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This paper describes an implementation of a general interval arithmetic ex-
tension, which comprises the following extensions of the conventional interval
arithmetic: (1) extension of the set of normal intervals by improper intervals;
(2) extension of the set of arithmetic operations for normal intervals by non-
standard operations; (3) extension by infinite intervals. We give a possible re-
alization scheme of such an universal interval arithmetic in any programming
environment supporting IEEE floating-point arithmetic. A PASCAL–XSC
module is reported which allows easy programming of numerical algorithms
formulated in terms of conventional interval arithmetic or of any of the enlisted
extended interval spaces, and provides a common base for comparison of such
numerical algorithms.

Расширенная интервальная
арифметика в среде стандарта IEEE

для чисел с плавающей точкой
Е. Д. Попова

Описывается реализация расширения интервальной арифметики, которое
включает в себя: (1) дополнение множества обычных интервалов несоб-
ственными интервалами; (2) дополнение множества арифметических опе-
раций нестандартными операциями; (3) введение бесконечных интерва-
лов. Представлена схема реализации такой универсальной интервальной

1This work has been partially supported by the National Science Fund of the Ministry of Science and
Education under grant No. MM 10/91.

c© E. D. Popova, 1994



Extended Interval Arithmetic in IEEE Floating-Point Environment 101

арифметики в любой среде программирования, поддерживающей стан-
дарт IEEE на арифметику с плавающей точкой. Приведен модуль на
языке PASCAL–XSC, позволяющий без труда писать программы как для
алгоритмов, сформулированных в терминах обычной интервальной ариф-
метики, так и для алгоритмов, использующих любое из перечисленных
расширений, предоставляя тем самым базу для их сравнения.

1 Introduction

Conventional interval arithmetic [1, 30] has been extended in the following
three main directions.

• Extension of the set of normal (proper) intervals by improper intervals,
which involves an extension of the definitions of the interval-arithmetic
operations for the set of proper and improper intervals. The corre-
sponding extended interval arithmetic structure K has been studied
by E. Kaucher [14–16], H.–J. Ortolf [31], E. Gardenes [11, 12] and oth-
ers. The conditional distributivity in K has been recently formulated
[8].

• Extension of the set of arithmetic operations for normal intervals by
nonstandard operations. The corresponding extended interval arith-
metic structureM has been investigated in [24, 26] and applied in a
number of numerical algorithms [7, 25, 28] etc.

• Extensions by infinite intervals [13, 14, 23, 26].

It has been demonstrated [8, 26, 32] that the extended interval arithmetic
structures K andM are strongly interrelated and can be equally well used
for practical purposes. All the above three extensions can be naturally
combined into a common universal structure based on the extended concept
of interval.

Except for SIGLA–PL/1 [11] (using radial representation of the inter-
vals) to our knowledge there is no implementation of the extended interval
arithmetic for generalized intervals. Meanwhile, a number of numerical al-
gorithms (see Section 5) based on the enlisted above extensions of the con-
ventional interval arithmetic appeared. But their usage and comparison are
hampered by the lack of an appropriate base software.
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Another reason for the development of this collection of routines includes
possible applications of the extended interval arithmetic. According to the
extended concept of interval a generalized interval [a, b] = {x ∈ R | a ≤
x ≤ b, if a ≤ b; b ≤ x ≤ a, if a > b} is a subset of real values supple-
mented by a direction. The reacher set of generalized (directed) intervals
implies reacher algebraic properties of the arithmetic operations involved.
The interval structures considered here have a potential for applications to
computation of sharp bounds for the ranges of functions, inner and outer
numerical approximations etc. which are reviewed in Section 5.

Most of the implementations of the conventional interval arithmetic can
actually perform interval operations on directed (proper/improper) intervals
as well. This is due to the fact that the structure components of the interval
data type are user accessible and no checking procedure for the type of the
arguments is provided by the interval operation routines. The arithmetic
routines designed for proper intervals can also produce results if (some of)
the arguments are improper intervals. To be more specific, a PASCAL–XSC
[17] program for subtraction of intervals works if some of the arguments are
improper, for example

[1.07, 2.82]− [3.59E2, 3.58E2] = [−3.569E2,−3.5718E2].

Addition and subtraction operations produce correct results regardless of
the type of the operands (proper/improper) since the end-point expressions
for these operations are simple and offer no choice. However this is not true
for multiplication and division operations where different expressions can be
used. Interval multiplication when implemented according to the expression

[a−, a+]× [b−, b+] =
[
min{a−b−, a−b+, a+b−, a+b+},
max{a−b−, a−b+, a+b−, a+b+}

]
always gives wrong result if some of the operands is improper interval. Proce-
dures for interval multiplication which use an expression involving checking
of the signs of the interval end-points give correct result when some of the
operands are improper intervals not containing zero in its interior. The result
is wrong if an operand is an improper interval containing zero. Moreover,
different implementations give different results in this situation, e.g.

[2, 3]× [7,−5] =

 [21,−10] in PASCAL–SC,
[14,−15] in MODULA–SC,
[14,−10] in PASCAL–XSC.
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The correct answer in K is [21,−15]. The results of the division for operands
of different types are analogous to those for multiplication. There is an ob-
vious need to implement the correct definitions for all interval arithmetic
operations for directed (proper/improper) intervals. This can be done at no
additional cost in comparison to standard interval arithmetic implementa-
tion.

