
Reliable Computing 1 (2) (1995), pp. 173-187

A reliable linear algebra library for
networks

transputer

CHRISTIAN P. ULLRICH and ROMAN R~TH

This paper presents a collection of linear algebra subroutines for transputer networks The developed
pilot library is intended to tbrm a basis of a complete parallel linear algebra library fi~r validating
computations, whose routines will deliver [as accurately as necessary) eithex the best possible result, or a
corresponding inclusion based on controlled rounding and an optimal scalar product

So far, as a first step, we have produced code for interval arithmetic, scalar products and simple
vector-matrix operations with lnax i rnu ln accuracy For the sohation of triangular systems and the
LU decomposition of dense matrices, new ~ersions ot classical methc, ds are implemented which allow
the application of optimal scalar products as a single, indivisible operation and optimize the overlap
of communication and computation. The library also contains routines for computing inclusions ot
unstructured, dense linear systems of equations.

Network topology dependency is avoided in all numerical routines by the use of general communi-
cation routines. This way the user is able to work with different topologies like ring structures, binary
trees and hypercubes

HaAexcHa I Al Hefmo-aAre6pamIecKa I
6l/t6Al 0TeKa AA I TpaHClII IOTepHI:,IX ceTeft
K . YAAbPIdX, P . PA1,'~T

l-lpe,,xc-ra~aeH na6op .'mnefino-a;~re6paauecmlx no:mporpaMM :m~ "rpancnbKrrepmax ce-refi ~3Ta np~x%-
Ha.~[6H(')~'IHOTeKa pa3pa6aT~aBaaao- KaK OCHOZI~ ~rL'l~ nO.'IHO~] llapa,l,le21bHo(I ,TnHefim)-a.Tre6pan,~ecxoil
6n62IHOTeKI4 .'loKa3a're.'IbHmx BIM~qHC.'IeHHI,TL Bxo.'lmltHe B 3Ty 6tl6.'InOTeKy npoue.'lypbl 6yayw (X~ecIIe~IH -

BaTh (C Heo6xorlHMOI~I TOMHOCThIO) .11r|60 Han. ' iyqmnfi BO3MOgKHbII4 pe3y,'lb'raT, .'IH6o COOTBeTCTBylOIIIee eMy

BK.qR)qeHHe. OCHOBO~I ,'L'lfl npoIIeLlyp ~IB.'I~eTCB yilpaB21fleMoe oKpyr.qenHe H OI1THMa21bHoe cKa~lJ4pHOe

npot.13Be3eHHe.

I]oKa. 1~ xaqecTBe nepBoro mara . HaMH HanHcaHbl IIpOllellypbl ,a;l~ HHTepga;lbHOfi apHC~MerHKtl,

CKadD=IpHIMX II~H3B4~.qeHII~! 14 IIpOCTI31X BeKTOpHO-MaTpHtlHbIX onepatlHfl c MaKCnMa.qbHO~t TOtlHOCTbR)

�9 r[.'I~[penlenlt~l ypeyro2IhHblx Ct4CTeM I,l LO-pa3.,1ox~eHvm |L'iOTH~tlX MaTpnlt pea;'tn3ot~aHta HOBI~e BepCHH

KJqaCCHqeCKnX MeTOIIOB, KOTOpble nO3BOdl~lOT Hcnoab3Ol'~aTh OHTHMa.'IbNOe cKa21~lpnoe npoH3Be,'leHne KaK

e11HHylO Heae.'II4MVIO onepauHl 0 I.l OrtTI-IMI,13HpylOT OJIHOBp~MeHHOe BblnOflHenne BblqHC:IeHHI~I I,I O6MeHa

IIaHHhlMH B BI:,ltlltC.'IHTe.'IbHOl~l CeTI4. ~Ta 6H6/IHOTeKa TaKx4te C()/lep.:~KHT npotleJlypbl 321~ BblMHC.TeHI4fl

BKJIIOtteHI,~IZl HecTpyKTvpnpoBaHHI,1X fl.rtOTHhlX C14CTeM .'II|Hef{HblX ypaBHeHrl~

