
Towards the future of interval computations 

Editors' Introduction to the Student Issue 

The idea of  the student issue. The future of  Interval Computations is with the student 
researchers entering the field. Their  vision, their insights, their approaches will shape the future 
research. To highlight their contributions, the Editorial Board of  the International Journal 
Interval Computations (since 1995, Reliable Computing) decided to make a special issue with high- 
quality papers written by students (either alone, or in co-authorship with their professors). The  
call for papers was issued at the end of  1993, and finally, after the thorough iterative process 
of  refereeing and revision (these papers have undergone the same refereeing as all the other 
papers), we are happy to finally present this issue to the readers. 

The idea of  the student issue turned out to be very successful. The  total volume of  
accepted papers far exceeded a typical issue size, so some papers are moved to other issues 
[2, 7, 8], and several Submitted papers are still under consideration. In view of  this success, we 
suggest to make such student issues regular. 

Let us briefly describe the contents of  this issue. 

Solving systems of  equations: one of  the main problem of numerical mathematics, and how 

interval methods help. One of  the main problems of  numerical mathematics is to solve a 
system of equations f~(:rl . . . .  , :Cn) = 0, 1 < i < n. 1 

For non-linear equations, it is rarely possible to compute the exact solutions in finitely 
many computation steps, so traditional numerical methods (e.g., bisection or Newton's method) 
only ~ve us approximate solutions. These methods rarely provide us with an accuracy of  these 
approximate solutions (i.e., with the guaranteed bounds for the difference between the approx- 
imate solution and the desired exact ones). To get guaranteed bounds (i.e., to get intervals that 
contain the desired values) special (interval) methods are needed. In this issue, the following 
methods are described and used: 

1Another large group of problems are optimization problems f( :r l , . . . ,  :r,~) ~ max, but, e.g., ibr smooth objective 
functions, these problems reduce to solving a system ~f equations O//Ozi = O, where: 

�9 for unconditional optimization, / = f, and 

�9 for conditional optimization under conditions 9i = O, / = f + ~ )~igi 
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�9 For generic systems, interval Newton's~bisection method is described and used in [5] and [6]. 
The  resulting algorithms are applied to design and analysis in chemical engineering (e.g., what 
is the output of  ammonia  synthesis problem for given conditions). 

�9 For systems of polynomial equat/ons, a new interval method is proposed in [7]. This method 
reduces the original system of  n equations with n variables to a triangular system, in 
which, crudely speaking: 

- the first equation has only one unknown, and 

- as soon as we have solved all equations 1 , . . . ,  i, the (i + 1)-st equation also has only 
one unknown. 

This method reduces the solution of a system of n equations with n unknowns to solving 
n equations with one unknown (and equations with one unknown are easier to solve than 
the system). 

�9 When a system takes the form f (z)  = 0 for a complex-valued (analytic) function of  a complex 
variable z = z l  + z2 �9 i, then we have two options: 

- We can apply interval Newton method [1]. In [1], the resulting algori thms are 
applied to chemical engineering. 

- We can also use the argument principle. This principle expresses the number  of  roots 
in an area via the integral  over its boundary curve. By applying the resulting 
roots-counting algorithms to the subboxes obtained by appropr ia te  bisection of  the 
original box, we can find a sufficiently small box that contains the desired root z 
(if the equation f (z)  = 0 has several roots z l , . . . ,  zk, we find k small boxes that 
contain these roots). 

In this issue: 

- In [4], an interval algori thm is described that estimates the number  of  roots in a 
given area. This algori thm can be used to find these roots, or simply to check 
whether roots exist in a given area; the second possibility is used in automatic control 
to check if  a given controlled system is stable. 

- In [t3], an interval algori thm is described that actually finds all the roots. 

Ini t ia l  da ta  can also be uncertain.  In addit ion to inaccuracy of  numerical methods, we may 
often have inaccurate initial data to begin with: this data comes from measurements or  expert  
estimates, and measurements are never 100% accurate. As a result, we, e.g., have equations 
f i ( z l , . . . , z n )  = 0 whose coefficients ck are not precisely known: we only know the intervals 
ck that contain the actual values of  these coefficients. In this case, we are interested in the 
intervals of possible values of solutions zi .  

�9 This problem becomes computationally non-trivial even if we have an explicit expression 
of  x~ in terms of  these coefficients: actually, even for some quadratic expressions xi = 
P2(cl, c2,...), it is impossible to compute the exact intervals for xi in reasonable time. In 
[8], an efficient algori thm is proposed for fractionally linear expressions. This algori thm is 
applied to intelligent control. 
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�9 The  simplest possible systems of equations are linear systems ~ ai jx j  = bi. If  we only 
know intervals aij and b j  for ao  and bj, then in general case, the problem of finding 
the exact bounds for the interval of  possible values of  zi  is computationally intractable 
(for details, see [15]). Many real-life systems have specific features that make them easier 
to solve. Two such examples are given in the issue: 

- In many real-life cases, we have a sparse system (for which the majority of coefficients 
aij are 0). For sparse systems, an efficient algorithm is proposed in [5]. This 
algorithm is applied to chemical kinetics and chemical eng/neer/ng. 

- In many real-life problems, measurement  is so accurate that the difference Ack = 
5 k -  ck between the measured ck and the actual eL values of  the coefficients is 
small. Therefore,  we can effectively neglect terms that are quadratic in terms of  this 
difference Ack. In this case, after we have found the solution s of  the system with 
the coefficients 5k, we get a linearized system to find the difference zi -Y:i ,  and we 
can use one step on Newton's method to solve this system. This method is described 
in [2]; as a case study, it is applied to pavemma engineering. 