Main purpose of this paper is to present a convenient, portable and uni-
versal programming tool supporting ordinary interval arithmetic as well as
the enlisted extensions. Sections 2, 3 give the necessary theoretical base
which underlies the implementation and the usage of the interval arithmetic
based on the extended concept of interval. Concise end-point representa-
tions are given which are particularly suitable for computer implementation.
Section 3 summarizes the semimorphic definitions of the computer inter-
val operations and some of their properties. A PASCAL–XSC [17] module
EXI_ARI is presented in Section 4 as a current implementation of extended
interval arithmetic in programming environment supporting IEEE floating-
point arithmetic [2, 3]. In order to preserve type compatibility within the
existing structure of PASCAL–XSC language, the EXI_ARI module does
not support outer (Kahan’s) infinite intervals [13], which implementation
requires new interval data type. Based on a special theoretic considera-
tion, given in Section 2, a specific scheme is proposed for implementation
of the interval division operation, extended to perform division by interval
containing zero. Most recent interval arithmetic implementations are based
on floating-point arithmetic conforming the IEEE standard 754 [2]. But
no agreement exists in the interval community on how to deal with inter-
val arithmetic exceptions and no standard concerning interval arithmetic on
no numbers has been proposed. In this paper we pay attention to those
interval operations, which may have doubtful implementation in an IEEE
floating-point environment and give the corresponding definitions of the in-
terval arithmetic exceptional situations and their default response used in
this realization.

2 Extended interval arithmetic

In this section we shall briefly outline some basic formulae of the extended
interval arithmetic structure K proposed by E. Kaucher [14-16]. This struc-
ture is of major importance for our software implementation since it involves
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a new concept of interval. We shall omit any discussion of the nonstandard
extended arithmetic [24–26] since it only concerns new arithmetic operations
which present no problem for the implementation.

The set of all finite normal (proper) intervals IR = {[a, b] | a, b ∈ R, a ≤
b} is extended into the setH = {[a, b] | a, b ∈ R} ∼= R2 of all ordered couples
of finite real numbers further called directed intervals. A directed interval
A = [a−, a+] ∈ H is either proper if a− ≤ a+, or improper if a− > a+, so
that

H =
{
[a, b] | a, b ∈ R

}
= IR ∪ IR,

IR =
{
[a−, a+] | a− ≥ a+; a−, a+ ∈ R

}
.

Denote T = {A ∈ IR | a−a+ ≤ 0} ∪ {A ∈ IR | a−a+ ≤ 0} = Z ∪ Z.
For A ∈ H the symbol as with s ∈ {+,−} denotes certain end-point of A
and the “product" st for s, t ∈ {+,−} is defined by ++ = −− = + and
+− = −+ = −, so that as+ is well defined.

For a directed interval A define “sign" σ : H \ {[a−, a+] | a−a+ < 0} →
{+,−} by

σ(A) =

{
+, if (0 ≤ a−) & (0 ≤ a+);
−, if (a− ≤ 0) & (a+ ≤ 0) (but A 6= [0, 0]),

and a binary variable “direction" by

τ(A) =

{
+, if a− ≤ a+,
−, otherwise . (1)

The operations of the extended interval arithmetic structure K = {H,+,
×,⊆} are extensions of the interval arithmetic relation and operations from
the conventional interval space {IR,+,×, /,⊆} into H

A ⊆ B ⇐⇒ (b− ≤ a−) & (a+ ≤ b+), for A,B ∈ H; (2)
A+B = [a− + b−, a+ + b+], for A,B ∈ H; (3)

A×B =



[a−σ(B)b−σ(A), aσ(B)bσ(A)], for A,B ∈ H \ T ,
[aδb−δ, aδbδ], δ = σ(A), for A ∈ H \ T , B ∈ T ,
[a−δbδ, aδbδ], δ = σ(B), for A ∈ T , B ∈ H \ T ,
[min{a−b+, a+b−}, max{a−b−, a+b+}], for A,B ∈ Z,
[max{a−b−, a+b+}, min{a−b+, a+b−}], for A,B ∈ Z,
0 , for A ∈ Z, B ∈ Z or A ∈ Z, B ∈ Z .

(4)
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Note that according to definition (2) any improper interval A = [a−, a+]
such that a+ ≤ b ≤ a− is contained in the point interval B = [b, b], A ⊆ B.

From (4) we have (−1) × B = [−b+,−b−] = −B for B ∈ H. Thus the
extension of the conventional interval subtraction into H can be obtained
as a composite operation

A−B = A+ (−B) = [a− − b+, a+ − b−], A,B ∈ H. (5)

The substructures (H,+,⊆) and (H \ T ,×,⊆) of K are isotone groups
[14]. The inverse elements with respect to the operations + and × are:

−hA = [−a−,−a+] for A ∈ H;

1/hA = [1/a−, 1/a+] for A ∈ H \ T .

The monadic operator conjugation (called dual in [11, 12]) defined by

A− = [a+, a−] = −h(−A) = −(−hA) (6)

expresses an element-to-element symmetry in H and has the properties:

A ⊆ B ⇐⇒ A− ⊇ B−, (A ◦B)− = A− ◦B−, ◦ ∈ {+,−,×, /}.

For A ∈ H \ T there exists also an unique operator “set inversion"
1/A = 1/hA− = [1/a+, 1/a−] such that 1/h(1/A) = 1/(1/hA) = A−. The
extension of the conventional interval operation A/B for A ∈ H, B ∈ H \T
is thus obtained as a composite operation, too

A/B = A× (1/B)

=

{
[a−σ(B)/bσ(A), aσ(B)/b−σ(A)], for A,B ∈ H \ T ,
[a−δ/b−δ, aδ/b−δ], δ = σ(B), for A ∈ T , B ∈ H \ T . (7)

H is a lattice with respect to ⊆ with the following lattice operations:

inf⊆(A,B) = A ∧ B =
[
max{a−, b−},min{a+, b+}

]
, (8)

sup⊆(A,B) = A ∨ B =
[
min{a−, b−},max{a+, b+}

]
. (9)

The lattice operations satisfy the following properties

(A ◦B) + C = (A+ C) ◦ (B + C) for A,B,C ∈ H and ◦ ∈ {∧,∨},
(A ◦B)× C = (A× C) ◦ (B × C) for A,B,C ∈ H \ T and ◦ ∈ {∧,∨},

(A ∧B)− = A− ∨B−.
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Another order relation is also defined by

A � B ⇐⇒ (a− ≤ b−) & (a+ ≤ b+) (10)

with the properties

A � B ⇐⇒ A− � B−,

A � B ⇐⇒ −A− � −B−,
A � B =⇒ A+ C � B + C.