Bo BCex tlHC.'IeHHblX n p o u e a y p a x Mbl 1.136era.rm 3aBHCHMOCTH OT Tono.'IOEHI-I KOHKp~THOH CeT14 3a

CqeT HCIlO.rlb3OgaHllB 0606111eHHI:,IX KOMMyI-fHKalIHOHHblX npoue.ayp I~03TOMy llO21b3OBaTe.qb 6~162IHOTeKH

CMO)KeT pa6oTarb c TaKIIMI.I pa31n4qHt~lMI.I Tonoa'lorll~iMn, KaK KO2IblleB~e cTpyKTyp~, 614HapHl.Ie ,aepesba

n rt4nepKy6~,l

@ Ch. P Ullrich. R. Reith, 1995

174

1. Motivation
CH. P. ULLRICI-I, R. REITt-{

As pointed out in [2], many numerical analysts expect ,lot only a well implemented IEEE
Arithmetic on a computer, but also the possibility to perform composed calculations like vector
and matrix operations in a reliable manner This means that the calculations should deliver
the best possible result or a corresponding inclusion. On sequential computers, a wide variety
of software for that purpose is offered, from simple library routines to advanced programming
enviromnents {see [la]). In contrast, almost no choice is given on parallel computers [3, 4, 12, 14].
The reasons for that situation seem to be:

�9 The history of parallel co,nputers is too short.

�9 There are many different architectural concepts (number and coupling of processors).

�9 The number of different processor topologies is unrestricted.

�9 The decision on granularity in parallel algorithms cannot be made in general.

In the following sections, a collection of linear algebra subroutines for transputer networks
is presented The whole library is designed for validating computations, i.e. the routines
should deliver either the best possible resuh, or a corresponding inclusion based on controlled
rounding and an optimal scalar product. The user interfaces of the provided procedures are
fully described in [12].

We decided to code all algorithms in OCCAM-2, and (where necessary) in transputer
assembler because we want to fully utilize the transputer [7].

2@ Basic arithmetic and scalar products
Usual floating-point operations are performed on a T800 transputer with rounding to the near-
est floating-point number. The user intending to control the rounding direction is supported
hv two library routines in OCCAM-2:

BOOL, REAL32 FUNCTION IEEE320P (VAL REAL32 x,

VAL INT rd, op, VAL REAL32 y)

BOOL, KEAL64 FUNCTION IEEE640P (VAL REAL64 x,

VAL INT rd, op, VAL REAL64 y)

where the argument rd specifies the rounding direction and op selects the floating-point
operation. Surprisingly the execution time for these operations increases with factor 4 compared
to the usual operations, due to the fact that the cbde is not inlined and the vah,es for rd and
op are checked at runtime. A new design of the arithmetic routines reduces this factor to 2 bv

�9 providing one routine for each operation

PROC REAL64.ADD.UP (VAL REAL64 a, b, REAL64 c)
PROC REAL64.ADD.NEAREST (VAL REAL64 a, b, REAL64 c)
PROC REAL64.ADD.DOWN (VAL REAL64 a, b, REAL64 c)

A RELIABLE LINEAR ALGEBRA LIBRARY FOR TRANSPUTER NETWORKS

PROC REAL64.SUB.UP (VAL REAL64 a, b, REAL64 c)

PROC REAL64.SUB.NEAREST (VAL REAL64 a, b, REAL64 c)

PROC REAL64.SUB.DOWN (VAL REAL64 a, b, REAL64 c)

PROC REAL64.MUL.UP (VAL REAL64 a, b, REAL64 c)

PROC REAL64.MUL.NEAREST (VAL REAL64 a, b, REAL64 c)

PROC REAL64.MUL.DOWN (VAL REAL64 a, b, REAL64 c)

PROC REAL64.DIV.UP (VAL REAL64 a, b, REAL64 c)

PROC REAL64.DIV.NEAREST (VAL REAL64 a, b, REAL64 c)

PROC REAL64.DIV.DOWN (VAL REAL64 a, b, REAL64 c)

175

�9 and by implementing each operation in t ransputer assembler

PROC REAL64.MUL.DGWN (VAL REAL64 a, b, REAL64 c)

