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Parallel accurate 
JORGEN WOLFF VON GUD~NBERG 

linear algebra subroutines 

In this paper we present a set of linear algebra subroutines which serve as building blocks for numerical 
software, and develop algorithms to implement these subroutines as a portable library for parallel 
computers. We consider these routines as a part o| the standard arithmetic of a computer 'I'here|i~re 
they have to deliver a ~alidated result of high accuracy 
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1. Basic linear algebra subprograms 
Arithmetic operations for matrices and vectors play a vital role in the basic building blocks for 
numeric software. Therefore Basic Linear Algebra Subprograms (BLAS) have been designed 
for many languages, especially for FORTRAN. The construction of efficient, portable software 
is strongly supported by using these routines. The BLAS routines can be divided into three 
levels: vector/vector operations (Level 1), matrix/vector operations (Level 2), and matrix/matrix 
operations (Level 3). 

Levels 2 and 3 are important for parallel and vector computers which are becoming more 
and more popular, and which are used for large scale numerical problems. As a parallel 
computer, we consider a loosely coupled network of processors with local memory. The parallel 
computer (or processing network) is driven by a host computer which distributes the data and 
controls the communication between the various processors. A fixed network topology, e.g. 
a grid, a tree, or a hypercube, is assumed. All processing elements execute the same code 
on different data. Gommunicadon is by message passing (and not by access to common 
memory). This concept is called SPMD (single -program--mult iple data) even if the code must 
be replicated to every processing element. This programming model lies between the strict 
SIMD mode (where every instruction is identical on all processors) and the MIMD mode (where 
each processor may perform different code). 

We consider the following BLAS routines. In our description, a,  fl denote scalars, x, y 
denote vectors, A, B, C denote matrices of  real numbers, and T denotes a lower triangular 
real matrix. 
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Level 1 

Scalar multiplication with update 

X 

A 

Dot product with update 

:=  2:c + c~y; 

:=  fl A + c~ B. 

Ot : =  flO~ + xTy. 

J. WOLFF V O N  GUDENBERG 

For efficiency, the special case fl = 0 may be implemented separately. 

The  first two routines compute scalar products of length 2, while the third one is a 
general scalar product with n or n + 1 components. 

Level 2 

Matrix vector product with update 

x : =  f lx+o tAy;  x :=  fix+o~ATy; 
z :=  Tx; ~ . -  TTx. 

Solution of triangular system 

x :=  T-ix;  x := (T-1)Tx. 

The  matrix vector product computes dot products multiplied by ~. 

The solution of  a triangular system may be implemented using dot products. 

The  rank-one update A :=  o~xp T + A is not considered in this paper, because its compu- 
tation with 1 ulp (unit in last place) accuracy is not important for the overall accuracy of an 
algorithm. 

Level 3 

Matrix products 

C := flC+o~AB; C :=  flC+xo~ATB; 
C := flC+oLABT; C :=  f lC+o~ATB T. 

Solution of triangular systems with multiple right-hand sides 

B :=  T-ZB; B :=  (T-1)TB. 

2Q Accurate reliable arithmetic 
We want not only to increase efficiency, but to increase accuracy as well. Since we consider 
the BLAS routines as a (secondary) standard, we require that they shall be as accurate as usual 
standard functions. In other words, our matrix multiplication, e.g. is as accurate as usual real 
multiplication, i.e. the error is less than 1 ulp for every matrix component. 

An optimal scalar product algorithm suffices to compute all the products in which c~ E 
{ - 1 ,  0, 1} with guaranteed accuracy of one ulp. This scalar product algorithm either uses a 
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long accumulator or the Bohlender algorithm [4]. In both cases, the exact scalar product can 
be represented as a sum of real numbers 

P 

3 ~ - Z 8  i 
i = 1  

so the multiplication with c~ is just another scalar product. Details concerning overflow and 
efficient implementation are given in Section 2.2. 

An algorithm for the solution of triangular systems with the same accuracy requirement 
is proposed in [3]. 

The  final result of a complete algorithm, e.g., of  the solution of a linear system, will 
either be computed with guaranteed high accuracy, or enclosed into a sharp interval. For this 
purpose, several additional BLAS routines are provided. 

2.1. A d d i t i o n a l  subrout ines  

Level A 

Generalized matrix-vector products 

[z] := /3x+a~-~A~,~y~,; 
v = l  p ,= l  

$ 

[z] := 9~ + aT ~ y.. 
,u=l  

Generalized matrix product 

u=l ~=i 

Here, enclosures [z], [D] are computed, and in the general case, a = 4-1 and r = 1. 