Kaucher [14] introduces the so-called hyperbolic product as

A×h B = [a−b−, a+b+], A,B ∈ H. (11)

The interval arithmetic addition (3) together with the hyperbolic mul-
tiplication (11) form the semifield H = {H \ T ,+,×h} [15]. The inverse
elements −hA, 1/hA generate operations

A−h B = A+ (−hB) = [a− − b−, a+ − b+], A,B ∈ H, (12)
A /h B = A×h (1/hB) = [a−/b−, a+/b+], A ∈ H, B ∈ H \ T (13)

called hyperbolic subtraction, resp. hyperbolic division.
Let R∗ = R ∪ {−∞,∞}. Denote by HI = {[a, b] | a, b ∈ R∗} the set

of all finite and infinite directed intervals. The intervals from HI are called
inner directed intervals in contrast to the outer directed intervals (proper or
improper), obtained by division by intervals containing/contained in zero to
be defined below.

Using that −∞ ≤ a ≤ +∞ for all a ∈ R∗ and the conventional rules
for manipulations with infinities (see for example [21]) the definitions of
the relation ⊆ and the arithmetic operations +,−,×, / are extended from
H ×H into HI ×HI by replacing H with HI in (2)–(5), (7). The special
cases of end-points of the form ±(∞−∞) or ±(0 · ∞) are considered as
exceptions (see Section 4.3).

For some Newton-like algorithms using conventional interval arithmetic
it is essential to divide by a zero containing interval, so we need to implement
an extended division operation. Some interval arithmetic specifications [4]
require a separate procedure for an extended division producing two semi-
infinite intervals, other specifications [19] allow division by intervals having
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zero only as an end-point. In what follows we consider the extension of
the interval division operation and point out the possibility of a compressed
representation of the result of the division by interval having zero in its
interior as a finite directed interval.

The operation 1/B for B ∈ L = {[a−, a+] | a−a+ < 0} is defined [14] as
a set of two intervals as follows:

1/B = 1/[b−, b+] = {[−τ(B)∞, 1/b−], [1/b+, τ(B)∞]}.

Such a set of two equally directed inner intervals (one involving ∞,
the other −∞) is called outer directed interval. These intervals are gen-
eralization of the so called Kahan’s intervals [13, 23]. The following new
propositions present some simple expressions which have been used in our
implementation.

Proposition 2.1. For A ∈ H \ T and B ∈ L

A/B =
{
[c−,−τ(C)∞], [τ(C)∞, c+]

}
where C = [c−, c+] = [aτ(B)/bσ(A), aτ(B)/b−σ(A)].

For A ∈ T and B ∈ L we obtain

A/B =

{
[−∞,∞]τ(A), τ(B) = +;
{[a+/b+, a−/b+], [a−/b−, a+/b−]}, τ(B) = −.

The above proposition suggests a “compressed" form of presentation for
the result of the division by interval containing/contained in zero through
only one finite directed interval C and the corresponding rule for a subse-
quent backward splitting of C into two inner directed intervals according to
the direction of C. This presentation is exploited in the computer imple-
mentation of the division operation avoiding thus the necessity of a separate
procedure for extended division.

Extension of the hyperbolic inversion 1/hB for B ∈ L gives 1/hB =
{[1/b−,−τ(B)∞], [τ(B)∞, 1/b+]}.

Proposition 2.2. For A ∈ H and B ∈ L

A/hB = {[a−/b+, sign(a−/b+)∞], [sign(a+/b−)∞, a+/b−]} (14)
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and

sign
(
a−

b+

)
= σ(A)τ(B) =

 sign
(
a+

b−

)
, if A ∈ T

−sign
(
a+

b−

)
, if A ∈ H \ T .

It can be seen from (14) that the hyperbolic division by interval con-
taining/contained in zero is also suitable for compressed representation C =
[a−/b+, a+/b−] of the result. The two semi-infinite intervals can be composed
by the end-points (and their signs) of the compressed result.

3 Computer arithmetic

Analogous to the conventional interval computer arithmetic [21] a computer
arithmetic for directed intervals is defined by semimorphism [9].

Let SR∗ be a symmetric screen over R∗ and SHI = {[a−, a+] ∈ HI |
a−, a+ ∈ SR∗}, then {SHI ,⊆} is a screen of {HI ,⊆}.

Define rounding 2 : HI −→ SHI as a monotonic function with the
properties:

1) 2 (A) = A, A ∈ SHI ;

2) A ⊆ B =⇒ 2 (A) ⊆ 2 (B), for A,B ∈ HI ;

3) for A,B ∈ HI

A ⊆ 2 A, 2 = 3 (outward rounding),
A ⊇ 2 A, 2 =© (inward rounding),

3A = [5a−,4a+], ©A = [4a−,5a+]

where 5, 4 are the corresponding directed roundings 5,4 : R∗ −→
SR∗ [21].