�9 For polynom/a/ equations with interval coefficients, an algorithm is proposed in [7]. This 
algorithm is based on reducing the original system of  equations to the triangular system. 

Interpolation: i n t e r v a l  a p p r o a c h .  In the above text, we assumed that we already know the 
dependencies fi  used in the equations. In many real-life situations, however, we do not know 

the exact dependencies; we only know the values y(~) = f i(x~k), . . .  , x  (k)) for some values 

z(k) = (Z~k),...,Z(nk)). To get the values f i ( x l , . . . , x , )  for all x = ( z l , . . . , x n ) ,  we must 
apply interpolation s. There  are infinitely many ways to interpolate a function. For interval 
computations, it is natural to choose an interpolation that leads to the narrowest possible 
intervals of uncertainty in the result. This idea is described and formalized in three papers: 

�9 In [9] and [I2], a general case is considered, in which all functions f~ are apriori possible. 

- In [12], the results are applied to choosing knowledge representation techniques and 
operations with degrees of belief in expert systems and intelligent control. 

- In [9], algorithms are presented that check whether the interpolated dependency 
can be monotonic, and if not, what local extrema it can have. These algorithms are 
applicable to problems from radioastronomy, spectroscopy, particle physics, etc. 

�9 In [3], a case is considered when we do have an apriori information about fi: namely, we 
know that fi  must belong to one of the known finite-parametric classes of  functions (e.g., 
it is either exponential, or polynomial). In this case, we choose a class that leads to the 
narrowest intervals. The  resulting algorithms are applied to the analysis of  psychological 
data. 

In the above two papers, a passive interpolation problem is considered, in which we already 
have the data (x (~), y(k)), and we want to find the best interpolating algorithm. In real life, 
we often have an active interpolation situation, in which we can choose for what points x (k) 
to measure the values y(k) of f~. In this case, we can choose these points x (k) in such a 
way that the interval uncertainty of  the resulting interpolation is the smallest possible. T h e  

2or extmpohaion, if the desired value x is outside the area formed by x (k). 



212 INTRODUCTION 

problem of choosing interpolation points that are the best (i.e., that lead to narrowest intervals) 
is formulated and solved in [10], on the example of coordinate-measuring machines in industrial 
engineering. 

Representing uncertainty in muRi-dimensional case. In the above-cited papers, we assumed 
that we know the interval of possible values ck of each coefficient ck. In this case, possible 
values of the coefficient vector c = (cl, c2, . . . )  form a rectangular box cl • c2 • --" In real life, 
some sources of error may be common to measurements to measuring several coefficients. As 
a result, not all combinations c = (c t ,c2 , . . . )  are possible, and the actual set of possible values 
of  c can be different from a box (e.g., it can be a parallelepiped, or an ellipsoid, etc). 

The shape of this set may be too complicated for computational processing, so it can be 
approximated by sets of  simpler shape. 

In [11], it is shown that if we restrict the complexity of  algorithms that process these 
sets, then parallelepipeds are the only possible choice. This result is applied to knowledge 
representation in knowledge-based systems. 
Interval computations often require large computation time. Traditional numerical methods, 
that compute only the estimate for the desired value{s), often require many operations, and, 
therefore, take a lot of computation time. Interval analogues of these methods, in addition 
to the estimates themselves, compute accuracies of  these estimates (i.e., intervals that contain 
the true values of the desired quantities). Because of  the necessary extra computational steps, 
interval computations take even longer computation time. 

Therefore, in many cases, it is important to speed up interval computations. 

How to speed up interval computations? One way to speed up interval computations is to 
come up with a faster algorithm. This is, however not always possible, because in general, 
the problems of  interval computations are computationally intractable (NP-hard) (for exact 
definitions and formulations, see, [15]). 

So, if we have" an algorithm that cannot be made faster (or at least we do not know how 
to make it faster}, then the only way to make it run faster is to change the hardware (i.e., the 
computer on which this algorithm runs). There  are two possible ways to do that: 

�9 First, we can use the existing faster hardware. A natural way to speed up computations is 
have several processors working in parallel. In this issue, parallelization is proposed: 

- in [5, 6], to solve systems of  non-linear equations (paralld computer: CRAY); 

- in [5], to solve sparse systems of linear equations (parallel computer: CRAY); 

- in [13], to find roots of complex functions (parallel computer: a network of inter- 
connected workstations). 

�9 Second, we can design new hardware, new computer architecture that is specifically tailored 
for interval computations. Such a design is proposed in [14]. 

The fact that interval computations often require large computation time has a bright side. 
A typical proof that some problem P is very computationally complicated (i.e., that it requires 
a large computation time to solve) is by showing that some other problem P '  (that is already 
known to be computationally complicated) can be reduced to solving particular cases of  the 
problem P. Such proof uses a negative side of  the reduction: since P '  is difficult to solve, P is 

also difficult to solve. 

It turns out that this reduction also has a bright side: if we have a heuristic that solves 
many instances of the problem P,  then we may hope that by: 
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�9 reducing P' to P, and 

�9 applying this heuristic to a resulting particular case of P, 

we will also be able to solve important instances of the difficult-to-solve problem P~. 

In [15], several known heuristics of interval computations are used in this manner to 
generate successful heuristics for the so-called propositional satisfiability problem that is known to 
be difficult-to-solve? 

Thanks. We would like to thank the authors for their excellent job, and the anonymous 
referees for their thorough and unrewarding job of reviewing the papers. We want to thank 
51ava Nesterov, who initially proposed the idea of the issue, who encouraged and supported us 
all this time, and who even handled refereeing of severaI papers from this issue. He can truly 
be called the third co-editor of this student issue. Finally, we want to thank the University 
,,f Texas at E1 Paso and NASA Grant No. 9-757 for financial support that helped make this 
issue possible. 
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