS can be easily incorporated into programs through its main driver
routine GENBIS. In spite of thé fact that its interval arithmetic is software simulated and
therefore, reasonably slow, for solving polynomial equations, the resulting CPU times are
comparable with the CONSOL8 times. When only real solutions are desired, INTBIS requires
less time than CONSOLS. With the possible availability of interval arithmetic processors,
INTBIS running time will be substantially reduced, making it competitive for use in design
and simulation software.

INTBIS has the added advantage of being applicable to transcendental equations.

For a system of several transcendental equations, we cannot recommend to use INTBIS in
its present form, because programming the interval extensions of the functions and Jacobians
in interval arithmetic is very tedious. For such systems, a modification is needed that would
automatically create these extensions from the user-provided floating point expression.

Acknowledgments

We appreciate the assistance of Professor R. Baker Kearfott at every step of applying INTBIS
to our equations. Mr. Jui-Jung Chen provided the technique for transforming the complex
variables into two-dimensional real variables. Mr. Sanjay Sharma conducted some of the
experiments with CPU times and initial bounds.

References

{1] Gritton, K. S. Application of global fixed-point homotopy to single-nonlinear-equation chemical engineer-
ing problems. Ph. D. Dissertation, University of Utah, 1991.



APPLICATION OF INTERVAL NEWTON'S METHOD TO CHEMICAL ENGINEERING... 223

[2] Hansen, E. A globally convergent interval method for computing and bounding real roots. BIT 18
(1978), pp. 415—424.

[3] Kearfott, R. B. Abstract generalized bisection and a cost bound. Math. Comput. 49 (179) (1987),
pp- 187-202.

[4] Kearfott, R. B., Dawande, M., Du, K., and Hu, C. INTLIB: a portable Fortran-77 elementary
function library. Accepted for publication as an algorithm in the ACM Transactions on
Mathematical Software.

{5] Kearfott, R. B. and Novoa IIl, M. INTBIS, a portable interval Newton/bisection package. ACM
Trans. Math. Software 16 (2) (1990), pp. 152—157.

{6] Moore, R. E. Methods and applications of interval analysis. SIAM, Philadelphia, PA, 1979.

{7] Morgan, A. P. Solving polynomial systems using continuation for engineering and scientific problems.
Prentice-Hall, Englewood Cliffs, N]J, 1987.

[8] Seader, J. D., Kuno, M, Lin, W—]., Johnson, S. A, Unsworth, K., and Wiskin, ]. S. Mapped
continuation methods for computing all solutions to general systems of nonlinear equations. Computers
Chem. Engng. 14 (1) (1990}, pp. 71-85.

[9] Shacham, M. An improved memory method for the solution of a nonlinear equation. Chem. Eng. Sci.
44 (7) (1989), pp. 1495—1501.

[10] Smith, J. M. and Van Ness, H. C. Introduction to chemical engineering thermodynamics. Fourth
Edition, McGraw-Hill Book Company, NY, 1987, pp. 80—84.

[11] Watson, L. Personal communication, 1988.

Received: March 1, 1994 Department of Chemical & Fuels Engineering
Revised version: May 19, 1994 University of Utah
Salt Lake City

UT 84112

USA