If ◦ ∈ {+,−,×, /} is an arithmetic operation in HI , the corresponding
computer operation 2◦ in SHI is defined by

A 2◦ B = 2 (A ◦B), for A,B ∈ SHI , 2 ∈ {3,©}.
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The explicit formulae for the computation of the result of the extended
interval operations in SHI are summarized as follows.

For A,B ∈ SHI and ◦ ∈ {+,−,×, /}

A 3◦ B := 3 (A ◦B) = [ 5 (A ◦B)−, 4 (A ◦B)+ ];

A ©◦ B :=© (A ◦B) = [ 4 (A ◦B)−, 5 (A ◦B)+ ].

The extended interval computer operations are inclusion isotone

A ⊆ B =⇒ A 2◦ C ⊆ B 2◦ C

for A,B,C ∈ SHI , ◦ ∈ {+,−,×, /}, 2 ∈ {3,©}.

The following inclusion assertions [11] are of major importance in ob-
taining inner and outer numerical approximations.

• For A ∈ SHI

(3(A−))− = ©A ⊆ A ⊆ 3A = ©(A−)

©(A−) = (3A)− ⊆ A− ⊆ (©A)− = 3(A−).

• For A ∈ SHI and ◦ ∈ {+,−,×, /}

(A− 3◦ B−)− ⊆ A ◦B ⊆ A 3◦ B

A ©◦ B ⊆ A ◦B ⊆ (A− ©◦ B−)− .

• Let F [{◦1, . . . , ◦m}, {A1, . . . , An}] be a rational function where ◦i ∈
{+,−,×, /}, i = 1, . . . ,m and Aj ∈ HI , j = 1, . . . , n, then

F
[
{©◦ i}mi=1, {©Aj}ni=1

]
⊆ F

[
{◦i}mi=1, {Aj}nj=1

]
⊆ F

[
{3◦ i}mi=1, {3Aj}nj=1

]
and

F
[
{3◦ i}mi=1, {3 ((Aj)−)}nj=1

]
− = F

[
{©◦ i}mi=1, {©Aj}ni=1

]
F
[
{3◦ i}mi=1, {3Aj}nj=1

]
= F

[
{©◦ i}mi=1, {© ((Aj)−)}nj=1

]
−.
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Note, that according to these inclusion relations both inner and outer
computer approximations could be obtained through only one of the round-
ing modes.

The hyperbolic computer operations ◦h ∈ {−h,×h, /h} are defined anal-
ogously.

For A,B ∈ SHI and ◦ ∈ {+,−,×, /}

A 3◦ h B := 3 (A ◦h B) =
[
5 (a− ◦ b−), 4 (a+ ◦ b+)

]
;

A ©◦ h B :=© (A ◦h B) =
[
4 (a− ◦ b−), 5 (a+ ◦ b+)

]
.

Some of the inclusion properties of the computer hyperbolic operations
are as follows

3 (−hA) = −h(© A), for A ∈ HI ;
A ⊆ B =⇒ A ©−h C ⊆ B 3−h C, for A,B,C ∈ SHI ;
A ⊆ B =⇒ A ©◦ h C ⊆ B 3◦ h C, for A,B ∈ SHI , C ∈ SHI \ ST ,

◦ ∈ {×, /}.

4 Implementation

4.1 Principles and requirements

Designing the extended interval arithmetic implementation our objective
is to provide a comprehensive, portable and well-documented collection of
routines, which allows easy programming of numerical computations in the
extended interval spaces.

The only prerequisite concerning these routines is the presence of a reli-
able floating-point arithmetic with directed roundings conforming the IEEE
floating-point standard [2] or [3]. Main reason for this choice were

• the IEEE standard provides mathematically well-defined computer
arithmetic with maximum accuracy and directed roundings. This
arithmetic ensures all obtained interval results to be accurate to 1 ULP
(Unit in the Last Place);
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• the IEEE standard gives accurate definitions of the floating-point ex-
ceptions and their handling, which is an appropriate base for defining
the corresponding interval arithmetic exceptions and their handling;

• the IEEE floating-point arithmetic supports a set of non-numeric symbols—
NaNs (Not-a-Number) and the two infinities, which is essential for the
extended interval arithmetic;

• the IEEE standard ensures portability of the numerical software;

• the IEEE standard has been widely adopted to most hardware plat-
forms and software implementations.

The major difficulty is that so far no common programming language
allows access to the IEEE floating-point operations with directed roundings
provided by some processors. Therefore, some machine-dependent routines
should be written to provide first floating-point operations with maximum
accuracy and directed roundings, and second suitable interface for testing
and handling the exceptions. The alternative is to choose a SC-language
([10, 17, 18, 29]) which provides software emulation of the IEEE arithmetic.
For current implementation we chose PASCAL–XSC as a wide-spread pro-
gramming language for scientific computation.

Carefully designed language independent specifications containing clear
mathematical definitions in computer arithmetic and definitions for the ex-
ceptions and their handling are developed for all routines.

The collection of extended interval arithmetic routines ensures full com-
patibility with the generally accepted interval operations and functions. Fur-
thermore, the power of the conventional interval arithmetic is enhanced by

• extension of the definition domain of the conventional interval arith-
metic providing thus tools for computations in extended interval spaces;
in particular interval division operation is extended to perform division
by an interval containing zero;

• providing additional set of arithmetic operations with inward round-
ing;

• providing routines supporting an additional order relation;
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• providing hyperbolic arithmetic operations with inward and outward
roundings;

• diversity of utility functions;

• certain definitions of the interval arithmetic exceptions and their han-
dling providing thus consistency of the numerical results obtained
through these operations.

In what follows we describe the PASCAL–XSC module EXI_ARI.

