
Interval Computations
No 4, 1994

Computation of Standard Interval
Functions in Multiple-Precision

Interval Arithmetic
Wolfram Luther and Werner Otten

We present quadratic convergent algorithms for the computation of standard
interval functions like

√
, ln, arctan in a multiple-precision interval arithmetic.

These algorithms depend on elliptic integrals of the first and second kind and
the method of arithmetic and geometric means.

Вычисление стандартных
интервальных функций в
интервальной арифметике
многократной разрядности

В. Лутер, В. Оттен

Представлены квадратично сходящиеся алгоритмы для вычисления стан-
дартных интервальных функций, таких как

√
, ln, arctg в интервальной

арифметике многократной разрядности. Эти алгоритмы построены с ис-
пользованием эллиптических интегралов первого и второго рода и метода
арифметического и геометрического средних.

c© W. Luther, W. Otten, 1994

Computation of Standard Interval Functions... 79

1 Introduction

Recently, W. Krämer [10] has proposed the iteration method of arithmetic-
geometric means (AGM) to calculate guaranteed bounds for the elliptic in-
tegrals of first and second kind. To obtain these bounds, it is necessary to
use a module which makes the elementary operations available in an interval
arithmetic with arbitrary precision (such as implemented in TPX for Turbo-
Pascal [8], C-XSC, or PASCAL–XSC [11]). Moreover, one needs constants
like π and the functions

√
, sin, tan, arctan in full precision.

The aim of our paper is to discuss the suitability of well-known algo-
rithms based on AGM- and Newton-methods (cf. [2, 3, 5, 12]) to calculate
enclosures of the elliptic functions and

√
, ln, arctan and their inverse func-

tions. For that purpose it is necessary to give error estimations with explicit
constants for the AGM-methods introduced by Brent [5]. Rigorous a pri-
ori error estimates have been made by considering errors inherent in the
floating-point representation as well as round-off errors in arithmetic opera-
tions and the approximation error. To speed up the algorithms it is possible
to carry out the calculations with a multiple-precision point arithmetic and
guarantee the results by using the a priori error bounds.

The special interest in the AGM-method arises from the quadratic con-
vergence of these algorithms, so that fast calculations with a multiple-
precision arithmetic is practicable. The known algorithms (for example
Taylor approximations) exhibits only linear convergence and need a compli-
cated argument reduction. Thus, the complexity to calculate the standard
functions is of order O

(
pM(p)

)
where M(p) denotes the cost to multiply

or divide two numbers with p mantissa digits. The AGM-method requires
only O(ld p) steps and reduces the time for obtaining standard and elliptic
functions to the order O

(
ld p ·M(p)

)
.

The proposed algorithms have been implemented and tested using the
precompiler TPX [8] and PASCAL–XSC together with the long interval
module mpi_ari [11]. They are formulated in a Pascal-like pseudo-code.

To accelerate the convergence of our algorithms it is possible to use re-
sults of existing double arithmetic implementations of the standard functions
as starting points.

80 W. Luther, W. Otten

2 Elliptic integrals

First, we will give some basic formulas for elliptic integrals which are needed
in the later paragraphs.

The (in)complete elliptic integrals of first and second kind are defined
as:

K
(

sin(α), ψ
)

=

ψ∫
0

dφ√
1− sin2 α sin2 φ

, 0 ≤ ψ ≤ π
2 , 0 ≤ α < π

2 ,

E
(

sin(α), ψ
)

=

ψ∫
0

√
1− sin2 α sin2 φ dφ, 0 ≤ ψ ≤ π

2 , 0 ≤ α < π
2 ,

K
(

sin(α)
)

:= K
(
sin(α), π2

)
,

E
(

sin(α)
)

:= E
(
sin(α), π2

)
.

Then with k := sinα, k ′ :=
√

1− k2 and K ′(k) := K(k ′), E ′(k) := E(k ′)
the Legendre relation

E(k)K ′(k) +K(k)E ′(k)−K(k)K ′(k) = π/2, 0 < k < 1 (1)

[2, p. 24] holds.