-- c := a*<b

-- workspace and registers:

-- workspace[wsptr+3]: pointer to c

-- workspace[wsptr+2]: pointer to b

-- workspace[wsptr+l]: pointer to a

-- workspace[wsptr]: return address

GUY

LDL 1 --

FPLDNLDB --

LDL 2 --

FPLDNLDB --

LDC 5

FPENTRY --

FPMUL --

LDLP 3 --

PFSTNLDP --

Areg := pointer to a

FAreg := a

Areg := pointer to b

FAreg := b

set rounding mode to round toward minus infinity

FAreg := a*<b

Areg := pointer to c

c := FAreg

After this success, we decided to implement real interval arithmetic also in t ransputer
assembler. For the presentation of a real interval [a], we use two floating-point numbers a.inf,
a.sup. Since the formulation of the routines is straightforward, we list only the first part of the
code for interval addit ion and the interfaces in the remaining cases.

�9 [cl [a]+[b]

PRGC INTERVAL64.ADD (VAL REAL64 a.inf, a.sup, b.inf, b.sup,

REAL64 c.inf, c.sup)

GUY

-- c.inf := a.inf +< b.inf

LDL I -- A.reg := pointer to a.inf

FPLDNLDB -- FAreg := a.inf

LDL 3 -- Areg := pointer to b.inf

FPLDNLDB -- FAreg := b inf

LDC 5

176 CH. P. ULLRICHt R. REITFI

FPENTRY -- set rounding mode to round toward minus infinity

FPADD -- FAreg := a.inf +< b.inf

LDLP 5 -- Areg := pointer to c.inf

FPSTNLDP -- c.inf := FAreg

-- c.sup := a,sup +> b.sup

LDL 2 -- Areg := pointer to a.sup

�9 [c] := [4 - [6]:

PROC INTERVAL54.SUB (VAL REAL64 a.inf, a.sup, b.inf, b.sup,

REAL64 c.inf, c.sup)

�9 [4 : = * [b]:

PRflO INTERVAL64.MUL (VAL REAL64 a . i n f , a . s u p , b . i n f , b . s u p ,
REAL64 c . • c . s u p)

�9 [c] := [a]/[6]:

PROC TNTERVAL64.DIV (VAL REAL64 a. 2nf , a . s u p , b . i n f , b . s u p ,
REAL64 c . i n f , c. sup)

The optimal scalar product 1 plays a central role in almost all self-validating algorithms.
For real vectors z = (zi), y = (Yi) it computes

i= l

with one rounding rd applied to the exact value of the scalar product z * g. Different
approaches to the implementation of this operation are discussed in [2]. The present library
provides the long accumulator version implementing the exact scalar product as a fixed point
number by an array of 32-bit integers. The whole operation is considered as single, indivisible
unit always computed by one processor. This design is preferred since

�9 distribution of input data to a number of processors and transmission of high accuracy
intermediate results would require high communication costs [9]

�9 in practice scalar products occur during matrix-vector and matrix-matrix operations where
the sequential treatment of complete scalar products makes more sense.

1The optimal--scalar prc:duct is also called nmximum-accuraty ~calar]nodua, maximum quality ~dar prodm:t, or e~tct
~calar prod~t in literature

A RELIABLE LINF.AR ALGEBRA LIBRARY FOR TRANSPUTER NETWORKS 177

All higher numerical algorithms of this library relying on the optimal scalar product are
developed to support this design.

The user interface of the optimal scalar product is given by three routines:

PROC c l e a r . a c c u s ()
PROC accumula te (VAL [] REAL64 x, y)
PROC round (REAL64 r e s u l t . u p , r e s u l t . n e a r e s t , r e s u l t . d o w n)

where c l e a r , accus sets the accumulator to zero, a c c u m u l a t e generates the exact value and
round returns three results by applying three roundings to this value. Note that this can
be done nearly without additional costs compared to the production of only one resuh. A
consequence is a speedup of computing an interval inclusion of the scalar product.

Scalar products for interval vectors are implemented analogously.