4.2 The PASCAL–XSC module EXI_ARI

This new PASCAL–XSC module for extended interval arithmetic is intended
to be able to replace the existing module I_ARI for interval arithmetic
in PASCAL–XSC language [17]. The new module supplies all operations,
functions and procedures provided by I_ARI module and many other ones
necessary for computations in extended interval arithmetic spaces.

The new module uses the definition of the type INTERVAL

type interval = record inf, sup : real end;

which is part of the language core of PASCAL–XSC. The inf component
of the interval data type corresponds to the first component of a directed
interval and the sup component corresponds to the second component of
the directed interval comprising thus the definition for a real generalized
(directed) interval as an ordered couple of real numbers.

All predefined arithmetic and lattice operators (Table 1) deliver an in-
terval result. The two monadic operators +, - and the four basic operations
+, -, *, / performing the corresponding operation in the module I_ARI
with the rounding to the smallest enclosing interval (outward rounding) are
predefined to perform the same operation for directed (proper/improper) in-
tervals. An enclosing interval is a directed interval which contains according
to the extended inclusion relation (2) the true interval solution.

Besides the usual interval operations with outward rounding, interval op-
erations computing an inner inclusion of the true interval solution (inwardly
directed rounding) can also be very useful. An inner inclusion interval is
a directed interval which is contained (according to the extended inclusion
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Left
Operand

Right
Operand

integer
real interval

unary +, −, _, opp

integer
real

AHO, AHI, ◦
+∗, ∗∗

�, ◦, •
=, <>, in, ><

v, �
+∗, ∗∗

interval
�, ◦, •

=, <>, v, �
+∗, ∗∗

�, ◦, •
=, <>, in, ><

v, �
+∗, ∗∗

� ∈ {+,−, ∗, /, + <,− <, ∗ <, / <}, ◦ ∈ {SHO, MHO, DHO, SHI, MHI, DHI}
• ∈ {AI, SI, MI, DI, OA, OS, OM, OD}

v∈ {<,<=, >,>=}, � ∈ {LT, LE, GT, GE}

Table 1: The operators of module EXI_ARI

relation) in the true solution interval. The four operations +<, -<, *<, /<
are predefined to perform the corresponding operation for directed intervals
with inward rounding.

Two new monadic operations are defined: conjugation “_" of a directed
interval, which is essential for the conversion between proper and improper
intervals, and the hyperbolic unary minus opp.

The hyperbolic operations can be derived from the extended interval
arithmetic operations and functions [32]. A direct and thus faster imple-
mentation of the hyperbolic operations according to formulae (12), (11),
(13) is provided by the new operators SHO, MHO, DHO for hyperbolic sub-
traction, multiplication and division with outward rounding, and by the
operators SHI, MHI, DHI for the same three operations with inward round-
ing. The four hyperbolic operators with outward rounding for real operands
(Table 1) deliver the smallest proper interval enclosing the corresponding
true result; the corresponding operators with inward rounding deliver the
corresponding improper interval so that

a ◦ HO b = _(a ◦ HI b), ◦ ∈ {A, S, M, D}.
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The module also comprises eight new operators (Table 1): AI, SI, MI,
DI—for nonstandard addition, subtraction, multiplication and division op-
erations between directed intervals [26] with inward rounding and OA, OS,
OM, OD—for the corresponding nonstandard arithmetic operations between
directed intervals with outward rounding. The detailed description of the
necessary expressions involving computer arithmetic will be the subject of
another publication.

The relational operators = (equal) and <> (not equal) are to be inter-
preted as the corresponding set-theoretic operators. The operator = is im-
plemented in such a manner that it delivers true if and only if all components
of the interval data type fulfill the equality. A <> B := not(A = B). The
relational operations <, <=, >, >= are predefined according to the extended
order relation (2) for directed (proper/improper) intervals and

A < B := (A <= B) and (A <> B),

A > B := B < A, (15)
A >= B := B <= A.

Four new relational operations LT, LE, GT, GE are defined to supply testing
the second order relation (10) between directed intervals. The operator LE
satisfies

A LE B ⇐⇒ (A.inf <= B.inf) and (A.sup <= B.sup).

The implementation of LT, GT, GE is according to ordering rules analogous
to (15).

The operators in and >< are predefined to test the set-theoretic relations
“proper subset", resp. “disjointedness" between two intervals or between a
real- and an interval operand. An interval A is a proper subset of an interval
B if the proper part of A is contained in the proper part of B. Notationaly,
operator in satisfies

A in B ⇐⇒ (b−τ(B) < a−τ(A)) and (a+τ(A) < b+τ(B)).

Two directed intervals are disjoint if the intersection of their proper parts is
an empty set.

The two lattice operations +* and ** are predefined according to the
corresponding extended definitions (9) and (8). Note, that both operations
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make sense even for two real/integer operands and therefore can be used as
conversion operations: +* for transfer from reals to a proper interval, and
** for transfer from reals to an improper interval.

A set of utility functions is provided:

Function Result Type Meaning
intval (r1, r2) interval Interval with inf = r1 and sup = r2
intval (r) interval Interval with inf = sup = r
prop (i) interval The corresponding to i proper interval
inf (i) real The smaller end-point of i
sup (i) real The greater end-point of i
first (i) real The left end-point of i
second (i) real The right end-point of i
split (i,a) interval The a-th of the two semi-infinite intervals

or the interval itself
abs (i) interval Absolute value | i |= {| r |: r ∈ i}
mid (i) real Midpoint of i
diam (i) real Diameter of i

a = integer expression, r, r1, r2 = real expression, i = interval expression

Two integer functions sign and drc are defined for a directed interval A
to give its sign, resp. direction as:

sign(A) =

 1, if a− ≤ 0 & a+ ≤ 0, A 6= [0, 0];
0, if a−a+ < 0, or A involves NaN;
−1, if a− ≥ 0 & a+ ≥ 0;

drc(A) =

 1, if a− ≤ a+;
0, if A involves NaN;
−1, if a− > a+.

