
Towards the future of interval computations

Editors' Introduction to the Student Issue

The idea of the student issue. The future of Interval Computations is with the student
researchers entering the field. Their vision, their insights, their approaches will shape the future
research. To highlight their contributions, the Editorial Board of the International Journal
Interval Computations (since 1995, Reliable Computing) decided to make a special issue with high-
quality papers written by students (either alone, or in co-authorship with their professors). The
call for papers was issued at the end of 1993, and finally, after the thorough iterative process
of refereeing and revision (these papers have undergone the same refereeing as all the other
papers), we are happy to finally present this issue to the readers.

The idea of the student issue turned out to be very successful. The total volume of
accepted papers far exceeded a typical issue size, so some papers are moved to other issues
[2, 7, 8], and several Submitted papers are still under consideration. In view of this success, we
suggest to make such student issues regular.

Let us briefly describe the contents of this issue.

Solving systems of equations: one of the main problem of numerical mathematics, and how

interval methods help. One of the main problems of numerical mathematics is to solve a
system of equations f~(:rl , :Cn) = 0, 1 < i < n. 1

For non-linear equations, it is rarely possible to compute the exact solutions in finitely
many computation steps, so traditional numerical methods (e.g., bisection or Newton's method)
only ~ve us approximate solutions. These methods rarely provide us with an accuracy of these
approximate solutions (i.e., with the guaranteed bounds for the difference between the approx-
imate solution and the desired exact ones). To get guaranteed bounds (i.e., to get intervals that
contain the desired values) special (interval) methods are needed. In this issue, the following
methods are described and used:

1Another large group of problems are optimization problems f(:r l , . . . , :r,~) ~ max, but, e.g., ibr smooth objective
functions, these problems reduce to solving a system ~f equations O//Ozi = O, where:

�9 for unconditional optimization, / = f, and

�9 for conditional optimization under conditions 9i = O, / = f + ~)~igi

210 INTRODUCTION

�9 For generic systems, interval Newton's~bisection method is described and used in [5] and [6].
The resulting algorithms are applied to design and analysis in chemical engineering (e.g., what
is the output of ammonia synthesis problem for given conditions).

�9 For systems of polynomial equat/ons, a new interval method is proposed in [7]. This method
reduces the original system of n equations with n variables to a triangular system, in
which, crudely speaking:

- the first equation has only one unknown, and

- as soon as we have solved all equations 1 , . . . , i, the (i + 1)-st equation also has only
one unknown.

This method reduces the solution of a system of n equations with n unknowns to solving
n equations with one unknown (and equations with one unknown are easier to solve than
the system).

�9 When a system takes the form f (z) = 0 for a complex-valued (analytic) function of a complex
variable z = z l + z2 �9 i, then we have two options:

- We can apply interval Newton method [1]. In [1], the resulting algori thms are
applied to chemical engineering.

- We can also use the argument principle. This principle expresses the number of roots
in an area via the integral over its boundary curve. By applying the resulting
roots-counting algorithms to the subboxes obtained by appropr ia te bisection of the
original box, we can find a sufficiently small box that contains the desired root z
(if the equation f (z) = 0 has several roots z l , . . . , zk, we find k small boxes that
contain these roots).

In this issue:

- In [4], an interval algori thm is described that estimates the number of roots in a
given area. This algori thm can be used to find these roots, or simply to check
whether roots exist in a given area; the second possibility is used in automatic control
to check if a given controlled system is stable.

- In [t3], an interval algori thm is described that actually finds all the roots.

Ini t ia l da ta can also be uncertain. In addit ion to inaccuracy of numerical methods, we may
often have inaccurate initial data to begin with: this data comes from measurements or expert
estimates, and measurements are never 100% accurate. As a result, we, e.g., have equations
f i (z l , . . . , z n) = 0 whose coefficients ck are not precisely known: we only know the intervals
ck that contain the actual values of these coefficients. In this case, we are interested in the
intervals of possible values of solutions zi .

�9 This problem becomes computationally non-trivial even if we have an explicit expression
of x~ in terms of these coefficients: actually, even for some quadratic expressions xi =
P2(cl, c2,...), it is impossible to compute the exact intervals for xi in reasonable time. In
[8], an efficient algori thm is proposed for fractionally linear expressions. This algori thm is
applied to intelligent control.

INTRODUC'TION 211

�9 The simplest possible systems of equations are linear systems ~ ai jx j = bi. If we only
know intervals aij and b j for ao and bj, then in general case, the problem of finding
the exact bounds for the interval of possible values of zi is computationally intractable
(for details, see [15]). Many real-life systems have specific features that make them easier
to solve. Two such examples are given in the issue:

- In many real-life cases, we have a sparse system (for which the majority of coefficients
aij are 0). For sparse systems, an efficient algorithm is proposed in [5]. This
algorithm is applied to chemical kinetics and chemical eng/neer/ng.