The effort compared to the conventional scalar product could be worse due to some
features of the transputer hardware architecture: first, the CPU of the TS00 transputer
contains just three general registers, which form a hardware stack. Therefore, it is impossible
to hold frequently used variables in a register permanently. Second, unlike the announced
T9000 and Motorola 68020, 68030 microprocessors, the T800 transputer does not contain a
barrel shifter allowing very fast shift operations. Analysis of the execution time yields that
more than 30% of the cycles are needed for load and store operations and additionally, about
15% are needed for shift operations.

normalized
execution times

number of
rounding operations

conventional
FOR-loop

2n- 1

lower bound
using OCCAM-2 library

3.1

2n -- 1

optimal
scalar product

9.2

Table 1. Normalized execution times and the number of rounding operations of different
scalar product implementations (n = 1000)

Table 1 shows the normalized execution times and the number of rounding operations
required by three scalar product implementations (n = 1000):

�9 a conventional implementation using a simple for-loop with uncontrolled rounding oper-
ations and thus unreliable results,

�9 an implementation using the OCCAM-2 library routine IEEE640P to determine a lower
bound 2 of the true result by performing operations with downwardly directed roundings,
and

�9 an implementation that computes the result of maximum accuracy by applying just one
rounding operation to the true value.

2without maximum acozracy

178

3. Communication routines

CH. P. ULLRICH, R. REITH

A mul6computer, like a transputer system, consists of a network of processors, each of which
possesses its own local memory. The processors communicate and synchronize with each other
by sending messages. However, the OCCAM-2 programming language only supports message
passing between two neighboring processors. A realization of non-neighboring communication
schemes, which are typical of parallel programs, must take into consideration a number of
characteristic hardware and software features: the number of processors, their topology, the
number of hardware links, and the one-to-one correspondence between hardware links and
software channels. To handle these dependencies in a more or less portable way, some
collective communication routines were implemented:

�9 d i s t r i b u t e : row-wise distribution of matrices

�9 b r o a d c a s t : a source node sends a single message (vector) to all other nodes

�9 expand: gather all elements of a distributed vector and make them available to all nodes

�9 f l o w . t o . r o o t . r e c e i v e , f l o w . t o . r o o t , send: a minimal spanning tree is embedded
in the network and these two procedures realize an information flow from the leave
nodes to the root

�9 i t e r a t i o n , c o n t r o l : hides the necessary communication when performing a convergence
check in a parallel iteration

In general, these five communication routines have to be adapted to each new topology.
However, some of them are also implemented in a ~topology independent" way: they are not
implemented by using the send/receive mechanism of OCCAM-2 but by applying one of the
other collective communication routines:

communication scheme was also realized on the basis o f . . .

distribute broadcast
expand broadcast

iteration.control flow.to.root.send

flow.to.root.receive

Table 2. Hierarchical implementation of communication routines

Besides this hierarchical implementation, all of the mentioned communication routines
were directly implemented for a binary tree a n d ' a ring topology.

For illustration we list the interfaces of the b r o a d c a s t and expand routines:

PROC broadcast (VAL INT id,

src,
[] KEAL64 vector)

A RELIABLE LINEAR ALGEBRA LIBRARY FOR TRANSPUTER NETWORKS

PROC expand (VAL INT id,
dimension,

VAL [] REAL64 local.vec~or,
[] REAL64 global.vector)

179

40 Vector and matrix operations
Our goal is an efficient application of the optimal scalar product in (parallel) vector and matrix
operations. Regarding the scalar product as a single, indivisible operation this implies row-
oriented algorithms with a row-wise distribution of matrices to the available processors. An
invoked routine expects that an input matrix already has been distributed by rows and that
just locally stored rows are passed; in contrast, an input vector is always passed completely to
the called routine. The computed results are returned in a distributed shape. Each component
is of maximum accuracy. Such a component can he the best floating-point approximation,
the smallest enclosing interval or the absolute value of the smallest enclosing interval. If the
absolute value a of an interval is returned, a so-called symmetric inclusion I - a , a] with a > 0
was computed. In this case, the interval valued object (vector, matrix) containing the solution is
represented only by a point valued object (vector, matrix) which reduces memory requirement.
This strategy of using symmetric intervals is especially useful when residuals are to be computed.
Since inclusions of residuals are often almost symmetric to the origin, nearly no accuracy is lost
in this case.

