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Application of interval Newton's method to 
chemical engineering problems 
GOPALAN V .  B^LAII a n d  J. D .  SEADER 

The interval Newton's method in conjunction with generalized bisection, as implemented in the public 
domain mftware program INTBIS by Kearfott and Novoa, is a method of miring single and simultaneous 
nonlinear equatiom. In this paper, this method is used m solve 15 test problems from different 
chemical engineering application areas, and an ill-scaled tramcendentai equation. The interval method 
as implemented in INTBIS is capable of finding all the real roots of an equation within a ~:cified 
domain. The complex roots were found by representing every complex variable z = z + iy  by two 
real-valued variald~ z and y. For polynomial et~atiom, the computer time for [NTBIS is compared to 
that of the parallel-path continuation method of Morgan as implemented in the puhtic domain software 
program CONSOL8. 

Unlike the parallel-path continuation method, that can fmd all real and complex roots without 
specifying an initial domain, INTBIS reqaires the apriori spedfication of an initial domain. The effect of 
the size of the initial domain on the computer time for INTBIS was studied for a ~ t  of multi-variable 
polynomial equations. 

FIp o eH]4e rmTepBaa ,Horo MeToAa 
HbIOTOHa K 3a anaM XrtMrr ecKo  nH eHepml 
I'. B. B ~ n ,  Ax.. A. CanEr 

HHTepaa.~nM~ MevOa H~OTOXa �9 coaoxyn.ocrx c o6c6mcxmaM MerOaOM acaexx~ nonoaaM, peanU- 
3OBaHHb(e B CBCiSOAXO ~IOCTynHOM rlaKere HpOr~MM INTBIS K~x[~n-ra x HoBoa, npea~3.aqenu ~vta 
pemeaax x e a x x e f i x ~  ypaxHexx~ x xx cacre~. B uacroameft pa6oTe 3TOT MevOa npxMexae'rca 
pemexx.q 15 Tec'roxbtX 3a~taq a3 pa~xqxhtx o6aacTefi XxMxqec'KO~ xx~exepHx, a Tag.me nar Mac- 
Ltrra6xpoeaxuoro Tpaxuexaewraabaoro ypamcenx~ HxTeplsa~t~/bt/k MeXO~, peaAP..1osaxxM~ B INTBIS, 
cnoo36ex uaxoax~ ace aemecraexmae xopxx ypaaxexxa a 3aaaxxo~ o6aacrx. KoMnaeKcxtae Kopxx 

xotaaxcb nyreM npeacraaaexxx Ka.~taofi KOMnaeKCXOfl nepeMeXXOli z = z-I-iy a axae ~,,yx eeme- 

CraexXblX flepeMexxhlx z x Z/. ~i~i noAllXOMltaJll~n~ix ypaaxexxl~ Itpex~l cqera a cxcreue INTBIS 
CpaBnHBa.rlOCb C SpeMeneM cqe-l'a iio MeTO,[ly npo/lo.~KesHn napa.~,le~IbHblX TpaeKTopm~l Mopraua. pea- 
ax3oeaxuoMy a c~mo aocrynXOM naxeve nporpaMM CONSOLS. 

B oTaxqxe or ueroaa npoaoazexHa ~paaacabXUX TpaexTopxa, KOTOp~aa MO~ev xaxOaXTb ace 
~mec'm~xw-,e . ~oMnaexcw-,e xopxx 6(~ yKa3atuoI Igdq~lbtIOa o~.rl~rx, INTBIS "rpe6yer anp.opxom 
3a~atlx~l tlaqaJlbxofl o6nac'rx, l~nlnHne pa3Mepa 3TO~ tlaqa;l~Ol:l o6Aacrx Ha B~M$1 Cxl~ra ~k/l~! INTBIS 
6~aao u3yqexo xa .a&~3e notlnHOMtla;IbXh~X ypam~exx~ M.orUx nepeMexxux. 

i. Introduction 

1.1. In engineering applications, it is often necessary to find the 
roots of an equation or a system of equations 

Many e n g i n e e r i n g  p r o b l e m s  can  be  r e d u c e d  to  f i n d i n g  the  solut ions  o f  a n o n l i n e a r  e q u a t i o n  

(or system o f  equat ions)  f ( x )  = O, usually wi th  po lynomia l  f .  M a n y  a l g o r i t h m s  h a v e  b e e n  

deve loped  for  solving these  equat ions .  

