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A reliable linear algebra library for 
networks 

transputer 

CHRISTIAN P. ULLRICH and ROMAN R~TH 

This paper presents a collection of linear algebra subroutines for transputer networks The developed 
pilot library is intended to tbrm a basis of a complete parallel linear algebra library fi~r validating 
computations, whose routines will deliver [as accurately as necessary) eithex the best possible result, or a 
corresponding inclusion based on controlled rounding and an optimal scalar product 

So far, as a first step, we have produced code for interval arithmetic, scalar products and simple 
vector-matrix operations with lnax i rnu ln  accuracy For the sohation of triangular systems and the 
LU decomposition of dense matrices, new ~ersions ot classical methc, ds are implemented which allow 
the application of optimal scalar products as a single, indivisible operation and optimize the overlap 
of communication and computation. The  library also contains routines for computing inclusions ot 
unstructured, dense linear systems of equations. 

Network topology dependency is avoided in all numerical routines by the use of general communi- 
cation routines. This way the user is able to work with different topologies like ring structures, binary 
trees and hypercubes 
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1. Motivation 
CH. P. ULLRICI-I, R. REITt-{ 

As pointed out in [2], many numerical analysts expect ,lot only a well implemented IEEE 
Arithmetic on a computer, but also the possibility to perform composed calculations like vector 
and matrix operations in a reliable manner This means that the calculations should deliver 
the best possible result or a corresponding inclusion. On sequential computers, a wide variety 
of software for that purpose is offered, from simple library routines to advanced programming 
enviromnents {see [la]). In contrast, almost no choice is given on parallel computers [3, 4, 12, 14]. 
The  reasons for that situation seem to be: 

�9 The history of  parallel co,nputers is too short. 

�9 There  are many different architectural concepts (number and coupling of  processors). 

�9 The  number of different processor topologies is unrestricted. 

�9 The  decision on granularity in parallel algorithms cannot be made in general. 

In the following sections, a collection of linear algebra subroutines for transputer networks 
is presented The whole library is designed for validating computations, i.e. the routines 
should deliver either the best possible resuh, or a corresponding inclusion based on controlled 
rounding and an optimal scalar product. The user interfaces of the provided procedures are 
fully described in [12]. 

We decided to code all algorithms in OCCAM-2,  and (where necessary) in transputer 
assembler because we want to fully utilize the transputer [7]. 

2@ Basic arithmetic and scalar products 
Usual floating-point operations are performed on a T800 transputer with rounding to the near- 
est floating-point number. The  user intending to control the rounding direction is supported 
hv two library routines in OCCAM-2:  

BOOL, REAL32 FUNCTION IEEE320P (VAL REAL32 x, 

VAL INT rd, op, VAL REAL32 y) 

BOOL, KEAL64 FUNCTION IEEE640P (VAL REAL64 x, 

VAL INT rd, op, VAL REAL64 y) 

where the argument rd  specifies the rounding direction and op selects the floating-point 
operation. Surprisingly the execution time for these operations increases with factor 4 compared 
to the usual operations, due to the fact that the cbde is not inlined and the vah,es for rd  and 
op are checked at runtime. A new design of the arithmetic routines reduces this factor to 2 bv 

�9 providing one routine for each operation 

PROC REAL64.ADD.UP (VAL REAL64 a,  b,  REAL64 c) 
PROC REAL64.ADD.NEAREST (VAL REAL64 a,  b,  REAL64 c) 
PROC REAL64.ADD.DOWN (VAL REAL64 a,  b,  REAL64 c) 
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PROC REAL64.SUB.UP (VAL REAL64 a, b, REAL64 c) 

PROC REAL64.SUB.NEAREST (VAL REAL64 a, b, REAL64 c) 

PROC REAL64.SUB.DOWN (VAL REAL64 a, b, REAL64 c) 

PROC REAL64.MUL.UP (VAL REAL64 a, b, REAL64 c) 

PROC REAL64.MUL.NEAREST (VAL REAL64 a, b, REAL64 c) 

PROC REAL64.MUL.DOWN (VAL REAL64 a, b, REAL64 c) 

PROC REAL64.DIV.UP (VAL REAL64 a, b, REAL64 c) 

PROC REAL64.DIV.NEAREST (VAL REAL64 a, b, REAL64 c) 

PROC REAL64.DIV.DOWN (VAL REAL64 a, b, REAL64 c) 
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�9 and by implementing each operation in t ransputer  assembler  