Lemma 1. Let 0 ≤ ψ < π/2. Then the following inequalities are true:

ψ ≤ K(sinα, ψ) ≤ ψ(1 + sin2 α ψ2/3) ψ ≤ π/4 , (2)

ln tan

(
π

4
+
ψ

2

)
≥ K(sinα, ψ) ≥ ln tan

(
π

4
+
ψ

2

)(
1− cos2 α

2
tan2 ψ

)
.(3)

The proof of (2) depends on the inequality 1/
√

1− x ≤ 1 +x, 0 ≤ x < 1/2.

To prove (3) we use K(1, ψ) = ln tan(π/4 + ψ/2), the inequality

0 ≤ 1√
1− sin2 φ

− 1√
1− sin2 α sin2 φ

≤ cos2 α

2
tan2 φ

1√
1− sin2 φ

,

0 ≤ φ <
π

2

and an estimation of the difference K(sinα, ψ) −K(1, ψ), 0 ≤ ψ < π/2.
Furthermore, the following lemmata are valid, some of their proofs can be
found in [2, 3, 5, 12].

Computation of Standard Interval Functions... 81

Lemma 2. (cf. [2, p. 15], [5]) Given the so-called arithmetic-geometric mean
(AGM) iteration sequences are

a0 = 1, b0 = cosα = k′ c0 = k,

ai+1 :=
ai + bi

2
, bi+1 :=

√
ai · bi, ci+1 := ai − ai+1.

Then {bi, ai} creates a nested sequence of intervals with limit ξ and it holds:

K(k) =
π

2ξ
, (4)

E(k) = K(k) ·

(
1−

∞∑
i=0

2i−1c2
i

)
. (5)

Further, with si := bi/ai, b0 = k, it follows:

lim
i→∞

i∏
j=0

1 + sj
2

= ξ =
π

2K(k′)
.

If we now use the formulas (4) and (5) together with the Legendre relation
(1) and k = 1/

√
2 we get an algorithm for computing π (cf. [5, p. 246]).

Lemma 3. Landen-transformation. ([2, p. 12; , 5, p. 245; 12, p. 78])

Let {αi}, {ψi} be two given sequences with 0 < αi < αi+1 < π/2, 0 ≤
ψi+1 < ψi ≤ π/2, satisfying the equations 1 + cosαi+1 = 2/(1 + sinαi) and
sin(2ψi+1 − ψi) = sinαi sinψi. Then the following holds for the incomplete
elliptic integral of first kind:

K(sinαi+1, ψi+1) =
1 + sinαi

2
K(sinαi, ψi).

The formula is also valid for ψi = π, ψi+1 = π/2.

Note: To calculate the sequences {αi}, {ψi} satisfying the conditions of
Landen-transformation it is not necessary to solve the equations of Lemma 3.
Using some conditions for trigonometric functions one finds the following
procedure only based on rational expressions and square root evaluations to
calculate αi and ψi respectively.

82 W. Luther, W. Otten

Let si := sinαi and vi := tanψi/2. Then we obtain:

si+1 = 2
√
si/(1 + si),

sinψi = 2vi/(1 + v2
i),

w1 := sin(2ψi+1 − ψi) = si sinψi,

w2 := w1/
(

1 +
√

1− w2
1

)
,

w3 := tanψi+1 = tan(ψi+1 − ψi/2 + ψi/2) = (w2 + vi)/(1− viw2),

vi+1 = w3/
(

1 +
√

1 + w2
3

)
.

Lemma 4. ([1, p. 356]) For k ∈ (0, 1] holds:∣∣∣∣ ln

(
4

k

)
−K(k ′)

∣∣∣∣ ≤ 4k2

(
8 + ln

1

k

)
. (6)

If we use the method of arithmetic and geometric means together with
interval arithmetic we have to bear in mind the following two points.

We look at the endpoints of the intervals A = [al, au], B = [bl, bu]
and calculate the difference of two succeeding sequence terms Ã = [ãl, ãu],
B̃ = [b̃l, b̃u]:

ãl =
al + bl

2
, b̃l =

√
al bl, ãu =

au + bu
2

, b̃u =
√
au bu,

|Ã| =
|A|+ |B|

2
=
|A|
al

ãl
al

al + bl
+
|B|
bl
ãl

bl
al + bl

,

|B̃| ∼ |A|
2al

b̃l
bual

b̃2
l

+
|B|
2bl

b̃l.