4.1. Vector and matrix-vector operations allowing simple
parallelizations

In this section we discuss vector and matrix-vector operations that allow an interesting paral-
lelization strategy: the problem can be divided into subproblems which have the same structure
as the original problem and which can he solved independently from each other, i.e. without
transmitting data. We illustrate this strategy by considering a matrix-vector multiplication M. z
(see Figure 1). If matrix M is partitioned and distributed by rows, then each scalar product
will he computed entirely by the processor owning the corresponding row, and each processor
will thus perform a matrix-vector multiplication of reduced problem size.

The advantages of this approach are evident:

�9 application of the optimal scalar product is supported

�9 reliable results

�9 coarse-grain parallelizations

�9 efficiency

�9 reusability of sequential code.

Therefore the presented library places at the users' disposal a long series of sequential
operations, which can also he used without any changes in a parallel environment. The

180 CH. P. ULLRICH, R. REITH

Stored on processor 0

Stored on processor I

M x

Figure 1. Parallel matrix-vector multiplication

following tables give an overview of some of the corresponding routines using a shorthand
notation.

�9 Sequential vector operations: vectors :c, y

inflation: Ix] ~-- Ix] + d(x). [-eps; eps]
subset: [~] c Iv] and [~] ~ [y]

�9 Sequential matrix-vector operations: matrices .~[, R

1~1 �9 x

M . x + y

y - M . x

real x reed ---* nearest

reed x reed ~ interval

reed • real ---+ syan interval

real x interred ---+ interval

real x interved -- , w n in terwd

reed x ova inter~,d ~ s)va in ter~d

interzgd • interwd ~ intenJal

.sym interval • s)qn in ter~d ~ s)~n inten,al

in tengd x interzgd + interved ~ intengd

,~.'m interval x o~n intenJ(d + in ter~d ~ s~n intervrd

real - real x real

real - real x reed

r e a l - real x reed

"-+ rlearesl

interz~d

--~ sym in ter~d

in ter~d - in ter~d x real ~ interz~d

in ter~d - interval x reed ---* sym in ter~d

A RELIABLE LINEAR ALGEBRA LIBRARY FOR TRANSPUTER NETWORKS 181

4.2. Matrix-matrix operations
An important matrix-matrix operation in self-validating algorithms for solving dense linear
systems computes inclusions of residual matrices /" - R . M, where _r denotes the identity matrix.
Parallelizing such a matrix-matrix multiplication in the same way as the discussed matrix-vector
multiplications, i.e. decomposing the operation into independent suboperations that do not
need any communication while performing their computation, would waste a lot of memory,
because matrix i'~I would have to be hold by each processor completely. Therefore, we apply
a more effective strategy. Again, it is assumed that the matrices R and -'U are distributed
among the processors by rows. But now, matrix .~[flows cohunn-wise through the network
during computation. This allows to handle a scalar product as an indivisible operation The
communication cost can be masked by overlapping communication and computation.

The library provides routines for the following types of problems:

I - R . M real - - re(d x re(d ~ i n t e rva l

re(d - real x real ~ sym i n l e r ~ d

real - real x i n t eR~d ~ in terz~d

reed - real x inlerz,(d ---* ~)'m bl lerz~d

Sequential routines are included as well as parallel routines with and without overlap of
communication and computation. Of course, the routines can easily be modified to compute a
matrix-matrix multiplication R - M .

50 Solving lower triangular systems
The well-known sequential inclusion methods for lower triangular systems are based on the
straightforward application of interval arithmetic: all floating-point operations are replaced by
interval operations. The additional evaluation of scalar products with maximum accuracy may
lead to sharper inclusions, but in general, especially for very large systems, the results are
not guaranteed to maximum accuracy. These difficulties are caused by the recursive nature
of the evaluated equations. Nevertheless, we present routines that make extensive use of the
optimal scalar product, because this approach seems to be most promising. In particular, sharp
inclusions can be expected, when a diagonally dominant matrix is given.

