
Reliable Computing 1 (2) (1995), pp. 189-199

Parallel accurate
JORGEN WOLFF VON GUD~NBERG

linear algebra subroutines

In this paper we present a set of linear algebra subroutines which serve as building blocks for numerical
software, and develop algorithms to implement these subroutines as a portable library for parallel
computers. We consider these routines as a part o| the standard arithmetic of a computer 'I'here|i~re
they have to deliver a ~alidated result of high accuracy

FIapaAAeAbi-ibie BBICOKOTOqHBIe
A Hefm0-aAre6paH ecK e IIOanporpaMMbI
IO. Bo^r,-~ ,OH FYAHqB~Pr

I"Ipe;1CTaB,leH Ha('x}p .71tHerglHo.-a2"trc-~parltteClr itO:lllporpaMbl, KOTOpble ,MoryT s ClffDI'I'e,lbHbiMll

{~dlOKaMlt ,'I,'I$I M|IC2IeHHC3FO llporpaMMHOrO (~KlleqeHl.II.I, a TaK)Ke a,~IrOpHTMbl ,'1,'I/4 p~'IH2~,I.III-IH 3TI{X

llO/lllpOrpaMM B B|13e IIep~HoGHIMOI4 6HfaI4OTeKH a n n n a p a . a . l e n b m a x KOMIIMorepott, ~I 'H l l l~ t le : lypbl

paccMaTpHBalOTC.q liaK qacTb CTaHaapTHOfi apHC~MeTMKll KOMllbloTepa, tlO3TOmy OHH ~lO,q.~KHbl ~)3Bpa-

lltaTb npoB~pCfHHbllTI pe3v,'IbTaT BblCOKOI~I TOqHOCT|I.

1. Basic linear algebra subprograms
Arithmetic operations for matrices and vectors play a vital role in the basic building blocks for
numeric software. Therefore Basic Linear Algebra Subprograms (BLAS) have been designed
for many languages, especially for FORTRAN. The construction of efficient, portable software
is strongly supported by using these routines. The BLAS routines can be divided into three
levels: vector/vector operations (Level 1), matrix/vector operations (Level 2), and matrix/matrix
operations (Level 3).

Levels 2 and 3 are important for parallel and vector computers which are becoming more
and more popular, and which are used for large scale numerical problems. As a parallel
computer, we consider a loosely coupled network of processors with local memory. The parallel
computer (or processing network) is driven by a host computer which distributes the data and
controls the communication between the various processors. A fixed network topology, e.g.
a grid, a tree, or a hypercube, is assumed. All processing elements execute the same code
on different data. Gommunicadon is by message passing (and not by access to common
memory). This concept is called SPMD (single -program--mult iple data) even if the code must
be replicated to every processing element. This programming model lies between the strict
SIMD mode (where every instruction is identical on all processors) and the MIMD mode (where
each processor may perform different code).

We consider the following BLAS routines. In our description, a, fl denote scalars, x, y
denote vectors, A, B, C denote matrices of real numbers, and T denotes a lower triangular
real matrix.

@ j. Wolff yon Gudenberg, 1995

190

Level 1

Scalar multiplication with update

X

A

Dot product with update

:= 2:c + c~y;

:= fl A + c~ B.

Ot : = flO~ + xTy.

J. WOLFF V O N GUDENBERG

For efficiency, the special case fl = 0 may be implemented separately.

The first two routines compute scalar products of length 2, while the third one is a
general scalar product with n or n + 1 components.

Level 2

Matrix vector product with update

x : = f lx+o tAy; x := fix+o~ATy;
z := Tx; ~ . - TTx.

Solution of triangular system

x := T-ix; x := (T-1)Tx.

The matrix vector product computes dot products multiplied by ~.

The solution of a triangular system may be implemented using dot products.

The rank-one update A := o~xp T + A is not considered in this paper, because its compu-
tation with 1 ulp (unit in last place) accuracy is not important for the overall accuracy of an
algorithm.

Level 3

Matrix products

C := flC+o~AB; C := flC+xo~ATB;
C := flC+oLABT; C := f lC+o~ATB T.

Solution of triangular systems with multiple right-hand sides

B := T-ZB; B := (T-1)TB.