- In many real-life problems, measurement is so accurate that the difference Ack =
5 k - ck between the measured ck and the actual eL values of the coefficients is
small. Therefore, we can effectively neglect terms that are quadratic in terms of this
difference Ack. In this case, after we have found the solution s of the system with
the coefficients 5k, we get a linearized system to find the difference zi -Y:i , and we
can use one step on Newton's method to solve this system. This method is described
in [2]; as a case study, it is applied to pavemma engineering.

�9 For polynom/a/ equations with interval coefficients, an algorithm is proposed in [7]. This
algorithm is based on reducing the original system of equations to the triangular system.

Interpolation: i n t e r v a l a p p r o a c h . In the above text, we assumed that we already know the
dependencies fi used in the equations. In many real-life situations, however, we do not know

the exact dependencies; we only know the values y(~) = f i(x~k), . . . , x (k)) for some values

z(k) = (Z~k),...,Z(nk)). To get the values f i (x l , . . . , x ,) for all x = (z l , . . . , x n) , we must
apply interpolation s. There are infinitely many ways to interpolate a function. For interval
computations, it is natural to choose an interpolation that leads to the narrowest possible
intervals of uncertainty in the result. This idea is described and formalized in three papers:

�9 In [9] and [I2], a general case is considered, in which all functions f~ are apriori possible.

- In [12], the results are applied to choosing knowledge representation techniques and
operations with degrees of belief in expert systems and intelligent control.

- In [9], algorithms are presented that check whether the interpolated dependency
can be monotonic, and if not, what local extrema it can have. These algorithms are
applicable to problems from radioastronomy, spectroscopy, particle physics, etc.

�9 In [3], a case is considered when we do have an apriori information about fi: namely, we
know that fi must belong to one of the known finite-parametric classes of functions (e.g.,
it is either exponential, or polynomial). In this case, we choose a class that leads to the
narrowest intervals. The resulting algorithms are applied to the analysis of psychological
data.

In the above two papers, a passive interpolation problem is considered, in which we already
have the data (x (~), y(k)), and we want to find the best interpolating algorithm. In real life,
we often have an active interpolation situation, in which we can choose for what points x (k)
to measure the values y(k) of f~. In this case, we can choose these points x (k) in such a
way that the interval uncertainty of the resulting interpolation is the smallest possible. T h e

2or extmpohaion, if the desired value x is outside the area formed by x (k).

212 INTRODUCTION

problem of choosing interpolation points that are the best (i.e., that lead to narrowest intervals)
is formulated and solved in [10], on the example of coordinate-measuring machines in industrial
engineering.

Representing uncertainty in muRi-dimensional case. In the above-cited papers, we assumed
that we know the interval of possible values ck of each coefficient ck. In this case, possible
values of the coefficient vector c = (cl, c2, . . .) form a rectangular box cl • c2 • --" In real life,
some sources of error may be common to measurements to measuring several coefficients. As
a result, not all combinations c = (c t ,c2 , . . .) are possible, and the actual set of possible values
of c can be different from a box (e.g., it can be a parallelepiped, or an ellipsoid, etc).

The shape of this set may be too complicated for computational processing, so it can be
approximated by sets of simpler shape.

In [11], it is shown that if we restrict the complexity of algorithms that process these
sets, then parallelepipeds are the only possible choice. This result is applied to knowledge
representation in knowledge-based systems.
Interval computations often require large computation time. Traditional numerical methods,
that compute only the estimate for the desired value{s), often require many operations, and,
therefore, take a lot of computation time. Interval analogues of these methods, in addition
to the estimates themselves, compute accuracies of these estimates (i.e., intervals that contain
the true values of the desired quantities). Because of the necessary extra computational steps,
interval computations take even longer computation time.

Therefore, in many cases, it is important to speed up interval computations.

How to speed up interval computations? One way to speed up interval computations is to
come up with a faster algorithm. This is, however not always possible, because in general,
the problems of interval computations are computationally intractable (NP-hard) (for exact
definitions and formulations, see, [15]).

So, if we have" an algorithm that cannot be made faster (or at least we do not know how
to make it faster}, then the only way to make it run faster is to change the hardware (i.e., the
computer on which this algorithm runs). There are two possible ways to do that:

�9 First, we can use the existing faster hardware. A natural way to speed up computations is
have several processors working in parallel. In this issue, parallelization is proposed:

- in [5, 6], to solve systems of non-linear equations (paralld computer: CRAY);

- in [5], to solve sparse systems of linear equations (parallel computer: CRAY);

- in [13], to find roots of complex functions (parallel computer: a network of inter-
connected workstations).