PROC REAL64.MUL.DGWN (VAL REAL64 a, b, REAL64 c) 

-- c := a*<b 

-- workspace and registers: 

-- workspace[wsptr+3]: pointer to c 

-- workspace[wsptr+2]: pointer to b 

-- workspace[wsptr+l]: pointer to a 

-- workspace[wsptr]: return address 

GUY 

LDL 1 -- 

FPLDNLDB -- 

LDL 2 -- 

FPLDNLDB -- 

LDC 5 

FPENTRY -- 

FPMUL -- 

LDLP 3 -- 

PFSTNLDP -- 

Areg := pointer to a 

FAreg := a 

Areg := pointer to b 

FAreg := b 

set rounding mode to round toward minus infinity 

FAreg := a*<b 

Areg := pointer to c 

c := FAreg 

After this success, we decided to implement  real interval arithmetic also in t ransputer  
assembler. For the presentation of a real interval [a], we use two floating-point numbers a.inf, 
a.sup. Since the formulation of the routines is straightforward,  we list only the first part  of  the 
code for interval addit ion and the interfaces in the remaining cases. 

�9 [cl [a]+[b] 

PRGC INTERVAL64.ADD (VAL REAL64 a.inf, a.sup, b.inf, b.sup, 

REAL64 c.inf, c.sup) 

GUY 

-- c.inf := a.inf +< b.inf 

LDL I -- A.reg := pointer to a.inf 

FPLDNLDB -- FAreg := a.inf 

LDL 3 -- Areg := pointer to b.inf 

FPLDNLDB -- FAreg := b inf 

LDC 5 
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FPENTRY -- set rounding mode to round toward minus infinity 

FPADD -- FAreg := a.inf +< b.inf 

LDLP 5 -- Areg := pointer to c.inf 

FPSTNLDP -- c.inf := FAreg 

-- c.sup := a,sup +> b.sup 

LDL 2 -- Areg := pointer to a.sup 

�9 [c] :=  [ 4 -  [6]: 

PROC INTERVAL54.SUB (VAL REAL64 a.inf, a.sup, b.inf, b.sup, 

REAL64 c.inf, c.sup) 

�9 [4  : =  * [b]: 

PRflO INTERVAL64.MUL (VAL REAL64 a . i n f ,  a . s u p ,  b . i n f ,  b . s u p ,  
REAL64 c . •  c . s u p )  

�9 [c] :=  [a]/[6]: 

PROC TNTERVAL64.DIV (VAL REAL64 a. 2nf ,  a . s u p ,  b . i n f ,  b . s u p ,  
REAL64 c . i n f ,  c. sup) 

The optimal scalar product 1 plays a central role in almost all self-validating algorithms. 
For real vectors z = (zi), y = (Yi) it computes 

i= l  

with one rounding rd  applied to the exact value of the scalar product z * g. Different 
approaches to the implementation of this operation are discussed in [2]. The  present library 
provides the long accumulator version implementing the exact scalar product as a fixed point 
number by an array of  32-bit integers. The whole operation is considered as single, indivisible 
unit always computed by one processor. This design is preferred since 

�9 distribution of  input data to a number of processors and transmission of  high accuracy 
intermediate results would require high communication costs [9] 

�9 in practice scalar products occur during matrix-vector and matrix-matrix operations where 
the sequential treatment of complete scalar products makes more sense. 

1The optimal--scalar prc:duct is also called nmximum-accuraty ~calar ]nodua, maximum quality ~dar prodm:t, or e~tct 
~calar prod~t in literature 
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All higher numerical algorithms of this library relying on the optimal scalar product are 
developed to support this design. 

The user interface of the optimal scalar product is given by three routines: 

PROC c l e a r . a c c u s  () 
PROC accumula te  (VAL [] REAL64 x, y) 
PROC round (REAL64 r e s u l t . u p ,  r e s u l t . n e a r e s t ,  r e s u l t . d o w n )  

where c l e a r ,  accus  sets the accumulator to zero, a c c u m u l a t e  generates the exact value and 
round returns three results by applying three roundings to this value. Note that this can 
be done nearly without additional costs compared to the production of only one resuh. A 
consequence is a speedup of computing an interval inclusion of the scalar product. 

Scalar products for interval vectors are implemented analogously. 