(~) G. V. Bala~/, J. D. Seader, 1995 
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A polynomial equation of  n-th order  has (in general) n complex solutions (n roots of  the 
polynomial f).  Only some of  them are physically meaningful~ usually, only real solutions (but 
not all real solutions) are meaningful. 

A typical example is a state equation. State equations usually originate from the condition 
that some objective function V(z)  (e.g., potential energy) attains local minimum. To  describe 
local minima, we can write an equation Vl(z) = 0. This equation, however, describes not only 
local minima, but local maxima as well, and local maxima correspond to highly unstable (and 
thus, physically impossible) states. For example, a cubic equation describes the molar  volume 
of a fluid. This equation has three solutions, but only two of these solutions have a physical 
meaning [10]. 

In chemical engineering, root finding is a very important  and often used step during process 
design and flowsheeting. Process design computations involve mathematical modeling of a 
specific operating unit in a chemical plant. Flowsheeting involves mathematical modeling of 
the entire chemical plant with all the operating units in it interacting with each other in a very 
complex manner.  Commercial  software that simulates process flowsheets employ root-finding 
techniques during each iteration while solving nonlinear design equations. 

1.2. To guarantee that all roots have been found, we need to find 
a/l the roots 

Suppose that we are using a numerical method to find a solution to a given equation f ( x )  = O. 
We are interested only in physically meaningful solutions, e.g., real solutions that belong to a 
given interval. There  are two possible outcomes: 

�9 the method can return a value (or several values) that are supposed to be the desired 
solutions; or 

�9 the method can fail, indicating that probably the given system has no solutions within 
given bounds. 

We are saying "supposes to" and "probably", because we are usually using numerical methods 
that do not give guaranteed results. What can we guarantee in these cases? 

* I f  the method resulted in a value z, then we can easily check whether this z is indeed a 
solution: first, we check that this x belongs to a given interval, and second, we substitute 
z into f and check that f (x )  is indeed equal to 0 (or rather, taking into consideration 
the fact that computers  have finite precision, that f ( z )  is sufficiently close to 0). I f  
the supposed solution x survives this test, we thus get a value that is guaranteed to be a 
solution to our problem. 

�9 The  situation in which the method failed to find the solution is more difficult to check. 
We would like to know whether there are no solutions at all, or whether there are 
solutions, but the method failed to find them. 

For general (transcendental) equations, this is difficult to find out. However, for polynomial 
equations, there is a way: namely, we can use the fact that a polynomial equation of n-th 
order has exactly n complex roots (if we count multiple and higher order roots corresponding 
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number of times). So, if we find all n complex roots, and we check that none of  them belongs 
to the desired interval, then we can be sure that on the given interval, there are no solutions 
to the given equation. 

Similarly, to guarantee that we have found all physically meaningful solutions to a given 
equation, it is desirable to find all solutions, and check that other solutions are not in the 
desired area. 

In view of  that, it is important to be able to find all solutions (real and complex) of  a 
given equation, even if we know that only real solutions have a physical meaning. 

1.3. The existing methods of finding the solutions of nonlinear 
equations 

The existing methods of  finding the roots of  nonlinear equations can be crudely divided into 
two groups: 

Local methods, such as Newton's method. These methods start in the vicinity of  a root, 
and find at best one root. These method usually converge very fast, but they are not 
100% reliable in the sense that they are not guaranteed to find even one root, not to say 
all of  them. 

Global methods, that try to find all the roots without requiring any initial guesses. An ex- 
ample is a cont/nuat/on method [1, 7]. These methods usually require an order-of-magnitude 
more computation time than local methods, but with the speed of  today's computers, this 
time is becoming less and less a factor in choosing a method. 

For engineering problems, we usually have a priori bounds on the roots. Therefore, it is 
desirable to use fast local methods. The  only reason why at present these methods are not 
always used is that, as we have mentioned, the majority of  existing local methods are unreliable. 
So, the ideal solution would be to find reliable local methods, i.e., fast local methods that result 
in guaranteed bounds for the solutions. Such methods are provided by interval computations. 

1.4. Round-off errors and interval computations 
Interval computations originated from the following problem. Computers use finite (approxi- 
mate) representations of real numbers, and therefore, all computer operations with real numbers 
are approximate. The  resulting round-off errors build up, leading to inaccurate results. 

In particular, in chemical engineering design, an iterative process is used that employs 
root-finding techniques during each iteration. The number of iterations may be large, even 
for nominal-sized problems. On each iteration, an additional round-off error is added to the 
result. At the end, these small round-off errors can add up to a reasonable-size error. 