2Q Accurate reliable arithmetic
We want not only to increase efficiency, but to increase accuracy as well. Since we consider
the BLAS routines as a (secondary) standard, we require that they shall be as accurate as usual
standard functions. In other words, our matrix multiplication, e.g. is as accurate as usual real
multiplication, i.e. the error is less than 1 ulp for every matrix component.

An optimal scalar product algorithm suffices to compute all the products in which c~ E
{ - 1 , 0, 1} with guaranteed accuracy of one ulp. This scalar product algorithm either uses a

PARALLEL A C C U R A T E LINEAR ALGEBRA SUBROUTINES 191

long accumulator or the Bohlender algorithm [4]. In both cases, the exact scalar product can
be represented as a sum of real numbers

P

3 ~ - Z 8 i
i = 1

so the multiplication with c~ is just another scalar product. Details concerning overflow and
efficient implementation are given in Section 2.2.

An algorithm for the solution of triangular systems with the same accuracy requirement
is proposed in [3].

The final result of a complete algorithm, e.g., of the solution of a linear system, will
either be computed with guaranteed high accuracy, or enclosed into a sharp interval. For this
purpose, several additional BLAS routines are provided.

2.1. A d d i t i o n a l subrout ines

Level A

Generalized matrix-vector products

[z] := /3x+a~-~A~,~y~,;
v = l p ,= l

$

[z] := 9~ + aT ~ y..
,u=l

Generalized matrix product

u=l ~=i

Here, enclosures [z], [D] are computed, and in the general case, a = 4-1 and r = 1.

Interval matrix-vector multiplication

Interval matrix multiplication

Ix] := [A][y].

[el := [A][B].

T h e solution of triangular systems with interval right hand side

[~] := T-l[x]

is given in two versions: one for a relatively coarse enclosure, and one which computes the
best possible interval vector.

192 1. WOLFF VON GUDENBERG

2.2. Long and short sequential dot products
Usually optimally accurate dot products are calculated using a so-called long fixed-point accu-
mulator, but for short vector length the Bohlender algorithm using addition with remainder
,nay be more efficient.

The breakpoint between the two algorithms has to be calculated for each floating-point
format.

If a long accumulator is used, the multiplication of a dot product by a floating-point
munber should be implemented directly without building an intermediate real vector repre-
senting the dot product. If the exponent of this product exceeds the exponent range of the
accumulator, an overflow exception is appropriate, since the addition of one twofold product
cannot adjust the final value of the operation in such a way that it would belong to the usual
floating-point format. The underflow information (whether there are significant digits beyond
the least accumulator digit) may be relevant fi), the final result and thus has m be kept.

31 Data distribution

3.1. Distribution patterns
The distribution of matrices or vectors crucially effects the performance of the algorithms.
From the algorithmic point of view vectors may be distributed as contiguous segments or
scattered cyclically, and matrices may be considered as vectors of rows or vectors of columns.
Furthermore matrices may be distributed blockwise or each block may be scattered cyclically
forming a grid pattern.

All these patterns can easily be archieved in modern data parallel languages like Modula 2*
or High Performance Fortran. In Modula 2* [5] e.g., the allocators SPREAD or CYCLE are
applicable for each dimension of an array. SBLOCK or CBLOCK combine various SPREAD
or CYCLE allocators, respectiveiy, and thus produce the block and grid pattern. LOCAL and
RANDOM are further allocators.

In order to support portability a libra D" shall be designed following the algorithmic
distribution of data. An exhaustive library would contain a subroutine for each combination of
input/output patterns. But in practive only a few patterns will give a sufficient speed-up. This,
of course, also depends on the underlying hardware, its arithmetic performance, communication
time, and network topology.

The BLAS routines generally gain time if nearest-neighbor communication is fast, thus
favoring the linear segmentation; on the other hand, the parallel solution of a given problem
may be better for scattered data. The trade-off between efficient BLAS routines using redistri-
bution vs. the direct use of less efficient routines without communication has to be considered
for the overall performance of an algorithm.

It will be an interesting topic to develop strat~/gies for automatic support of data distribu-
tion.

3.2. Development of the algorithms
In the following we

1. First, dertermine the optimal distribution for each algorithm, and compute its possible
speed-up.

PARALLEL ACCURATE LINEAR ALGEBRA SUBROUTINES 193

.

.