The effort compared to the conventional scalar product could be worse due to some 
features of the transputer hardware architecture: first, the CPU of the TS00 transputer 
contains just three general registers, which form a hardware stack. Therefore, it is impossible 
to hold frequently used variables in a register permanently. Second, unlike the announced 
T9000 and Motorola 68020, 68030 microprocessors, the T800 transputer does not contain a 
barrel shifter allowing very fast shift operations. Analysis of the execution time yields that 
more than 30% of the cycles are needed for load and store operations and additionally, about 
15% are needed for shift operations. 

normalized 
execution times 

number of 
rounding operations 

conventional 
FOR-loop 

2n- 1 

lower bound 
using OCCAM-2 library 

3.1 

2n -- 1 

optimal 
scalar product 

9.2 

Table 1. Normalized execution times and the number of rounding operations of different 
scalar product implementations (n = 1000) 

Table 1 shows the normalized execution times and the number of rounding operations 
required by three scalar product implementations (n = 1000): 

�9 a conventional implementation using a simple for-loop with uncontrolled rounding oper- 
ations and thus unreliable results, 

�9 an implementation using the OCCAM-2 library routine IEEE640P to determine a lower 
bound 2 of the true result by performing operations with downwardly directed roundings, 
and 

�9 an implementation that computes the result of maximum accuracy by applying just one 
rounding operation to the true value. 

2without maximum acozracy 
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3. Communication routines 

CH. P. ULLRICH, R. REITH 

A mul6computer,  like a transputer system, consists of a network of processors, each of which 
possesses its own local memory. The processors communicate and synchronize with each other 
by sending messages. However, the OCCAM-2 programming language only supports message 
passing between two neighboring processors. A realization of non-neighboring communication 
schemes, which are typical of  parallel programs, must take into consideration a number of 
characteristic hardware and software features: the number of processors, their topology, the 
number of  hardware links, and the one-to-one correspondence between hardware links and 
software channels. To handle these dependencies in a more or less portable way, some 
collective communication routines were implemented: 

�9 d i s t r i b u t e :  row-wise distribution of matrices 

�9 b r o a d c a s t :  a source node sends a single message (vector) to all other nodes 

�9 expand:  gather all elements of  a distributed vector and make them available to all nodes 

�9 f l o w . t o . r o o t . r e c e i v e ,  f l o w . t o . r o o t ,  send:  a minimal spanning tree is embedded 
in the network and these two procedures realize an information flow from the leave 
nodes to the root 

�9 i t e r a t i o n ,  c o n t r o l :  hides the necessary communication when performing a convergence 
check in a parallel iteration 

In general, these five communication routines have to be adapted to each new topology. 
However, some of  them are also implemented in a ~topology independent" way: they are not 
implemented by using the send/receive mechanism of OCCAM-2 but by applying one of the 
other collective communication routines: 

communication scheme was also realized on the basis o f . . .  

distribute broadcast 
expand broadcast 

iteration.control flow.to.root.send 

flow.to.root.receive 

Table 2. Hierarchical implementation of communication routines 

Besides this hierarchical implementation, all of  the mentioned communication routines 
were directly implemented for a binary tree a n d ' a  ring topology. 

For illustration we list the interfaces of the b r o a d c a s t  and expand routines: 

PROC broadcast (VAL INT id, 

src, 
[] KEAL64 vector) 
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PROC expand (VAL INT id, 
dimension, 

VAL [] REAL64 local.vec~or, 
[] REAL64 global.vector) 
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40 Vector and matrix operations 
Our goal is an efficient application of the optimal scalar product in (parallel) vector and matrix 
operations. Regarding the scalar product as a single, indivisible operation this implies row- 
oriented algorithms with a row-wise distribution of matrices to the available processors. An 
invoked routine expects that an input matrix already has been distributed by rows and that 
just locally stored rows are passed; in contrast, an input vector is always passed completely to 
the called routine. The computed results are returned in a distributed shape. Each component 
is of maximum accuracy. Such a component can he the best floating-point approximation, 
the smallest enclosing interval or the absolute value of the smallest enclosing interval. If the 
absolute value a of an interval is returned, a so-called symmetric inclusion I - a ,  a] with a > 0 
was computed. In this case, the interval valued object (vector, matrix) containing the solution is 
represented only by a point valued object (vector, matrix) which reduces memory requirement. 
This strategy of using symmetric intervals is especially useful when residuals are to be computed. 
Since inclusions of residuals are often almost symmetric to the origin, nearly no accuracy is lost 
in this case. 