When the initial data are precisely known, and the numerical method is exact, then 
round-off is the only source of error. In this case, if we increase the length of the machine 
word (and thus, the precision of computer operations), the width of  the resulting interval 
decreases (and tends to 0 as the length of  the machine word goes to oo). 

In real computers, we must take round-off and propagation error into consideration. One 
way to do that is to use interval arithmetic. In interval arithmetic, the basic object is not a 
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number, but an interval [a, b]. A number that is precisely known is represented by a degenerate 
interval [a, a]. A number whose value is not precisely known is represented by an interval of 
possible values [6]. The result of applying interval computations techniques is not an a~r~mzte 
value 5: of the desired parameter z, it is an /ntert~ x that is guaranteed to contain the 
(unknown) value z. This interval takes into consideration the finite precision of the computers. 
Due to this fact, the number of applications of interval computations to solving equations is 
growing. 

In particular, for engineering problems, in which we know the approximate locations of 
the roots, we may want to apply interval local methods to compute the resulting guaranteed 
estimates fast. In this paper, we use the (multi-dimensional) interval Newton's method for 
solving a system of nonlinear equations. This method, in conjunction with the generalized 
bisection method, is implemented in the public domain software INTBIS [5]. 

1 .5 .  Results 

In chemical engineering, as we have already mentioned, round-off errors can be large for 
process design and flowsheeting. Therefore, interval methods seem an attractive choice for 
these problems. In this paper, we will describe the results of applying interval methods to 
checmical engineering problems. 

The INTBIS package itself only finds real roots of t~/yn0m/al equations. The availability 
of transcendental functions in the interval arithmetic library INTLIB [4] enabled us to modify 
INTBIS so that it can solve transcendental equations as well. To find c0mit~x roots z, we represent 
each complex variable z = z + iy by a pair of real variables z and V, and apply INTBIS to 
the resulting system. 

We applied the resulting techniques to 14 chemical engineering problems described in [9] 
(these problems lead to nonlinear equations typical for chemical engineering). INTBIS was also 
applied to a chemical engineering problem in which the function f in the equation f (x )  = 0 
is ratio~ (and not polynomial) [1], and (to test the method) to the equation f (x )  = 0 with a 
transcendental function f [11]. In order to test the method on a system of linear and nonlinear 
equations, we tried it on a two-stage reactor problem [8]. 

2. Method 

2 .1 .  INTBIS 

INTBIS [5] is based on the interval Newton/generalized bisection algorithm that combines a 
geometric bisection method with the interval Newton's method (this algorithm is explained in 
[3]). 

In order to solve the system of (nonlinear) equations F(X) = 0 on a given box X, we 
subdivide this box into smaller boxes. To each box, the interval Newton's method is applied. 
This is an iterative method, in which the box X k+l on the next iteration is obtained from the 
box X k computed on the previous iteration as X ~+1 = XkN ~ + 1 ,  where ~k+l is computed 
by solving the following system of linear interval equations: 

F'(X~)(~ k+l - X k) = -F(X k) 
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F ( X  k) and F ' ( X  k) are the interval extensions of  F and the Jacobian F '  evaluated at X k, and 
X k is a midpoint of  the box X k. To solve this system, the interval Gauss-Seidel technique is 
used. If for a certain subbox, this method does not lead to a definite conclusion about whether 
this box contains a root or not, then this box is further bisected. Finally, we get boxes for 
each of which the interval Newton method either converges to a solution, or leads to X k = qa, 
meaning that this subbox has no solutions in it. 

This approach combines the exhaustiveness of  the bisection method with the speed of  the 
Newton's method. 

2.2.  Handling complex roots: idea and example 
Classical Newton's method can be easily generalized to complex numbers. However, the interval 

Newton method is derived from the mean-value theorem, which does not hold in the complex 
domain [2]. Therefore, we cannot directly generalize this method to finding complex solutions. 

Instead, we apply the following natural idea: we replace each complex variable z = x + i v  

by two real variables x and y. Correspondingly, instead of  a single complex equation F = 0, 
we consider two real equation that represent the real and imaginary parts of  the complex one. 
Let us illustrate this idea on equation 1 from Shacham [9]. This quartic equation describes the 
fraction of the nitrogen-hydrogen feed that gets converted to ammonia (this fraction is called 

fractional conversion). For 250 arm and 500~ this equation takes the form 

f ( z )  = z 4 - 7.79075z a + 14.74452 + 2.511z - 1.674 = 0. 