Second, describe the communication method for distributing the centralized input data
and for collecting the results. It turns out that we need a mainly homogeneous distribution
of matrices by rows or columns, and broadcast of vectors and scalars. These routines
have to be implemented for each parallel computer. Their performance depends on the
hardware topology.

We then develop versions of the algorithms which exploit a reasonable initial distribution
of data and also consider the required amount of available memory per processor, which
determines the largest possible problem size and therefore, crucially limits the choice of
the algorithm.

Notations and simplifying assumptions

�9 Dimension of vectors is n.

�9 Matrices are n x n. Generalization to rectangular matrices is obvious.

�9 There are p2 processors where n = k - p.

�9 fgs(n) denotes the time for the calculation of a dot product of n components.

�9 fgA the time to add two long accumulators.

�9 fgTn the transport time, i.e., a time that it takes to transport a real number to an adjacent
processor.

40 Parallel accurate BLAS routines

4.1.

a) x : ~

1)

2)
3)

b) ~ : ~

1)

Level 1

fix + c~y; A := flA + aB.

Any distribution where a is broadcast and each processor has the same amount of
vector or matrix elements with corresponding subscripts is optimal. Afterwards the
result follows the same pattern. The speed-up obviously is p2.

Data distribution: Homogeneous partition.

A segmented or blockwise distribution of input and output data corresponds to the
optimal distribution.

fla + xy T.

In the optimal distribution, a is kept on one processor, and x and y are equally
partitioned. Parallel partial dot products are computed on each processor. The re-
sulting long accumulators are added in logarithmic time using the fan-in summation
algorithm.

Due to the transport of long accumulators speed-up ratios of more than !o2/2 require
relative long vectors and fast communication [6].

194' J. WOLFF VON GUDENBERG

2) It generally does not pay to parallelize a scalar product for centralized data. We
therefore sequentally compute all dot products in the level-2 and level-3 routines.

3) In case of a single dot product, if the vector length is large enough proceed like 1),
else collect vector and compute sequential dot product.

4.2. Level 2
a) x := fix + nAy; x := 3 x + o~ATy.

1) Row-wise distribution of A is optimal, if y. a. 3 are available on all processors, x is
distributed by the same pattern as the rows of A. Exchange rows with columns for
the second procedure.

�9 Compute first component of A,,y, where A,~ denotes the 7r-th processor's parti-
tion of A.

�9 Multiply by a and update.

�9 Repeat these two steps for the other components.

Since all processors are working without communication or synchronisation the
speed-up again is p2.

2) The optimal distribution can be achieved by a homogeneous partition of A and x,
and a broadcast of y, c~,/3.

3) Since the redundancy of storing one vector is not so high we suggest the optimal
algorithm. Note that only one accumulator is needed on each processor.

b) z := Tz .

1) The n(n + 1)/2 elements of a matrix T are distributed so that each processor has
the same number of elements, but only complete rows. To achieve that, let us define
k~ so that ko = 0 and

k.+l n(n + 1) t~,§ Z i < _< Z i.
{=*k~+l t----k~+l

Then each processor ~r obtains rows k,r-1 + 1 through k~.

The first k~ elements of vector x are available on processor ~r. The result vector z
is distributed like the rows of T.

Although the computation is independent, a speed-up of p2 can not be reached, be-
cause the data can not be distributed equally (the assumption of equally distributable
data was very optimistic in the other cases as well).

2) A nearly homogeneous partition of T goes along with a rather inhomogeneous
partition and duplication of x. Different numbers of results are collected from
different proCemors.

This inhomogenlity can be decreased, if the rows are distributed in a round robin
manner, where the different runs start alternatively either from the end (i.e. from
row n, which contains the larest number of elements), or from the beginning rows
(which contain few elements).

PARALLEL ACCURATE LINEAR ALGEBRA SUBROUTINES 195

c)

3) We suggest to implement a version for a row-wise scattered matrix distribution,
because this standard pattern is the best approximation for the optimal distribution.

z := T T x analogously.

:/: := T-ix; x := (T-1)TZ.

T h e solution of a triangular system cannot be implemented without communication, since
the newly calculated solution components have to be used right after their computation.

T h e algori thm is a linear recurrence relation of order 1 to n - 1.

Various techniques to parallelize the algorithm have been proposed. Reith [6] discusses 3
versions which apply the optimal dot product wherever possible: a cyclic form, a pipelined
version of a cyclic form, and a form based on data broadcast.