4.1. Vector and matrix-vector operations allowing simple 
parallelizations 

In this section we discuss vector and matrix-vector operations that allow an interesting paral- 
lelization strategy: the problem can be divided into subproblems which have the same structure 
as the original problem and which can he solved independently from each other, i.e. without 
transmitting data. We illustrate this strategy by considering a matrix-vector multiplication M.  z 
(see Figure 1). If matrix M is partitioned and distributed by rows, then each scalar product 
will he computed entirely by the processor owning the corresponding row, and each processor 
will thus perform a matrix-vector multiplication of reduced problem size. 

The advantages of this approach are evident: 

�9 application of the optimal scalar product is supported 

�9 reliable results 

�9 coarse-grain parallelizations 

�9 efficiency 

�9 reusability of sequential code. 

Therefore the presented library places at the users' disposal a long series of sequential 
operations, which can also he used without any changes in a parallel environment. The 
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Stored on processor 0 

Stored on processor I 

M x 

Figure 1. Parallel matrix-vector multiplication 

following tables give an overview of some of the corresponding routines using a shorthand 
notation. 

�9 Sequential vector operations: vectors :c, y 

inflation: Ix] ~-- Ix] + d(x). [-eps; eps] 
subset: [~] c Iv] and [~] ~ [y] 

�9 Sequential matrix-vector operations: matrices .~[, R 

1~1 �9 x 

M . x + y  

y - M . x  

real x reed ---* nearest 

reed x reed ~ interval 

reed • real ---+ syan interval 

real x interred ---+ interval 

real x interved -- ,  w n  in terwd 

reed x ova inter~,d ~ s)va in ter~d  

interzgd • interwd ~ intenJal 

.sym interval • s)qn in ter~d ~ s)~n inten,al 

in tengd x interzgd + interved ~ intengd 

,~.'m interval x o~n intenJ(d + in ter~d  ~ s~n intervrd 

real - real x real 

real - real x reed 

r e a l -  real x reed 

"-+ rlearesl 

interz~d 

--~ sym in ter~d  

in ter~d  - in ter~d x real ~ interz~d 

in ter~d  - interval x reed ---* sym in ter~d 
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4.2. Matrix-matrix operations 
An important matrix-matrix operation in self-validating algorithms for solving dense linear 
systems computes inclusions of residual matrices /" - R .  M,  where _r denotes the identity matrix. 
Parallelizing such a matrix-matrix multiplication in the same way as the discussed matrix-vector 
multiplications, i.e. decomposing the operation into independent  suboperations that do not 
need any communication while performing their computation, would waste a lot of memory,  
because matrix i'~I would have to be hold by each processor completely. Therefore, we apply 
a more effective strategy. Again, it is assumed that the matrices R and -'U are distributed 
among the processors by rows. But now, matrix .~[ flows cohunn-wise through the network 
during computation. This allows to handle a scalar product as an indivisible operation The  
communication cost can be masked by overlapping communication and computation. 

The  library provides routines for the following types of problems: 

I - R . M  real - -  re(d x re(d ~ i n t e rva l  

re(d - real x real ~ sym i n l e r ~ d  

real - real x i n t eR~d  ~ in terz~d 

reed - real x inlerz,(d ---* ~)'m bl lerz~d 

Sequential routines are included as well as parallel routines with and without overlap of 
communication and computation. Of  course, the routines can easily be modified to compute a 
matrix-matrix multiplication R - M .  

50 Solving lower triangular systems 
The  well-known sequential inclusion methods for lower triangular systems are based on the 
straightforward application of interval arithmetic: all floating-point operations are replaced by 
interval operations. The  additional evaluation of scalar products with maximum accuracy may 
lead to sharper inclusions, but in general, especially for very large systems, the results are 
not guaranteed to maximum accuracy. These difficulties are caused by the recursive nature 
of the evaluated equations. Nevertheless, we present routines that make extensive use of  the 
optimal scalar product, because this approach seems to be most promising. In particular, sharp 
inclusions can be expected, when a diagonally dominant  matrix is given. 

5.1. Sequential implementations 
On a serial computer,  two classical methods are available to solve triangular systems: the 
column-oriented and the row-oriented forward substitution. Only the latter allows an effective 
use of the optimal scalar product. Therefore,  a corresponding routine was added to the library. 