1) In each step the relative interval diameters |Ã|/ãl, |B̃|/b̃l are weighted
means of both predecessor diameters |A|/a, |B|/b, but we have to consider
the additional error introduced by the square root evaluation (∼ 1.5 · 21−p).

2) If we use a precision of 21−p, a relative rounding error of 2 · 21−p

appears in each step.
An estimation of the interval diameters yields the result:

|ãu − b̃l| ≤
1

8b̃l
|au − bl|2 +

|A|+ |B|
2

.

Computation of Standard Interval Functions... 83

Therefore, the quadratic convergence is disturbed by a linear term. This
phenomenon can be interpreted as follows: For a required precision of p
binary digits we have to execute k = const · ld p iteration steps. By accu-
mulation of the square root error of w binary digits we get a total error of
ld k · w =: κ binary digits and after a few initialisation steps the conver-
gence is quadratic until the precision reaches p − κ binary digits. For the
calculation of all constants and functions we use results coming from other
interval functions, for example in the algorithm for π we need the interval
square root, in the algorithm for ln 2 we need π etc. An additional error
accumulation occurs from further operations such as squaring, division and
the joining of intervals. For this reason we have a loss of 7 binary digits in
the calculation of π with p = 320 binary digits precision.

3 Basic error analysis

In this section we will give some basic formulas for error analysis. We have
used them to calculate the a priori error estimates for our proposed algo-
rithms given below.

Our considerations concern the floating-point screen

S0 := S(B, l0, em0, eM0)

with its even base B (e.g. B = 216 in TPX or B = 232 in PASCAL–XSC),
mantissa length l0 and [em0, eM0] smallest and largest allowable exponent,
respectively. Computations require guard digits and are made in a finer
screen

S := S(B, l, em, eM), l ≤ l0 + k, em ≤ em0, eM ≥ eM 0.

Directed roundings from the screen S to S0 are necessary. The relative error
for all elementary operations with machine numbers x, y is assumed to be
bounded by

|x×l y − x× y|
|x× y|

≤ ε < B1−l .

Setting ε(l) := B1−l, which is referred to as screen epsilon, we assume
ε(l) < 10−4, utilize the same notations as in [4, 9] and give some basic
error estimations.

84 W. Luther, W. Otten

Define x = εl ⇔ x = δε(l), |δ| ≤ 1. Assuming 0 < n2ε(l) < 5 · 10−3, we
have

(1 + εl)
±n ≤ 1 + (n+ 0.01)ε(l).

Furthermore,

∣∣1−√1 + εl
∣∣ ≤ ε(l)

2
+
ε(l)2

8
1.0002,

1

1 + aε(l)
= 1− aε(l) +

a2

1 + aε(l)
ε(2l − 1),

|αεn ± βεk| ≤
(
|α|+ |β|ε(k − n+ 1)

)
ε(n).

The following error bounds hold for rounded operations +l, /l, floating-
point numbers a, b and their corresponding machine approximations ã, b̃
with |a− ã| ≤ |a|εa and |b− b̃| ≤ |b|εb:

|a+ b− (ã+l b̃)|
|a+ b|

≤ ε(l) +

∣∣∣∣1 + ε(l)

a+ b

∣∣∣∣ {|a| · εa + |b| · εb} ,

|a/b− (ã/lb̃)|
|a/b|

≤ 1.01{εa + εb + ε(l)}, εa, εb, ε(l) < 5 · 10−3.

Cancellation occurs when the operants have different signs and are nearby
quantities. The second formula also holds for multiplication.

Finally, assuming εa, εb < 2 · 10−3, ε := max{εa, εb, ε(l)}, we have∣∣∣∣∣|ã/lb̃||a/b|
− 1

∣∣∣∣∣ ≤ εa + εb + ε(l) + 4.01ε2.

Using these formulas we have estimated the rounding errors in our algo-
rithms, so that we can give a priori error bounds for all functions calculated
in the following paragraphs.

With these preparations we are now able to formulate algorithms for the
verified inclusion of the constants π, ln 2 and the functions

√
, ln, arctan.