Current implementation of EXI_ARI module provides mathematical
standard functions F for a directed interval argument X by using the pre-
defined interval standard functions of the PASCAL–XSC module I_ARI

FEXI_ARI(X) = FI_ARI(prop(X))

and thus always deliver a proper interval as a result. An improved version of
the EXI_ARI standard functions is designed to deliver a directed interval
result; the direction of the result will depend on the monotonicity of the
function and the direction of the input interval.
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4.3 Exceptions

A number of exceptional situations such as Invalid Operation, Overflow,
Underflow, Division by Zero and Inexact Result may arise during numerical
computations in a floating-point environment conforming IEEE standards
[2, 3]. Every exception, when it occurs must raise a flag that a program
may subsequently sense and/or take a trap engineered to pass control to
some code to handle the detected exceptional condition. The IEEE stan-
dards require that the default response to the exceptional situations is not
to trap on them, but to compute and deliver to the destination a default
result, specified in a reasonable way if not universally acceptable, for each
possible exception. The proper handling of the exceptional conditions is
an important part of any reliable numerical algorithm. A well-designed
exception handling could result in a faster numerical algorithm [6]. IEEE
floating-point arithmetic supports a set of special values called NaNs (Not-a-
Number) for communicating results of Invalid Operation exceptions, attempt
to extract the square root of a negative number etc. There are two types of
NaNs: quiet NaN which propagate through the arithmetic operations with-
out precipitating exceptions and signaling NaN which precipitate an Invalid
Operation exception whenever an attempt is made to use one as arithmetic
operand. This provision of NaNs complicates IEEE definition of compar-
ison operations and as a consequence the correct implementation of some
interval arithmetic operations. An example will illustrate the necessity of
some additional programmer’s effort for the correct implementation of some
interval arithmetic operations in standard conforming environments.

A typical implementation of the operation for convex hull of two intervals
is as in the following MODULA–SC operator.

OPERATOR ChulII (A,B:INTERVAL) +*: INTERVAL;
VAR Temp:INTERVAL;
BEGIN
IF A.INF <= B.INF THEN

Temp.INF := A.INF
ELSE

Temp.INF := B.INF
END;
IF A.SUP >= B.SUP THEN

Temp.SUP := A.SUP
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ELSE
Temp.SUP := B.SUP

END;
RETURN Temp

END ChulII;

Let us suppose that the interval values A = [qNaN,−5] and B = [12, 16]
are obtained as a result of some computational process in MODULA–SC [10],
which floating-point arithmetic is in full conformance with IEEE Std 754.
Although line 4 of the above code will signal Invalid Operation exception on
floating-point comparison, a continued computation in non-trapping mode
without checking for this exception in line 7 at the body of the operator
will produce a misleading result [12, 16] for those intervals instead of the
correct indeterminate result [qNaN, 16]. Therefore a test whether some of
the operands is NaN or a test for Invalid Operation exception should be
provided in the operator above in order a correct result to be supplied.

Same is the reason for producing

[−3, 6] = [−3, qNaN]× [−2, 1]
by interval multiplication in MODULA–SC. Actually none of the interval
arithmetic specifications known to us pays special attention to the IEEE
floating-point exceptions arising during the execution of the interval arith-
metic operations and the definition of an undoubted interval default result.
Below we give a short description of the interval arithmetic exceptions and
their handling as they were adopted for this implementation.

Since the current implementation of the extended interval arithmetic
operations is based on an underlying floating-point arithmetic conforming
the IEEE standard [2], most of the interval arithmetic operations themselves
will signal no exceptions. The exceptions arising on an interval operation are
all the exceptions caused by exceptional operands and exceptional results on
the underlying floating-point operations. As they are, for example, on the
interval addition and subtraction. For other interval operations such as the
unary “+" and “−" the exceptions will depend on whether the underlying
floating-point arithmetic considers copying and unary minus as arithmetic
operations or not.

Invalid Operation exception is signaled on all interval relational opera-
tions if NaN is involved in some of the operands. FALSE is delivered as a
default result when the exception occurs without a trap.



118 E. D. Popova

Unlike floating-point arithmetic where quiet NaNs propagate through
arithmetic operations without raising exceptions, some of the interval arith-
metic operations whose algorithms involve floating-point comparison will
signal Invalid Operation exception if some of the operands involves quiet
or signaling NaN (see the example above). Such operations are the opera-
tions for multiplication, division, convex hull, intersection and some auxiliary
functions.

Lattice operations convex hull and intersection of interval, real and mixed
(interval and real) arguments will signal an Invalid Operation exception if
some of the operands involves NaN. The default result delivered when the
exception occurs without a trap is an interval with a quiet NaN (qNaN) at
that end-point at which NaN is involved in the arguments.

Beside the exceptions on the corresponding underlying floating-point op-
erations, interval multiplication and division operations will signal Invalid
Operation exception if some of the operands involves NaN. The default result
delivered in non-trapping mode will involve at least one qNaN as end-point.

Division by Zero exception will arise on interval division when Division
by Zero exception arise on the corresponding floating-point division opera-
tion involved in the interval division or when the interval divisor contains
zero as an internal point. The result delivered to the destination when the
trap is disable is either an infinite/semi-infinite interval corresponding to a
divisor having zero end-point, or a finite directed interval. The latter is a
concise representation of the two semi-infinite intervals resulting the divi-
sion by interval containing zero in its interior (see Section 3.2). An interval
function split is provided for a backward splitting of the finite interval into
two semi-infinite intervals and to return one of them.