5.1. Sequential implementations
On a serial computer, two classical methods are available to solve triangular systems: the
column-oriented and the row-oriented forward substitution. Only the latter allows an effective
use of the optimal scalar product. Therefore, a corresponding routine was added to the library.

5.2. Parallel implementations
In the last few years different conventional numerical methods have been developed to solve
triangular systems of equations on multicomputers (for example [5] and [6]). Of course, all these
methods can be used to compute inclusions by applying simple interval arithmetic. However,
they do not efficiently support the optimal scalar product. Therefore, two new versions for

182 CH. P. ULLRICH, R. REITH

solving lower triangular systems L.c = h are cieveloped satisf)'ing these criteria. The so-called
,ylic MSP algorithm ~ uses ring connectivity and is valid only fi)r wrap mapping of the matrix
rows. In this algorithm, a data packet of size p - 1. where p denotes the number of available
processors, circulates through the network. A significant reduction of the execution time can
be reached if this data packet is broken into subsegments that circulate through the network
independently (pipeline version).

The so-<ailed MSP broadtcL~t <algorithm can be executed on general networks merely requiring
a broadcast routine there and only assuming a row-wise distribution of the matrix rows. The
algorithms are described in detail in [12].

To characterize the fimctionalitv of the provided library routines in a compact way, the
following abbreviations are used:

ind

~Lpp, ox.

O'U~r :

row ph,ot:

col pivot:

no pivot"

inclusions of the true resuh are computed
approximations of the true result are computed

optimal scalar product is applied

communication and computation are overlapped
communication and computation are no___tt overlapped

row pivoting is used, i.e., the maximal element in a column is chosen as
a pivot
column pivoting is used, i.e., the maximal element in a row is chosen as
a pivot
no pivoting strategy is applied

The library contains the following routines for solving interval valued triangular systems:

�9 cTclic MSP form: rod, ,~p, truer

�9 pipeline version of the cyclic MSP form: inc/. , , % over

�9 pipeline version of the cyclic MSP form: incl, m.~p. hover

�9 MSP broadcast form: ind, n~p, over

�9 MSP broadcast form: mcl, m% nover

We list two of the procedure interfaces the first for the MSP broadcast form without
overlap and the second for the pipeline version of the cyclic MSP form with overlap of
communication and computation.

PROC PAR. ILxb.MSP.broadcast (VAL !NT id,
"dimension,
num. of. stored, rows,

VAL [] [] KEAL64 local.L, inf, local. L.sup,
VAL [] KEAL64 local.b.inf, local.b.sup,

[] REAL84 x.inf, x.sup)

3"MSP" stands for maximum-accuracy scalar product.

A RELIABLE LINEAR ALGEBRA LIBRARY FOR TRANSPUTER NETWORKS 183

PROC PAR. ILx.b.cyclic.MSP.pipe.over (VAL INT id,
dimens ion,
num. of. stored, rows,
sigma,

VAL [][] KEAL64 local. L.inf, local. L.sup,
VAL [] KEAL64 local.b.inf, local.b.sup,

[] KEALS4 x.inf, x.sup)

6~ Inverting dense matrices
The Gauss-Jordan algorithm is a well-known method for in-place matrix inversion. Different
versions of this algorithm are implemented. They compute an approximate inverse by using
the available floating-point operations. Therefore, the results are in general not of maximum
accuracy. These routines are used in the inclusion algorithm for general linear systems discussed
in Section 8.

6.1. Sequential implementations
The library includes a sequential implementation of the Gauss-Jordan algorithm with row
pivoting.

6.2. Parallel implementations
The communication of the parallel algorithms is realized by a broadcast routine. Therefore,
the adaptation of the algorithms to new network topologies requires just the modification of
this communication routine. An input matrix is to be distributed by rows before calling the
routines. The decomposed matrices will also be returned distributed by rows.