5.2. Parallel implementations 
In the last few years different conventional numerical methods have been developed to solve 
triangular systems of equations on multicomputers (for example [5] and [6]). Of  course, all these 
methods can be used to compute inclusions by applying simple interval arithmetic. However, 
they do not efficiently support the optimal scalar product. Therefore,  two new versions for 
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solving lower triangular systems L.c = h are cieveloped satisf)'ing these criteria. The  so-called 
,ylic MSP algorithm ~ uses ring connectivity and is valid only fi)r wrap mapping of the matrix 
rows. In this algorithm, a data packet of size p - 1. where p denotes the number of available 
processors, circulates through the network. A significant reduction of the execution time can 
be reached if this data packet is broken into subsegments that circulate through the network 
independently (pipeline version). 

The so-<ailed MSP broadtcL~t <algorithm can be executed on general networks merely requiring 
a broadcast routine there and only assuming a row-wise distribution of the matrix rows. The  
algorithms are described in detail in [12]. 

To characterize the fimctionalitv of the provided library routines in a compact way, the 
following abbreviations are used: 

ind 

~Lpp, ox. 

O'U~r : 

row ph,ot: 

col pivot: 

no pivot" 

inclusions of the true resuh are computed 
approximations of the true result are computed 

optimal scalar product is applied 

communication and computation are overlapped 
communication and computation are no___tt overlapped 

row pivoting is used, i.e., the maximal element in a column is chosen as 
a pivot 
column pivoting is used, i.e., the maximal element in a row is chosen as 
a pivot 
no pivoting strategy is applied 

The library contains the following routines for solving interval valued triangular systems: 

�9 cTclic MSP form: rod, ,~p, truer 

�9 pipeline version of the cyclic MSP form: inc/. , , %  over 

�9 pipeline version of  the cyclic MSP form: incl, m.~p. hover 

�9 MSP broadcast form: ind, n~p, over 

�9 MSP broadcast form: mcl, m% nover 

We list two of  the procedure interfaces the first for the MSP broadcast form without 
overlap and the second for the pipeline version of  the cyclic MSP form with overlap of  
communication and computation. 

PROC PAR. ILxb.MSP.broadcast (VAL !NT id, 
"dimension, 
num. of. stored, rows, 

VAL [] [] KEAL64 local.L, inf, local. L.sup, 
VAL [] KEAL64 local.b.inf, local.b.sup, 

[] REAL84 x.inf, x.sup) 

3"MSP" stands for maximum-accuracy scalar product. 
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PROC PAR. ILx.b.cyclic.MSP.pipe.over (VAL INT id, 
dimens ion, 
num. of. stored, rows, 
sigma, 

VAL [][] KEAL64 local. L.inf, local. L.sup, 
VAL [] KEAL64 local.b.inf, local.b.sup, 

[] KEALS4 x.inf, x.sup) 

6~ Inverting dense matrices 
The Gauss-Jordan algorithm is a well-known method for in-place matrix inversion. Different 
versions of this algorithm are implemented. They compute an approximate inverse by using 
the available floating-point operations. Therefore, the results are in general not of maximum 
accuracy. These routines are used in the inclusion algorithm for general linear systems discussed 
in Section 8. 

6.1. Sequential implementations 
The library includes a sequential implementation of the Gauss-Jordan algorithm with row 
pivoting. 

6.2.  Parallel implementations 
The communication of the parallel algorithms is realized by a broadcast routine. Therefore, 
the adaptation of the algorithms to new network topologies requires just the modification of 
this communication routine. An input matrix is to be distributed by rows before calling the 
routines. The decomposed matrices will also be returned distributed by rows. 

The routines implemented differ from each other on the pivoting strategy (row pivoting, 
column pivoting, no pivoting) and whether an overlap of communication and computation is 
applied or not. In detail, routines based on the following strategies are' available: 

�9 approx, over, row pivol 

�9 approx, ntn,er, row pivot 

�9 approx, over, col pivot 

�9 approx, hover, col pivot 

* approx, over, no pivot 

Again, we list an interface, to illustrate the use of the routines (Gauss-Jordan algorithm 
with row pivoting and overlap of communication and computation): 
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PROC PAR.gauss.jordan.row.piv.over (VAL INT id~ 
dimension, 
num. of. stored.rows, 

INT numeric.error, 
[][] REAL64 local. A, 

[] INT swap.cols) 

7~ LU fact0rizati0n of dense matrices 
There are many different ways of organizing LU factorilation; all perform the same arithmetic 
operations, but in a different sequence. Ortega [8] describes 12 such versions, which are called 
i j k  and i j k 2  forms according to the arrangement of the triply nested loop. The innermost 
loop performs a scalar product operation only if its loop index is k. In all other cases, it is 
an AXPY operation. The library contains implementations of the j i k 2  and j i k  forms, which 
allow an efficient application of the optimal scalar product. Additionally, some versions of the 
k i j  form are included. 