Computation of Standard Interval Functions... 85

4 The square root and π

First, we will consider the algorithm for the square root.
We denote all numbers and functions of the type long_interval by capital

letters and the double-precision numbers by small letters. The type conver-
sion is immediately made by the assignment. With a diameter of 2 ·2−50 the
start interval is adjusted to the double-precision format. The multiplication
by powers of two should be realized by manipulations of the exponent in the
internal representation of the numbers.

To calculate the square root we use the following interval version of the
Newton-iteration. This iteration is based on the formula xn+1 = xn − 0.5 ∗
(x2

n−x)/xn and not on the classical iteration xn+1 = 0.5∗ (xn+x/xn). The
iteration used in our implementation needs some more operations but is of
higher precision.

Sqrt (X) :

If X. inf < 0 then Error else

{st := b ld pc+ 1; (∗ p binary digits ∗)

X0 :=
[
sqrt

(
x. inf ∗(1− 2−50)

)
, sqrt

(
x. sup ∗(1 + 2−50)

)]
;

while st > 0 do{
X0 :=

(
mid X0 −

Sqr (mid X0)−X
2X0

)
∩X0 ; dec (st)

}
;

Sqrt (X) := X0}.

It is also possible to use another stopping criterion based on the difference
between the midpoints of two consecutive approximation intervals. Please
note that if the argument X of the above algorithm leaves the range of the
double precision format, the calculation of the startvalue X0 does not work.
In this case we split the argument into a power of B (e.g. B = 2) with an
even exponent and a factor within the double precision range to calculate
the startvalue X0 described as above.

Now we estimate the rounding error of the interval Newton square root
algorithm for an argument x belonging to S.

86 W. Luther, W. Otten

Let εn, satisfying 10−4 > |εn| > 0, be the approximation error and
2 · δ(l) with |δ(l)| < 10−4 representing the interval diameter. Then we put
Yn =

√
x
(
1+ εn± δ(l)

)
, mid Yn =

√
x(1+ εn), and perform the next step of

the Newton iteration. Using formulas of paragraph 3 we get the new interval

Yn+1 =
√
x
(
1 + 0.51ε2n ± wε(l)± 1.01εnδ(l)

)
, w < 1.6.

The asymptotic approximation error is of order 0.5ε2n, the rounding error
1.5ε(l). Thus, two guard digits are sufficient in most cases.

If we inject a small interval X = (1 ± ρ) mid X instead of the ar-
gument x, we have an additional error term 0.51ρ. However we prefer to
evaluate a square root with an interval argument in the form

√
[xl, xu] ⊆

[(
√
xl)l, (

√
xu)u]. In the case of the classical Newton iteration we get w <

2.6.
With the a priori error estimation for the square root algorithm we are

now able to discuss the error accumulation for the arithmetic-geometric
mean iteration (cf. Lemma 2). With a starting argument X = x

(
1 ± ε(l)

)
for the AGM iteration after n1 steps we find a relative error of order (2.1 ·
n1+1)ε(l) for an1 and bn1, respectively. Assuming overlapping limit intervals
we finally deduce a relative error bound (cf. [13])

∆AGM ≤ (4.2 · n1 + 2)ε(l), Ξ ⊆ ξ(1±∆AGM).

In some further algorithms for standard functions we need the constant
Π. So we first formulate an algorithm for verified inclusion of Π in multiple-
precision arithmetic.

Using the formulas (4) and (5) together with the Legendre relation (1)
and k = 1/

√
2 [5, p. 246]) we are able to construct the following algorithm:

Π :

st := b ld pc+ 1 ; (∗ p binary digits ∗)
A := 1 ; B := 1/Sqrt (2) ; T := 0 ; x := 1 ;

while st > 0 do
{Y := A ; A := (A+B)/2 ; B := Sqrt (B ∗ Y) ;

T := T − x ∗ Sqr (A− Y) ; x := 2 ∗ x ; dec (st)};

T := T − x ∗
(
A−B

2

)2

+
1

4
−

[
0, sup

(
4 ∗ x ∗

(
A−B

4

)4
)]

;

Computation of Standard Interval Functions... 87

Π := [B2. inf, A2. sup]/T .