The routines implemented differ from each other on the pivoting strategy (row pivoting,
column pivoting, no pivoting) and whether an overlap of communication and computation is
applied or not. In detail, routines based on the following strategies are' available:

�9 approx, over, row pivol

�9 approx, ntn,er, row pivot

�9 approx, over, col pivot

�9 approx, hover, col pivot

* approx, over, no pivot

Again, we list an interface, to illustrate the use of the routines (Gauss-Jordan algorithm
with row pivoting and overlap of communication and computation):

184 C H . P . ULLRICH t R. REITH

PROC PAR.gauss.jordan.row.piv.over (VAL INT id~
dimension,
num. of. stored.rows,

INT numeric.error,
[][] REAL64 local. A,

[] INT swap.cols)

7~ LU fact0rizati0n of dense matrices
There are many different ways of organizing LU factorilation; all perform the same arithmetic
operations, but in a different sequence. Ortega [8] describes 12 such versions, which are called
i j k and i j k 2 forms according to the arrangement of the triply nested loop. The innermost
loop performs a scalar product operation only if its loop index is k. In all other cases, it is
an AXPY operation. The library contains implementations of the j i k 2 and j i k forms, which
allow an efficient application of the optimal scalar product. Additionally, some versions of the
k i j form are included.

7.1. Sequential implementations
The library includes the following types of sequential routines:

�9 k i j form: approx, col ply

�9 j i k form: :,pprox, rasp, no piv

�9 j i k 2 form: approx, ~ra~p, no piv

7.2. Parallel implementations
The communication of the parallel algorithms is realized by a broadcast routine. Therefore,
the adaptation of the algorithms to new network topologies requires just the modification of
this communication routine. An input matrix is to be distributed by rows before calling the
routines. The decomposed matrices will also be returned distributed by rows.

7.2.1. kij form

Most implemented routines compute an approximate LU factorization by using the available
floating-point operations. Only one routine computes inclusions; all floating-point operations
are replaced by interval operations. Therefore, the results are in general not of maximum
accuracy.

Routines based on the following strategies are available:

�9 approx, truer, row pivot

�9 approx, nover, row pivot

A RELIABLE LINEAR ALGEBRA LIBRARY FOR FRANSPLrrER NETWORKS 185

�9 approx, over, col ph,ot

�9 approx, hover, col pivot

�9 approx, ea,er, no pivot

�9 approx, hover, no pivot

�9 ind, over, col pivot

These different versions allow extensive studies of the effects of pivot strategies and overlap
techniques on the efficiency of a parallel algorithm Such experiences are very important for
developing high performance algorithms

7.2.2. jik and jik2 f0m

Parallel versions of the j i b and j i k 2 forms were developed and implemented that allow
the application of the optimal scalar product. The library also includes routines based on
conventional floating-point operations. All routines compute approximate LU factorizations and
thus the results are in general not of maximum accuracy.

In detail, following routines are available:

�9 j i k 2 form: approx, ,rap, over, no pivot

�9 j i k 2 form: approx, rasp, hover, no pivot

�9 j i k 2 form: approx, over. no pivot

�9 j i k 2 form: approx, nm'er, *w pivot

�9 j i k form: approx, m.~p, over, no phJot

�9 j i k form: ap~rox, ,rL~p, nover, no pivot

Again, we present one interface just for illustration (parallel j i k 2 form with optimal scalar
product and overlap of communication and computation):

PROC PAR.LU.decomp.jik2.MSP.over (VAL INT id,
dimension,
num.of.stored.rows,

INT numeric.error,
[] [] KEAL64 local.A)

186

8.
CH. P. ULLRICH, R. REITH

Self-validating linear system solver for dense matrices
Computing a highly accurate inclusion for the solution of a general, unstructured linear system
Az = b based on fixed-point methods requires operations that are discussed in previous sections.
They include:

�9 computing an approximate inverse R of the input matrix A

�9 some basic matrix-vector operations of maximum accuracy

�9 the inclusion of the residual matrix I - R . A with maximum accuracy

�9 communication procedures: broadcc~, expand, iterationLontrol

A parallel self-validating linear system solver was build by combining these operations in
appropriate manner. Routines for solving point valued and interval valued linear systems are
available. Of course, the library also contains the corresponding sequential solvers.