If these routines yield maximum accuracy of the result, the intermediate solution vector
can be kept in staggered correction form

p,=I

to simulate nearly s-fOld working precision. For this purpose the following routines are
called

[z] := x - ~ T E ~ _ l y , ;
[z] := T- I [~] .

They belong to the additional level A (see below). The first one is a generalization of
Z : = Tx.

Since the second routine is used to enclose the global s-th defect of a solution, i.e. the
defect of an s-fold multiple precision approximation, high accuracy is not necessary in
this case.

4.3. Level 3

a) C := tiC + aAB.

1) I f the matrices C and A are distributed row-wise, and the matrix B is broadcast to all
processors, the result can be computed componentwise similar to the corresponding
level 2 subroutine.

This, however, means an enormous amount of storage per processor and therefore,
is not feasible.

A slightly better solution is to partition C and A row-wise, and to partition B colum-
nwise in a divide-and-conquer style, and collect the results after the computation.

2) T h e optimal distribution requires the p-fold storage capacity. Each of p2 processors
obtains n2/p elements of each matrix, and computes n2/p elements of the result.

3) In the following, we discuss algorithms which only store the data once and therefore
need communication during the computation. T h e algorithms are characterized by
their internal communication topology. The algorithms have been analyzed setting
f l = 0 and a = l [8].

196 J. WOLFF VON GUDENBERG

i) Ring Algorithm.

�9 Distribute C and A by rows and B by columns, broadcast/3 and c~. Each processor
receives nip 2 full rows of C, A and nip 2 full columns of /3 .

�9 Repeat the following two steps p2 times.

�9 Compute n2/p 4 dot products to obtain the corresponding (n/p 2) • (n/p 2) block of
the result matrix C.

�9 Rotate matrix B.

After the initial distribution this algorithm requires the following time:

n 2
p--~- - O s (n) + nZ(~TR.

This yields a real speed-up, if

e r r < 1 - ~ (n) .

ii) Torus Algorithm.

�9 Distribute A, B and C blockwise, broadcast /3 and a. Each processor receives a
(n/p) x (n/p) block of each matrix.

�9 Stagger the matrices A and B by appropriate row or column rotations, so that each
processor can multiply its blocks.

�9 The product of the blocks of A and /3 now contributes to the resulting block of O.
Blockwise rotations of A along rows and /3 along columns bring the next matching
blocks together. After p rotations, the result is computed. This, however, requires
n2/p 2 long accumulators per processor, because we have to store all intermediate
results with full length. Four versions of this algorithm are discussed in [9]. The
one with the least memory requirements rotates parts of the blocks only, so that
one dot product is completed per processor before the computation of the next one
starts.

After the initial distribution, this algorithms requires the following time:

Speed up is achieved if

--Os + --OA + 2 + OTR.
P P

OA + 2n---OTR < p@s(n).
P

iii) Tree Algorithm.

This is a version of the divide-and-conquer algorithm which only needs storage for
2n + p2 + 2 elements on each processor.

�9 Distribute the first p2 rows of A, the columns of B, and the upper left p2 x p2 block
of C.

PARALLEL ACCURATE LINEAR ALGEBRA SUBROUTINES 197

Compute the first new p2 x p2 block of C by corresponding permutation of the
columns o f /3 .

Store this part.

Redistribute the next block of C and columns of /3 and repeat the computation
until the first row of the result is complete.

Repeat these steps for the next p2 rows of A n,/p 2 times.

b)

The algorithm needs approximately

72 2
~--~E)s(n) + 1.34n3OTR

time for ~ -- 1 and fl = 0. Only for very fast communication, i.e., when

1.34nGTR < 1 -- ~ O s (n)

this will give a speed-up.

It is obvious that fl =fi 0 only changes ~ (n) to Os(n + 1). If c~ # 1, then one additional
dot product of constant maximal length (depending only on the long accumulator format)
is necessary for each component.

The other matrix products are treated similarly.

B := T-IB; B := (T-X)TB.

The corresponding algorithms for a single right hand side may be adapted.

4.4. Level A

T h e first three algorithms of this level are generalisations of level 2 or level 3 algorithms. T h e
dot products are computed from multiple input matrices and vectors. They can however be
ar ranged in such order that one long accumulator suffices. This accumulator which keeps the
full information is then rounded twice. This only adds a constant time.

a) [z] := fix + ~ ~ = 1 A~ ~ = 1 y~,.