7.1. Sequential implementations 
The library includes the following types of sequential routines: 

�9 k i j  form: approx, col ply 

�9 j i k  form: :,pprox, rasp, no piv 

�9 j i k 2  form: approx, ~ra~p, no piv 

7.2. Parallel implementations 
The communication of the parallel algorithms is realized by a broadcast routine. Therefore, 
the adaptation of the algorithms to new network topologies requires just the modification of 
this communication routine. An input matrix is to be distributed by rows before calling the 
routines. The decomposed matrices will also be returned distributed by rows. 

7.2.1. kij form 

Most implemented routines compute an approximate LU factorization by using the available 
floating-point operations. Only one routine computes inclusions; all floating-point operations 
are replaced by interval operations. Therefore, the results are in general not of maximum 
accuracy. 

Routines based on the following strategies are available: 

�9 approx, truer, row pivot 

�9 approx, nover, row pivot 
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�9 approx, over, col ph,ot 

�9 approx, hover, col pivot 

�9 approx, ea,er, no pivot 

�9 approx, hover, no pivot 

�9 ind, over, col pivot 

These different versions allow extensive studies of the effects of pivot strategies and overlap 
techniques on the efficiency of a parallel algorithm Such experiences are very important for 
developing high performance algorithms 

7.2.2. jik and jik2 f0m 

Parallel versions of the j i b  and j i k 2  forms were developed and implemented that allow 
the application of the optimal scalar product. The library also includes routines based on 
conventional floating-point operations. All routines compute approximate LU factorizations and 
thus the results are in general not of maximum accuracy. 

In detail, following routines are available: 

�9 j i k 2  form: approx, ,rap, over, no pivot 

�9 j i k 2  form: approx, rasp, hover, no pivot 

�9 j i k 2  form: approx, over. no pivot 

�9 j i k 2  form: approx, nm'er, *w pivot 

�9 j i k  form: approx, m.~p, over, no phJot 

�9 j i k  form: ap~rox, ,rL~p, nover, no pivot 

Again, we present one interface just for illustration (parallel j i k 2  form with optimal scalar 
product and overlap of communication and computation): 

PROC PAR.LU.decomp.jik2.MSP.over (VAL INT id, 
dimension, 
num.of.stored.rows, 

INT numeric.error, 
[] [] KEAL64 local.A) 
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Self-validating linear system solver for dense matrices 
Computing a highly accurate inclusion for the solution of a general, unstructured linear system 
Az = b based on fixed-point methods requires operations that are discussed in previous sections. 
They include: 

�9 computing an approximate inverse R of the input matrix A 

�9 some basic matrix-vector operations of maximum accuracy 

�9 the inclusion of the residual matrix I - R .  A with maximum accuracy 

�9 communication procedures: broadcc~, expand, iterationLontrol 

A parallel self-validating linear system solver was build by combining these operations in 
appropriate manner. Routines for solving point valued and interval valued linear systems are 
available. Of course, the library also contains the corresponding sequential solvers. 

For illustration, we list the interface of the procedure PAR. ILSS that solves a interval 
valued linear system: 

PROC PAK. ILSS (VAL INT id, 
dimension, 
hum.of.stored.rows, 

INT numeric, error, 
[] [] REAL64 local. A.inf, local.A.sup, 

VAL [] REAL64 b.inf, b.sup, 
[] REAL64 x.inf, x.sup) 

9. Conclusions 
A pilot library of basic linear algebra subroutines for transputer networks has been established. 
The major aim of the work was to gain knowledge and practical experience of the design, 
implementation, and performance behaviour of parallel self-validating algorithms. Especially the 
application of the optimal scalar product was investigated in a muhicomputer environment. All 
routines which have been found useful in this context are included to the library. Therefore, 
its completeness is not claimed but adapation and extensions can be made very easily because 
the source code can be used by interested research institutes without any charge. 
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