�9 Second, we can design new hardware, new computer architecture that is specifically tailored
for interval computations. Such a design is proposed in [14].

The fact that interval computations often require large computation time has a bright side.
A typical proof that some problem P is very computationally complicated (i.e., that it requires
a large computation time to solve) is by showing that some other problem P ' (that is already
known to be computationally complicated) can be reduced to solving particular cases of the
problem P. Such proof uses a negative side of the reduction: since P ' is difficult to solve, P is

also difficult to solve.

It turns out that this reduction also has a bright side: if we have a heuristic that solves
many instances of the problem P, then we may hope that by:

INTRODUCTION 213

�9 reducing P' to P, and

�9 applying this heuristic to a resulting particular case of P,

we will also be able to solve important instances of the difficult-to-solve problem P~.

In [15], several known heuristics of interval computations are used in this manner to
generate successful heuristics for the so-called propositional satisfiability problem that is known to
be difficult-to-solve?

Thanks. We would like to thank the authors for their excellent job, and the anonymous
referees for their thorough and unrewarding job of reviewing the papers. We want to thank
51ava Nesterov, who initially proposed the idea of the issue, who encouraged and supported us
all this time, and who even handled refereeing of severaI papers from this issue. He can truly
be called the third co-editor of this student issue. Finally, we want to thank the University
,,f Texas at E1 Paso and NASA Grant No. 9-757 for financial support that helped make this
issue possible.

References

[1] Balaji, O. V. and Seader, J. D. Application of interval-Newton method to chemical engineering
problems. Reliable Computing 1 (3) (1995).

[2] Ferregut, C., Nazarian, S., Vennalganti, K., Chang, C. C., and Kreinovich, V. Fast error
estimates for indirect measurements: applications to pavement engineering. Reliable Computing 9.
(1996), to appear.

[3] Friesen, B. H. and Kreinovich, V. Ockham's razor in interval identification. Reliable Computing
1 (3)(1995).

[4] Herlocker, J. and Ely, J, An automatic and guaranteed determination of the number of roots of an
analytic function interior to a simple closed curve in the complex plane. Reliable Computing 1 (3)
(1995).

rs] Hu, Ch., Frolov, A., Kearfott, R. B., and Yang, Q. d general iterative sparse linear solver and
its paraUelization for interval newton methods. Reliable Computing 1 (3) (1995).

[6] Hu, Ch., Sheldon, J., Kearfott, R. B., and Yang, Q. Optimizing INTBIS on the CRAY Y-MP.
Reliable Computing 1 (3) (1995).

[7] J~iger, C. and Ratz, D. ,4 combined method for enclosing all solutions of nonlinear systems of polynomial
equations. Reliable Computing 1 (1) (1995],

[8] Lea, R., Kreinovich, V,, and Trejo, R, Optimal interval enclosures for fractionally-linear functions,
and their application to intelligent control, Reliable Computing 2 (1996), to appear.

3Crudely speaking, propositional satisfiabi!ity prohlem i~i as fi~llows:
Given: a P~Jolean expre.~qm~ F , i.e., the result of applying ~and", "ar", and ~not" to

t?~xJlean (the, e-false) variables v~ , v m.

Find: the values of lhe variahtes vl,.,. , Vm that make this expression F trlle

214 INTRODUCTION

[9] Lorkowski, J. and Kreinovich, V. I f we measure a number, we get an interval. What if we measure
a function or an operator? Reliable Computing 2 (1996), to appear.

[10] McLean, T. J. and Xu, D. H. Study on sampling techniques with CMMs. Reliable Computing 1
(3) (1995).

[11] Misane, D. and Kreinovich, V. A new characterization of the set of all intervals, based on the
necessity to check consistency easily. Reliable Computing 1 (3) (1995).

[12] Nguyen, H. T., Kreinovich, V., Lea, R., and Tolbert, D. Interpolation that leads to the narrowest
intervals, and its application to expert systems and intelligent control. Reliable Computing 1 (3)
(1995).

[13] Schaefer, M. J. and Bubeck, T. ,4 paralld complex zero finder. Reliable Computing 1 (3) (1995).

[14] Schuhe, M. and Swartzlander, E. E. A hardware design and software interface for variable-precision
interval arithmetic. Reliable Computing 1 (3) (1995).

[15] Traylor, B. and Kreinovich, V. A bright side of NP-hardness of interval computations: intem~
heuristics applied to NP-problems. Reliable Computing 1 (3) (1995).

V. Ka~ovxcn

G. MA~.x