For illustration, we list the interface of the procedure PAR. ILSS that solves a interval
valued linear system:

PROC PAK. ILSS (VAL INT id,
dimension,
hum.of.stored.rows,

INT numeric, error,
[] [] REAL64 local. A.inf, local.A.sup,

VAL [] REAL64 b.inf, b.sup,
[] REAL64 x.inf, x.sup)

9. Conclusions
A pilot library of basic linear algebra subroutines for transputer networks has been established.
The major aim of the work was to gain knowledge and practical experience of the design,
implementation, and performance behaviour of parallel self-validating algorithms. Especially the
application of the optimal scalar product was investigated in a muhicomputer environment. All
routines which have been found useful in this context are included to the library. Therefore,
its completeness is not claimed but adapation and extensions can be made very easily because
the source code can be used by interested research institutes without any charge.

References
[1] Atanassova, L. and Herzberger, J. (eds) Comlnaer arithmetic and enclosure methods. Elsevier

Science Publisher, North-Holland, Amsterdam, 1992.

[2] Bohlender, G. What do we need beyond IEEE arithmetic. In: Ullrich, C. (ed.) "Contributions
to Computer Arithmetic and Self-Validating Numerical Methods", IMACS Annals on
Computing and Applied Mathematics 7 (1990), J.C. Baltzer AG, Basel, pp. 1-32.

A RELIABLE LINEAR ALGEBRA LIBRARY FOR TRANSPUTER NETWORKS 187

[3]

[4]

[5]

[6]

ET]

Is]

Caprani, O. and Madsen, K. Performance of an OCCAM/transInaer implement~aion of interz~d
arithmetic. In: "Abstract for the International Conference on Numerical Analysis with
Automatic Result Verification, Lafayette, 1993", p. 12.

Davidenkoff, A. High accuracy arithmetic on transp~aers. In: Kaucher, E., Markov, S., and
Mayer, G. (eds) "Computer Arithmetic, Scientific Computation and Mathematical Mod-
elling", IMACS Annals on Computing and Applied Mathematics 12 (1991), J.C. Bahzer
AG, Basel, pp. 45-61.

Eisenstat, S. C., Heath, M. T., Henkel, C. S., and Romine, C. H. Mod~ved cydic algorithms
for solving triangTdar systerm on distrib~aed-memory mTd6processors. SlAM j. Sci. Stat. Comput. 9
(3) (1988), pp. 589-600.

Heath, M. and Romine, C. Parallel sol~aion of lritmgtdar wterns on di~trib~aed-memory mTdtipro-
cessors. SIAM J. Sci. Star. Comput. 9 (3) (1988), pp. 558-588.

Trans~aer instrwction set--a compiler urriter's g~Lide. INMOS Limited, Prentice Hall, 1988.

Ortega, J. M. The i j k forms of factorization methods. Parallel Computing 7 (1988), pp. 135-
162.

[9]

[10]

Reith, R. Scalar products on distributed-memory systems. In: [1], pp. 129-136.

Reith, R. Wissenschafiliches Rechnen auf Multicom]naern--BLAS-Routinen und die Lbh~ng linearer
Gleichungssysteme mit Fehlerkontrolle. Dissertation, Institut fiir Informatik, Universitiit Basel,
1993.

[11]

[a2]

[131

[141

Reith, R. Description and interfaces of accurate BLAS-ro~aines for transpater networks. Technical
Report 93-5, Institut ffir Informatik, Universit~it Basel, 1993.

Reith, R. and Ullrich, C. P. Large-grain parallelizazions of interval algorithms decmnposing dense
matrices and solving triang~dar systems on multicomplaers. In: ~]MACS/GAMM International Sym-
posium on Scientific Computing, Computer Arithmetic and Validated Numerics, SCAN
93, Vienna, September 26-29, 1993".

Ullrich, C. P. The programming toolbox of the numeric(d analyst. In: [1], pp. 69-85.

Wolff yon Gudenberg, J. Implementation of accurate matrix m~dtiplication on the CM*. In:
Albrecht, R., Alefeld, G., and Stetter, H. J. (eds) "Validation Numerics". Computing Suppl.
9 (1993), pp. 287-291.

Received: September 8, 1993
Revised version: June 5, 1994

Institut f/ir Informatik
University of Basel

Mittlere Strasse 142
CH-4056 Basel

Switzerland