If  we substitute z = x + i y  into this equation, expand ( x + i y )  k, and separate real and imaginary 
terms, we get the following equation: 

(a: 4 - 6 x 2 y  2 + y4 - 7.79075a: a + 23.37225xy 2 + 14.7445x 2 - 14.7445y 2 + 2.511x - 1.674) 
+ (4xay - 4 x y  3 - 23.37225x2y + 7.79075y a + 29.489xy + 2.511y)i = 0. 

For a complex number to be equal to 0, both its real and imaginary parts must be equal to 0. 
So, we arrive at the following system of  two equations: 

x 4 - 6x2y 2 + yr - 7.79075x s + 23.37225xy 2 + 14.7445x 2 - 14.7445y 2 + 2.511x - 1.674 = 0, 
4 x 3 y  - 4 x y  3 - 23.37225x2y + 7 . 7 9 0 7 5 y  3 + 29.489xy + 2.511y = 0. 

For this system, INTBIS computed narrow intervals that contain all 4 known roots (these 
roots can obtained, e.g., from the known analytical solution of  a quartic equation): zl = 0.278, 
z2 = -0 .384,  z3 = 3.949 + 0.316i, z4 = 3.949 - 0.316i. 

By definition, the fractional conversion is a number between 0 and 1. Therefore, only the 
root zl is physically meaningful. 

3. Tests and their results 
3.1. A list of test problems 
Both INTBIS and CONSOLS were applied to: 

1) 14 out of 15 chemical engineering problems presented in Shacham [9]. 

2) A Continuous Stirred Tank Reactor (CSTR) problem due to Seader et al. [8]. 
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3) An equation with a rational f described in Gritton [1]; and 

4) A purely mathematical transcendental equation suggested by Watson [11]. 

The computations were done on SUN Sparcl0 stations. Let us describe the results for each of 
these groups of problems. 

3.2. Problems from Shacham 

Problems 1, 2, 4, 5, 6, 11, 12, 13, and 15 of Shacham [9] were reduced to polynomial form. The 
most complicated problem was problem 2, in which Rachford-Rice equation for the isothermal- 
flash calculation of a 1g-component system results in an equation f(x) = 0 with an 18th 
order polynomial. :'This system has 18 real roots in the interval [-12, 7]; only one of these 
roots belongs to the interval [0, 1], and is, therefore, physically meaningful. Problems 3, 7 
and 10 involved transcendental terms, while problems 8 and 9 involved fractional powers of 
the dependent variable. Problem number 14 of Shacham was not included because it can be 
converted to a linear equation. 

For problems with polynomial f ,  apriori bounds for roots are known: 

iJ 1B 

13 
15 

These bounds 

Ammonia synthesis 
Ammonia synthesis 
Azeoteric point 
Adiabatic flame temp 
Beattie-Bridgeman EOS 
Chemical Equilibrium 
Viral EOS 
Redlich-Kwong EOS 
Sinkage depth of a sphere 

[-1, 4] 
[-3,5] 
[o, 6] 
[-9ooo, 5000] 
[0, 2] 
[o, o. 71 
[- lOO, 3OOl 
[o,o.ll 
[-1,3} 

+[-1,11i 
+[o, 3]i 

+[-9000, 9000]i 
+[-5, 5]i 
+[-0.4, 0.4]i 
+[-100,100]i 
+[-0.1, 0.1]i 

were given to INTBIS as the initial boxes. In problems 4 and 15, it is 
known that all the roots are real, so imaginary parts were not used. 

Both INTBIS and CONSOL8 found all real and complex roots for each problem, except 
for problem number 2, where INTBIS had some difficulty in solving the 18th order polynomial: 
many subboxes were left unresolved after many bisections. 

The CPU times (in sec) fi)r solving the polynomial equations using INTBIS and CONSOL8 
are as fbllows: 

Problem 
1A 
1B 
4 
5 
6 
11 
12 
13 
15 

Ammonia synthesis 
Ammonia synthesis 
Azeotropic point 
Adiabatic flame Temp 
Beattie-Bridgeman EOS 
Chemical Equilibrium 
Viral EOS 
Redlich-Kwong EOS 
Sinkage depth of a sphere 

INTBIS 
2.200 
2.717 
0.033 
0.150 
1.267 
3.117 
1.050 
0.400 
0.033 

CONSOL8 
0.217 
0.183 
0.133 
0.167 
0.200 
0.183 
0.t33 
0.150 
0.167 
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3.3.  Problems from Seader et al. 
In Seader et al. [8], continuation methods are used to solve a system of nonlinear and linear 
equations resulting from the 1985 AIChE Student Contest Problem. T h e  example describes 
an acid-catalyzed esterification reaction carried out continuously in two reactors. The  resulting 
system of equations consists of  two linear equations, four quadratic equations, and one cubic 
equation. According to Bezout's Theorem [7], such a system has (in general) 48 roots. For this 
particular system, only one root has a physical significance, all the others are either complex 
with non-zero imaginary parts, or negative. 