Invalid Operation exception will also be signaled on the auxiliary mathe-
matical functions sign, drc, mid, diam if their argument involves NaN. The
delivered default result by sign and drc is zero, the others deliver qNaN.

For all mathematical standard functions Invalid Operation exception will
be signaled if the argument does not belong to the definition domain of the
corresponding function.

Due to the extended inclusion relation the result of the extended interval
arithmetic operations with inward rounding will never be an empty set and
no such exception will be signaled. The same is valid for the extended
operation **. If computations in one of the subsets IR (proper intervals) or
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IR (improper intervals) of the extended interval space H = IR ∪ IR have
to be performed, a possible test for an empty set result in the corresponding
subset is the different direction of the delivered result (i.e. an improper
interval delivered as a result of the operation ** between two proper intervals
will mean an empty set intersection).

5 Some application hints

In this section we shall present some simple examples illustrating the advan-
tages of the implemented extensions of the conventional interval arithmetic.

An interpretation of the elements of H as “directed" ranges of monotone
functions [26, 27] leads to an important application of the extended interval
arithmetic to obtain sharp bounds for the range of a function over an interval.
Let f be a continuous and monotone function on the interval T ∈ IR and its
range be f(T ) = {f(t) | t ∈ T}. The type of monotonicity of f determines
the “direction" into which the range f(T ) is traced when the argument t
ranges its interval domain T in a fixed direction, say from left to right.
Indeed, if f is isotone (nondecreasing) in T , then the interval f(t) is traced
from its lower to its upper bound whenever t traces T from left to right.
Alternatively f(T ) is traced from its upper to its lower bound if f is antitone
(nonincreasing) in T and t ranges T from left to right. That is why the
interval f [T ] = [f(t−), f(t+)] ∈ H is called directed range of the function
f over the interval T . The binary variable τ(A), defined by (1), called
direction of the interval A ∈ H, represents the type of the monotonicity of
the corresponding monotone function which directed range is A.

Consider the function f(x) = f1(x) ◦ f2(x), here ◦ ∈ {+,−,×, /}. We
seek the range of the function using the already known ranges f1(X), f2(X).
Since f1 and f2 are continuous on R then the ranges f1(X) and f2(X) are
intervals and for the range of f we have f(X) = {f1(x) ◦ f2(x) | x ∈ X} ⊆
f1(X)◦ f2(X). It is highly desirable to obtain an equality in the above rela-
tion. However, such equality relation could be achieved by the conventional
interval arithmetic only when both functions are equally monotone on the
interval X. The familiar interval arithmetic can not provide an exact ex-
pression for f(X) when f1 and f2 have different monotonicity on X. In [24]
Markov defines an extension of the conventional interval arithmetic by in-
troducing four special interval operations which provide equality relation for
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differently monotone functions. Nonstandard operations ofM were used for
a better bessel function evaluation [35] and in some numerical algorithms
[7, 28] etc. Some authors use special techniques to achieve the result of
the nonstandard interval operations. See for example [34] where an “inte-
rior difference" of two sets is defined with the meaning of the nonstandard
subtraction operation, or [5] where a special algorithm based on the mono-
tonicity of the functions is proposed to obtain sharp bounds for ranges of
functions. Note, that any assertion inM has equivalent one in K andH and
vise verse. Transition formulae [32] between the arithmetic operations of the
extended interval spaces K andM, and between them and the hyperbolic
operations can be helpful in transferring numerical algorithms between K,
M, H. So, the exact representation of the range of monotone functions can
also be achieved by means of directed intervals as follows:

Assume CM(T ) is the set of continuous and monotone functions defined
on T ∈ IR.

Proposition 5.1. For f , g, f ◦ g ∈ CM(D), X ⊆ D, ◦ ∈ {+,−,×, /},
and g[X] ∈ D \ L for ◦ = /, we have

(f ◦ g)[X] = f [X] ◦h g[X].

In the conventional interval computations when a given variable occurs
more than once, it causes so called dependency problem. Considerable effort
has been expended by interval analysts in attempting to produce system-
atic methods for representing an interval function to most sharply bound
the range of a given real function over an interval. It follows from the
above proposition that the dependency problem does not occur for rational
monotone functions in the hyperbolic semifield. Monotonicity of rational
functions can be assured by subdividing an interval into parts where the
given function is monotonic.

Corolary 5.1. Let f(x) be a rational function which computational graph
consists of p functions f1, f2, . . . , fp, so that f(x) ≡ F

(
{◦i}mi=1, {fj(x)}

p
j=1

)
.

If f, f1, . . . , fp ∈ CM(X), then

f [X] = F
[
{◦ih}mi=1, {fj[X]}pj=1

]
is the exact directed range of f over X ∈ H.
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Example 5.1. Evaluate the function f(x) = sin(x)/x over the interval
X = [π/2, π].

We have
f [X] = sin[X]/hX = [1, 0]/h[π/2, π] = [2/π, 0]

and f is decreasing in X since f [X] is improper interval.

Example 5.2. Evaluate the function f(x) = (x+1/x)∗4−2x−2x over the
interval X = [−2,−1].

We have

f [X] = (X + 1/hX) ∗h 4−2X −h 2X
= ([−2,−1] + [−0.5,−1]) ∗h 4[4,2] −h [−4,−2]
= [−2.5,−2] ∗h [256, 16]−h [−4,−2]
= [−640,−32]−h [−4,−2] = [−636,−30]

while the result in the conventional interval arithmetic is [−766,−20].
A major property of the extensions considered here is the algebraic com-

pleteness of the corresponding structures.

• The lattice operations are closed with respect to the extended inclusion
relation (2).