Interval matrix-vector multiplication 

Interval matrix multiplication 

Ix] := [A][y]. 

[el :=  [A][B]. 

T h e  solution of triangular systems with interval right hand side 

[~] := T-l[x] 

is given in two versions: one for a relatively coarse enclosure, and one which computes the 
best possible interval vector. 



192 1. WOLFF VON GUDENBERG 

2.2. Long and short sequential dot products 
Usually optimally accurate dot products are calculated using a so-called long fixed-point accu- 
mulator, but for short vector length the Bohlender algorithm using addition with remainder 
,nay be more efficient. 

The breakpoint between the two algorithms has to be calculated for each floating-point 
format. 

If a long accumulator is used, the multiplication of a dot product by a floating-point 
munber should be implemented directly without building an intermediate real vector repre- 
senting the dot product. If the exponent of this product exceeds the exponent range of the 
accumulator, an overflow exception is appropriate, since the addition of one twofold product 
cannot adjust the final value of the operation in such a way that it would belong to the usual 
floating-point format. The underflow information (whether there are significant digits beyond 
the least accumulator digit) may be relevant fi), the final result and thus has m be kept. 

31 Data distribution 

3.1. Distribution patterns 
The distribution of matrices or vectors crucially effects the performance of the algorithms. 
From the algorithmic point of view vectors may be distributed as contiguous segments or 
scattered cyclically, and matrices may be considered as vectors of rows or vectors of columns. 
Furthermore matrices may be distributed blockwise or each block may be scattered cyclically 
forming a grid pattern. 

All these patterns can easily be archieved in modern data parallel languages like Modula 2* 
or High Performance Fortran. In Modula 2* [5] e.g., the allocators SPREAD or CYCLE are 
applicable for each dimension of an array. SBLOCK or CBLOCK combine various SPREAD 
or CYCLE allocators, respectiveiy, and thus produce the block and grid pattern. LOCAL and 
RANDOM are further allocators. 

In order to support portability a libra D" shall be designed following the algorithmic 
distribution of data. An exhaustive library would contain a subroutine for each combination of 
input/output patterns. But in practive only a few patterns will give a sufficient speed-up. This, 
of course, also depends on the underlying hardware, its arithmetic performance, communication 
time, and network topology. 

The BLAS routines generally gain time if nearest-neighbor communication is fast, thus 
favoring the linear segmentation; on the other hand, the parallel solution of a given problem 
may be better for scattered data. The trade-off between efficient BLAS routines using redistri- 
bution vs. the direct use of less efficient routines without communication has to be considered 
for the overall performance of an algorithm. 

It will be an interesting topic to develop strat~/gies for automatic support of data distribu- 
tion. 

3.2.  Development of the algorithms 
In the following we 

1. First, dertermine the optimal distribution for each algorithm, and compute its possible 
speed-up. 



PARALLEL ACCURATE LINEAR ALGEBRA SUBROUTINES 193 

. 

. 

Second, describe the communication method for distributing the centralized input data 
and for collecting the results. It turns out that we need a mainly homogeneous distribution 
of  matrices by rows or columns, and broadcast of  vectors and scalars. These routines 
have to be implemented for each parallel computer. Their performance depends on the 
hardware topology. 

We then develop versions of  the algorithms which exploit a reasonable initial distribution 
of  data and also consider the required amount  of available memory per processor, which 
determines the largest possible problem size and therefore, crucially limits the choice of 
the algorithm. 

Notations and simplifying assumptions 

�9 Dimension of  vectors is n. 

�9 Matrices are n x n. Generalization to rectangular matrices is obvious. 

�9 There  are p2 processors where n = k -  p. 

�9 fgs(n) denotes the time for the calculation of  a dot product of  n components. 

�9 fgA the time to add two long accumulators. 

�9 fgTn the transport time, i.e., a time that it takes to transport a real number to an adjacent 
processor. 

40 Parallel accurate BLAS routines 

4.1. 

a) x :  ~ 

1) 

2) 
3) 

b) ~ : ~  

1) 

Level 1 

fix + c~y; A :=  flA + aB.  

Any distribution where a is broadcast and each processor has the same amount of 
vector or matrix elements with corresponding subscripts is optimal. Afterwards the 
result follows the same pattern. The  speed-up obviously is p2. 

Data distribution: Homogeneous partition. 

A segmented or blockwise distribution of input and output data corresponds to the 
optimal distribution. 

fla + xy T. 

In the optimal distribution, a is kept on one processor, and x and y are equally 
partitioned. Parallel partial dot products are computed on each processor. The  re- 
sulting long accumulators are added in logarithmic time using the fan-in summation 
algorithm. 