On our Sparcl0 workstation, CONSOLS found all 48 roots in about 134 sec. INTBIS was 
used to determine the real positive root only. The  following initial box for variables xi was 
determined by apriori knowledge and supplied to INTBIS: 

I Xl X3 ~5 276 I 372 
[70, 90] t [6 ,8][[50,7011 x4 [6,8] I [0, 1] I [3,4] I x7 [o,1] I 

It took INTBIS about 32 s e c m  find the desired root. 

The  apriori box spans approximately 20% on either side of  the root. I f  we did not have 
this apriori information, we would end up with an apriori box spanning 40% to 50% on either 
side of  the root. In this case, INTBIS CPU time increases to 100-150 sec. 

3.4. A problem by Gritt0n 
Gritton [1] used a global-fixed point homotopy method to calculate the chemical equilibrium 
in ammonia  synthesis (above-described problem 1 from [9]). The  original problem consists of 
solving the equation '" 

8(4 - x)2x 2 - 0.186 = 0. 
(6 - 3=)~(2 - =) 

In the previous approach, we reduced this problem to the polynomial equation. However, a 
modified iNTBIS can be applied to the original equation as well. 

This equation has a singularity at x = 2, when the denominator  becomes 0. The  initial 
(apriori) interval for x is [ -5 ,  2.5]. INTBIS found both real roots x = -0 .384  and x = 0.278, 
and also found the singularity at 2. 

3.5.  Testing on a transcendental equation 
Watson [11] suggested the following transcendental equation: e x p ( - x 2 )  �9 sin(x) = O. The  roots 
of  this equation coincide with the roots of the equation sin(x) = 0, but the exponential term 
introduces a large variation of  the function in the iliterval [ -25 ,  25]. INTBIS found all the 
roots in this interval. Outside this interval, the left-hand side cannot be computed even with 
double precision variables: it produces either an underflow error (for x < -25) ,  or an overflow 
error (for x > 25). 

3.6. Effect of size of initial region on the INTBIS CPU time 
The  effect of  the size of initial region on the INTBIS CPU time was studied for the two-stage 
reaction problem of Seader et al. [8]. The  results are as follows: 
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% on either 
side of root 

1 
2 
5 

10 
20 
30 
40 
50 
75 

100 

Time ftesZ function 
(in sec) calls calls 

1.68 43 90 
3.35 123 191 
8.43 412 477 

20.73 1098 1188 
39.62 2351 2302 
58.00 3813 3404 
90.67 6301 5198 

152.5 11108 8729 
213.0 15684 12018 
465.2 33423 26558 

G. V. BALAJI t J. D. SEADER 

The dependency of all three parameters (time, f t e s t  calls, and function calls) on the width of 
the initial region was similar and approxitnately quadratic. Therefore, for this method, narrow 
initial bounds will lead to substantial saving of the CPU time. 

40 Conclusions and recommendations 
The facts that INTBIS searches for all the roots (exhaustively) and takes into consideration 
round-off errors makes INTBIS an attractive choice for application in chemical engineering 
design programs. INTBIS can be easily incorporated into programs through its main driver 
routine GENBIS. In spite of the fact that its interval arithmetic is software simulated and 
therefore, reasonably slow, for solving polynomial equations, the resulting CPU times are 
comparable with the CONSOL8 times. When only real solutions are desired, INTBIS requires 
less time than CONSOLS. With the possible availability of interval arithmetic processors, 
INTBIS running time will be substantially reduced, making it competitive for use in design 
and simulation software. 

INTBIS has the added advantage of being applicable to transcendental equations. 

For a system of several transcendental equations, we cannot recommend to use INTBIS in 
its present form, because programming the interval extensions of the functions and Jacobians 
in interval arithmetic is very tedious. For such systems, a modification is needed that would 
automatically create these extensions from the user-provided floating point expression. 
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