• Due to the existence of inverse elements with respect to the addition
and multiplication operations the equation A+X = B has an unique
solution X = B−A− = B−hA in H and the equation A∗X = B has
an unique solution X = B/A− = B/hA− for A ∈ H \ T and B ∈ H.

• Distributivity of the hyperbolic operations and conditional distribu-
tivity of the operations in K andM.

Initiated by Gardenes et al [12] the algebraic completeness of the ex-
tended interval arithmetic structure K has been used by several Russian
authors [22, 33, 36, 37] to develop an algebraic approach in finding inner
approximations of an interval system of linear equations.
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Consider the linear interval system of equations

Ax = B (16)

where A ∈ IRn×n, B ∈ IRn. The solution set of (16) is defined as∑
∃∃ :=

{
x ∈ Rn | (∃A ∈ A)(∃b ∈ B)(Ax = b)

}
.

A key role in the algebraic approach to the solutions of a linear interval
system of equations plays the interval algebraic solution. Interval algebraic
solution to (16) is an interval vector xa such that substituting it into (16)
and performing all interval arithmetic operations results in the valid equality
Axa = B.

It has been proved [22, 33] that if xa is an algebraic interval solution to
the system Ax = B− in K and all its components are improper intervals,
then (xa)− ⊆

∑
∃∃. That is (xa)− is an inner approximation of the solution

set of (16).
The following two solution sets of (16) are also important for numerous

practical applications:

• the tolerable solution set
∑
∀∃ :=

{
x ∈ Rn | (∀A ∈ A)(∃b ∈

B)(Ax = b)
}
;

• the control solution set
∑
∃∀ :=

{
x ∈ Rn | (∃A ∈ A)(∀b ∈ B)(Ax =

b)
}
.

Let xa be the interval algebraic solution of (16) obtained in K. If all com-
ponents of xa are proper intervals, then xa ⊆

∑
∀∃; if all components of xa

are improper intervals, then (xa)− ⊆
∑
∃∀ [33].

The tolerable and control solution sets are closely related to some prob-
lems of identification and interpolation under bounded uncertainties with
an impact on automatic control. Below we demonstrate the application of
extended interval arithmetic on a simple practical example taken from [11].

Example 5.3. Let v = e ∗ r/(ρ + r + s) be the equation describing an
electrical circuit, where e, r and ρ are given constants varying in prescribed
intervals: e ∈ E, r ∈ R, ρ ∈ R0, E,R,R0 ∈ IR. The goal is to determine
an interval value S for the resistance, so that for any s ∈ S the voltage v to
be kept in prescribed bounds, that is v ⊆ V ∈ IR.
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Due to the inclusion monotonicity of the interval operations (conven-
tional and extended) for any s ∈ S we have E ∗ R/(R + R0 + s) ⊆ V and
S might be either proper or improper interval. Thus the algebraic solution
of the interval equation

E ∗R
R +R0 + S

= V (17)

over the wider set H will be the sought solution of the above problem. We
shall find the algebraic solution S of (17) by some algebraic transformations.

Since A/A− = A−/A = 1 for A ∈ H, multiplying both sides of the
equation (17) first by (R + R0 + S)− and then by 1/V−, supposing 0 6∈ V
we obtain consecutively

E ∗R = V ∗ (R +R0 + S)−,
E ∗R
V−

= R− + (R0)− + S−.

Due toA−A− = 0 subtraction of (R+R0) leads toE∗R/(V−)−R−R0 = S−,
which after a conjugation becomes

S = (E ∗R)−/V − (R +R0)−. (18)

We have to compute an inner approximation©S ⊆ S in order to guaran-
tee the inclusion E ∗R/(R+R0 +©S) ⊆ V (extended interval operations
are inclusion isotone). Using the inclusion properties of the extended in-
terval arithmetic computer operations (Section 3) we obtain the following
expression for ©S in computer arithmetic

©S = (3E−) ©× (3R−) ©/ (©V ) ©− (3R)− ©− (3R0)−.

Assuming the data E = [9.0, 11.0], R = [2.0, 4.0] and R0 = [1.5, 2.5],
if the voltage is to be kept inside the interval V = [2.0, 4.0], from (18)
we obtain S = [7.5, 2.5]. Since the resulting interval is improper, this is a
control interval. In other words for any s ∈ S there exist e ∈ E, ρ ∈ R0 and
r ∈ R such that e ∗ r/(ρ+ r + s) ∈ V .

Allowing the voltage within the wider range V = [2, 8] the resulting
resistance would be S = [2.0, 2.5] showing the tolerance for the electrical
circuit, that is for any s ∈ S and any e ∈ E, ρ ∈ R0 and r ∈ R e ∗ r/(ρ+
r + s) ∈ V .
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Finally, we point out that the algebraic approach to solving some interval
problems could be applied straightforward in a computer algebra system
supporting extended interval arithmetic.

6 Conclusion

The implemented collection of extended interval arithmetic routines pro-
vides full compatibility with the generally accepted interval operations and
functions. Furthermore, the power of the conventional interval arithmetic is
enhanced by the operations with inward rounding and a natural extension
of the definition domain of the conventional interval arithmetic providing
thus tools for computations in extended interval spaces. Giving certain def-
initions of the interval arithmetic exceptions and their handling in an IEEE
floating-point environment we allow a consistent transfer of this software
to other IEEE software/hardware platforms and provide the corresponding
consistency of the numerical results obtained by these interval arithmetic
routines.

The extended interval arithmetic routines are a suitable base for transfer,
testing and comparison of the numerical algorithms involving the ordinary
interval arithmetic and the considered interval extensions as well as a nec-
essary tool for implementing the forthcoming algorithms.
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