Matrices A~ and vectors Yu are distributed as described for the simple matrix-vector
product in 4.2.a). The exact dot product expression is determined and then rounded
outwardly.

b) [z] := a x + ~ T E ; = ~ y~.

This important special case can be implemented like z := Tx .

r A s c) [/9] := tiC + c~ Z~=~ ~ Z.=~ G -

Proceed similarly to the matrix product, but note that the resulting matrix is not an
input argument.

198 I. WOLFF VON GUDENBERG

d) [x] := T-l[x].

The solution of a triangular system with interval right hand side is an important operation
which often is underestimated. Rump [7] reduces this problem to the determination of a
validated lower bound for the smallest singular value er of T. This can be achieved by
Cholesky factorzation of T T T - / k 2 I where A is an approximation of a. The algorithm
uses the generalized dot product expressions of the form c) for triangular matrices.

e) Ix] := a[A][y] and [C] := a[d][B]

are interval versions of the corresponding real functions. They use the interval dot
product which computes the smallest interval containing all dot products of vectors
arbitrarily taken out of the two input interval vectors. A short dot product with two
summands is computed to determine the relevant bounds for each component. Then two
real dot products are calculated with directed rounding. Although there is a little more
work to do for each component, the parallelization of interval scalar products itself is
not very promissing. We therefore suggest to proceed similarly to the real (non-interval)
versions.

Updating versions with interval inputs always increase the width of the intervals and are
therefore not feasible.

5. Summary
We have shown that an optimal dot product algorithm suffices to implement all the BLAS
routines with the required accuracy. Practical experiences with parallel computers show that
the trade-off to usual matrix multiplication is not so bad [2, 10], if floating-point arithmetic
and dot product computation are equally supported by hardware.

References
[1] Albrecht, R., Alefeld, G., and Stetter, H. J. (eds) Validraion numerics. Computing Suppl. 9

(1993).

[2] Bohlender, G. and Wolff yon Gudenberg, J. Accurate matrix m~dtiplication on the array processor
AMT-DAP. In: Kaucher, E., Markov, S. M., and Mayer, G. (eds) "Computer Arithmetic,
Scientific Computation and Mathematical Modelling", IMACS Annals on Computing and
Applied Mathematics t2 (1992).

[3] Cordes, D. and Kaucher, E. Self-validraing comInaation for sparse matrix problems. In: Kaucher, E.,
Kulisch, U., and Ullrich, C. (eds) "Computerarithmetic", Teubner, Stuttgart, 1987.

[4] Kulisch, U. and Miranker, W. L. The arithmetic of the digital comp~aer: a new approach. SIAM
Review 28 (1) (March 1986).

[5] Philipsen, M. and Tichy, W. Compiling for massively parallel rrutchines. In: "Proc. of Code-
Generation-Concepts, Tools, Techniques", Springer Series on Workshops in Computing,
1992.

PARALLEL ACCURATE LhNEAR ALGEBRA SUBROUThNES 199

[6] Reith, R. Wissensctutftliches Rechnen auf M~dticompatern--BLAS-RoatiTu'n und die Lb~ng linearer
Gleichungssystenw mit Fehlerkontrolle. Dissertation, Universi6it Basel, 1993.

[7] Rump, S. M. Validaled sohUion of large linear systons. In: [1].

[8] Wolff yon Gudenberg, j. Modelling SIMD--type parallel arithmetic operations in Ada. In:
Christodoulakis, D. (ed.) "Ada: The Choice for '92", LNCS 499, Springer, Berlin, 1991.

[9] Wolff von Gudenberg, J. Accurate matrix operations on h~ercube comp2aers. In: Herzberger, J.
and Atanassova, L. (eds) "Computer Arithmetic and Enclosure Methods", North-Holland,
Amsterdam, 1992.

[10] Wolff von Gudenberg, J. lmphnnentation of accurate matrix m~dtiplication on the CM-2. In: [1].

Received:
Revised version:

September 8. 1993
September 25, 1994

Lehrstuhl fi.ir Informatik II
Universit~t Wfirzburg

Am HubIand
D-97074 Wfirzburg

Germany