Notes:
1) With ti := 1/4−

∑i
j=1 2j−1c2

j it holds:

0 ≤ ti − t∞ =
∞∑

j=i+1

2j−1(aj − aj−1)
2 ≤ 2i+1

(
ai − bi

2

)2

≤ 2i+1 (ai−1 − bi−1)
4

256 · a2
i+1

≤ 4 · 2i
(
ai−1 − bi−1

4

)4

.

2) It is also practicable to use Π = [(A2
i+1/Ti). inf, (A2

i/Ti). sup],
[5, p. 246].

To estimate the relative error we have to discuss the utilized terms A2,
B2, T . With n1 the number of steps of the AGM iteration and the assump-
tions 2n1+2(2.1 ·n1 +1)2ε(l) < 1 we get A2 ⊆ a2(1±∆A2), B2 ⊆ b2(1±∆B2),
T ⊆ t(1±∆T) with the relative error bounds (cf. [13]):

∆A2,B2 ≤ (4.2 · n1 + 4)ε(l), ∆T ≤ (0.1 · n1 + 13.33)ε(l).

If we now execute the last divison, we finally obtain:

∆Π ≤ (8.6 · n1 + 22.6)ε(l), Π ⊆ π(1±∆Π).

Because of the quadratic convergence of the AGM-method as a number of
iteration steps the choice of n1 = b ld (l/ logB 2)c+ 1 is sufficient.

5 The natural logarithm and Ln 2

We will now discuss the function Lnx. To compute inclusions for the loga-
rithm we need the constants Π and Ln 2 as well as the function K ′(4/X).
The calculation of Ln 2 is possible with an algorithm similar to the one given
below. If we assume that Ln 2 is precalculated, we can give the algorithm
for LnX, using the following theorem.

Theorem 1. Let p ≥ 30 be the number of valid binary digits and m :=
bp/2− ln y/ ln 2 + ln p+ 3c. Then with k = 22−m/y it follows: | ln(y · 2m)−
K ′(k)| ≤ 2−p.

88 W. Luther, W. Otten

Proof. Using 4k2(8 + | ln k|) ≤ 8 ·k2| ln k| and by virtue of Lemma 4 we find

| ln(y · 2m)−K ′(k)| ≤ 2−p27−2 ln p−4(p/2 + ln p+ 1) ln 2 ≤ 2−p.

The choice of p ≥ 30 in the assumptions of Theorems 1 and 2 corresponds to
nine decimal places and so the results include the classical real and double
types.

LnX : p binary digits, Ln 2 known
If X. inf ≤ 0 then Error ;
If X. sup ≤ 1 then LnX = −Ln (1/X) ;

If X. inf < 1 ∧ X. sup > 1 then LnX = Ln [X. inf, 1] ∪ Ln [1, X. sup] ;

If X. inf < 1 + 2−p/(2µ) ∧ X. sup > 1 + 2−p/(2µ) then
LnX = Ln [X. inf, 1 + 2−p/(2µ)] ∪ Ln [1 + 2−p/(2µ), X. sup] ;

If X = 1 + Y ∧ Y. inf ≥ 0 ∧ Y. sup < 2−p/(2µ) then

LnX =
2Y

2 + Y

µ−1∑
k=0

2

2k + 1

(
Y

2 + Y

)2k+1

+ [0, Y.sup ∗ 2−p−2µ] ;

If X. inf ≥ 1 + 2−p/(2µ) then
{st := b2 ∗ ld pc ; (∗ p = number of binary digits ∗)

m :=

⌊
p

2
− lnx. inf

ln 2
+ ln p+ 3

⌋
;

X := X ∗ 2m ; A := 1 ; B := 4/X ;

while st > 0 do

{Y := A ; A := (A+B)/2 ; B := Sqrt (B ∗ Y) ; dec (st)};

LnX :=

[(
Π

2 ∗ [B. inf, A. sup]

)
. inf −2−p,(

Π

2 ∗ [B. inf, A. sup]

)
. sup +2−p

]
−m · Ln 2}.

In the last case (2−p/(2µ) < Y.sup < 1/2) it is necessary to increase the
mantissa length by (50/µ)% to get results of the same quality as in the
other cases (cp. (7)).