Due to the transport of  long accumulators speed-up ratios of more than !o2/2 require 
relative long vectors and fast communication [6]. 
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2) It generally does not pay to parallelize a scalar product for centralized data. We 
therefore sequentally compute all dot products in the level-2 and level-3 routines. 

3) In case of a single dot product, if the vector length is large enough proceed like 1), 
else collect vector and compute sequential dot product. 

4.2. Level 2 
a) x := fix + nAy;  x := 3 x  + o~ATy. 

1) Row-wise distribution of A is optimal, if y. a. 3 are available on all processors, x is 
distributed by the same pattern as the rows of A. Exchange rows with columns for 
the second procedure. 

�9 Compute first component of A,,y, where A,~ denotes the 7r-th processor's parti- 
tion of A. 

�9 Multiply by a and update. 

�9 Repeat these two steps for the other components. 

Since all processors are working without communication or synchronisation the 
speed-up again is p2. 

2) The optimal distribution can be achieved by a homogeneous partition of A and x, 
and a broadcast of y, c~,/3. 

3) Since the redundancy of storing one vector is not so high we suggest the optimal 
algorithm. Note that only one accumulator is needed on each processor. 

b) z := Tz .  

1) The n(n  + 1)/2 elements of a matrix T are distributed so that each processor has 
the same number of elements, but only complete rows. To achieve that, let us define 
k~ so that ko = 0 and 

k.+l n(n + 1) t~,§ Z i <  _< Z i. 
{=*k~+l t----k~+l 

Then each processor ~r obtains rows k,r-1 + 1 through k~. 

The first k~ elements of vector x are available on processor ~r. The result vector z 
is distributed like the rows of T. 

Although the computation is independent, a speed-up of p2 can not be reached, be- 
cause the data can not be distributed equally (the assumption of equally distributable 
data was very optimistic in the other cases as well). 

2) A nearly homogeneous partition of T goes along with a rather inhomogeneous 
partition and duplication of x. Different numbers of results are collected from 
different proCemors. 

This inhomogenlity can be decreased, if the rows are distributed in a round robin 
manner, where the different runs start alternatively either from the end (i.e. from 
row n, which contains the larest number of elements), or from the beginning rows 
(which contain few elements). 
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c) 

3) We suggest to implement a version for a row-wise scattered matrix distribution, 
because this standard pattern is the best approximation for the optimal distribution. 

z :=  T T x  analogously. 

:/: :=  T-ix; x := (T-1)TZ. 

T h e  solution of a triangular system cannot be implemented without communication, since 
the newly calculated solution components have to be used right after their computation. 

T h e  algori thm is a linear recurrence relation of order 1 to n - 1. 

Various techniques to parallelize the algorithm have been proposed. Reith [6] discusses 3 
versions which apply the optimal dot product wherever possible: a cyclic form, a pipelined 
version of a cyclic form, and a form based on data broadcast. 

If  these routines yield maximum accuracy of the result, the intermediate solution vector 
can be kept in staggered correction form 

p,=I 

to simulate nearly s-fOld working precision. For this purpose the following routines are 
called 

[z] := x -  ~ T E ~ _ l y , ;  
[z] := T- I [~] .  

They  belong to the additional level A (see below). The  first one is a generalization of 
Z : =  Tx.  

Since the second routine is used to enclose the global s-th defect of a solution, i.e. the 
defect of  an s-fold multiple precision approximation,  high accuracy is not necessary in 
this case. 

4.3. Level 3 

a) C :=  tiC + aAB. 

1) I f  the matrices C and A are distributed row-wise, and the matrix B is broadcast to all 
processors, the result can be computed componentwise similar to the corresponding 
level 2 subroutine. 

This, however, means an enormous amount  of  storage per processor and therefore, 
is not feasible. 

A slightly better solution is to partition C and A row-wise, and to partition B colum- 
nwise in a divide-and-conquer style, and collect the results after the computation. 

2) T h e  optimal distribution requires the p-fold storage capacity. Each of p2 processors 
obtains n2/p elements of each matrix, and computes n2/p elements of the result. 

3) In the following, we discuss algorithms which only store the data once and therefore 
need communication during the computation. T h e  algorithms are characterized by 
their internal communication topology. The  algorithms have been analyzed setting 
f l = 0  and a = l  [8]. 
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i) Ring Algorithm. 

�9 Distribute C and A by rows and B by columns, broadcast/3 and c~. Each processor 
receives nip 2 full rows of C, A and nip 2 full columns of /3 .  

�9 Repeat the following two steps p2 times. 

�9 Compute n2/p 4 dot products to obtain the corresponding (n/p 2) • (n/p 2) block of 
the result matrix C. 

�9 Rotate matrix B. 

After the initial distribution this algorithm requires the following time: 

n 2 
p--~- - O s ( n )  + nZ(~TR. 

This yields a real speed-up, if 

e r r  < 1 - ~ ( n ) .  

ii) Torus Algorithm. 

�9 Distribute A, B and C blockwise, broadcast /3 and a. Each processor receives a 
(n/p) x (n/p) block of each matrix. 

�9 Stagger the matrices A and B by appropriate row or column rotations, so that each 
processor can multiply its blocks. 

�9 The product of the blocks of A and /3 now contributes to the resulting block of O. 
Blockwise rotations of A along rows and /3 along columns bring the next matching 
blocks together. After p rotations, the result is computed. This, however, requires 
n2/p 2 long accumulators per processor, because we have to store all intermediate 
results with full length. Four versions of this algorithm are discussed in [9]. The 
one with the least memory requirements rotates parts of the blocks only, so that 
one dot product is completed per processor before the computation of the next one 
starts. 

After the initial distribution, this algorithms requires the following time: 

Speed up is achieved if 

--Os + --OA + 2 + OTR. 
P P 

OA + 2n---OTR < p@s(n). 
P 

iii) Tree Algorithm. 

This is a version of the divide-and-conquer algorithm which only needs storage for 
2n + p2 + 2 elements on each processor. 

�9 Distribute the first p2 rows of A, the columns of B, and the upper left p2 x p2 block 
of C. 
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Compute the first new p2 x p2 block of C by corresponding permutation of the 
columns o f /3 .  

Store this part. 

Redistribute the next block of C and columns of /3 and repeat the computation 
until the first row of the result is complete. 

Repeat these steps for the next p2 rows of A n,/p 2 times. 

b) 

The  algorithm needs approximately 

72 2 
~--~E)s(n) + 1.34n3OTR 

time for ~ -- 1 and fl = 0. Only for very fast communication, i.e., when 

1.34nGTR < 1 -- ~ O s ( n )  

this will give a speed-up. 

It is obvious that fl =fi 0 only changes ~ ( n )  to Os(n + 1). If c~ # 1, then one additional 
dot product of  constant maximal length (depending only on the long accumulator format) 
is necessary for each component. 

The  other matrix products are treated similarly. 

B := T-IB; B := (T-X)TB. 

The  corresponding algorithms for a single right hand side may be adapted. 

4.4. Level A 

T h e  first three algorithms of this level are generalisations of level 2 or level 3 algorithms. T h e  
dot products are computed from multiple input matrices and vectors. They can however be 
ar ranged in such order  that one long accumulator suffices. This accumulator which keeps the 
full information is then rounded twice. This only adds a constant time. 

a) [z] := fix + ~ ~ = 1  A~ ~ = 1  y~,. 

Matrices A~ and vectors Yu are distributed as described for the simple matrix-vector 
product in 4.2.a). The  exact dot product  expression is determined and then rounded 
outwardly. 

b) [z] := a x  + ~ T E ; = ~  y~. 

This important  special case can be implemented like z := Tx .  

r A s c) [/9] := tiC + c~ Z~=~ ~ Z.=~ G -  

Proceed similarly to the matrix product,  but note that the resulting matrix is not an 
input argument.  
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d) [x] := T-l[x].  

The solution of a triangular system with interval right hand side is an important operation 
which often is underestimated. Rump [7] reduces this problem to the determination of a 
validated lower bound for the smallest singular value er of T. This can be achieved by 
Cholesky factorzation of T T  T - / k 2 I  where A is an approximation of a. The algorithm 
uses the generalized dot product expressions of the form c) for triangular matrices. 

e) Ix] := a[A][y] and [C] := a[d][B] 

are interval versions of the corresponding real functions. They use the interval dot 
product which computes the smallest interval containing all dot products of vectors 
arbitrarily taken out of the two input interval vectors. A short dot product with two 
summands is computed to determine the relevant bounds for each component. Then two 
real dot products are calculated with directed rounding. Although there is a little more 
work to do for each component, the parallelization of interval scalar products itself is 
not very promissing. We therefore suggest to proceed similarly to the real (non-interval) 
versions. 

Updating versions with interval inputs always increase the width of the intervals and are 
therefore not feasible. 

5. Summary 
We have shown that an optimal dot product algorithm suffices to implement all the BLAS 
routines with the required accuracy. Practical experiences with parallel computers show that 
the trade-off to usual matrix multiplication is not so bad [2, 10], if floating-point arithmetic 
and dot product computation are equally supported by hardware. 
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