Computation of Standard Interval Functions... 89

To compute Ln 2 it is preferable to use an argument 2m which belongs
to the screen S. As a relative error bound we get in this case (cf. [13]):

∆Ln 2 ≤ (8.8 · n1 + 4.3 · n2 + 29.2)ε(l), Ln 2 ⊆ ln 2(1±∆Ln 2)

where n2 = b2 ld (l/ logB 2)c is the number of iteration steps necessary to
calculate the AGM sequences and n1 the number of steps in the calculation
of Π.

For the function Lnx we only consider the case x point-interval, x ≥
1, and have to take into account the absolute errors stemming from the
computation of Ln (2m ·x) as well as Ln 2m. Additionally, for an argument x
nearby 1 a cancellation occurs in the difference ln(2m ·x)−m ln 2 depending
on the number of vanishing digits of x − 1 after the radix point and the
mantissa length l. Roughly speaking const ·

(
[logB 1/(x − 1)] + 1

)
guard

digits are sufficient. More precisely, we find (cf. [13]):

∆Lnx ≤
(

1 + 1.01

(
1 +

2m ln 2

lnx

)
(8.8 · n1 + 4.3 · n2 + 30.2)

)
ε(l) ,

m = 0.62 · l · ldB + 3 (7)
Lnx ⊆ lnx(1±∆Lnx).

As described in the square root case it is also possible to calculate the
logarithm of an interval argument by taking advantage of its monotonicity.

6 The inverse tangent ArctanX

Now we will develop an algorithm for the calculation of the inverse tan-
gent function. First we note down a corollary of the Landen-transformation
(Lemma 3). It holds:

K(sinαi, ψi) =
i−1∏
j=0

1 + sj
2

K(sinα0, ψ0). (8)

With a0 = 1, b0 = k, si = bi/ai the sequence {ai} decreases strictly to the
limit

lim
i→∞

ai = a∞ =
∞∏
i=0

1 + si
2

=
π

2K ′(k)
, si+1 =

2
√
si

1 + si
.

90 W. Luther, W. Otten

Hence the estimation a∞ ≤ ai ≤ a∞ + ai − bi ≤ a∞ + (1 − si) follows. To
develop an a priori estimation of ψi we assume that ψ0 ≤ π/4, s0 = 2−p/2,
1− si ≤ 1/(100 · p) is valid. Then (3) shows:

si ln tan

(
π

4
+
ψi
2

)
≤
(
a∞ + (1− si)

)
ψ0

(
1 +

2−p

3

)
.

From Lemma 4 follows

a∞ =
π

2 ·
(

ln(22+p/2) + θ 22−p(8 + ln 2p/2)
) , −1 < θ < 1

so that we finally get

π

(p+ 4.001) ln 2
ψ0 ≤ ln tan

(
π

4
+
ψi
2

)
≤ π

p ln 2
ψ0 + (1− si) , p ≥ 30.

With the note following Lemma 3, x = tanψ0 and 0 < θν < 1, we obtain:

arctanx

(
1 + θ1

2−p

3

)
= ln

1 + vi
1− vi

·
(
1− θ2 (1− si) tan2 ψi

) i−1∏
j=0

2

1 + sj

= ln
1 + vi
1− vi

i−1∏
j=0

2

1 + sj
− θ3 (1− si) tan2 ψi ln

1 + vi
1− vi

· 2

π
(ln 2p/2+2 + ln 2)

so that an application of the a priori estimation of ψi leads to the following
theorem.

Theorem 2. With p ≥ 30, 1 − si ≤ 1/(100 · p), s0 = 2−p/2, 0 ≤ x =
tanψ0 ≤ 1 and si, vi defined as in the note after Lemma 3 the following
estimation is valid:

ln
1 + vi
1− vi

i−1∏
j=0

2

1 + sj
≥ arctanx ≥ ln

1 + vi
1− vi

i−1∏
j=0

2

1 + sj
− 2−p

3
− (1−si)

13

p2
.

Arctan (X): p binary digits
If X. sup ≤ 0 then Arctan (X) = −Arctan (−X) ;

If X. inf ≤ 0 ∧ X. sup ≥ 0 then Arctan (X)

= Arctan [X. inf, 0] ∪ Arctan [0, X. sup] ;

Computation of Standard Interval Functions... 91

If X. inf ≥ 1 then Arctan (X) = Π/2− Arctan (1/X) ;

If X. inf < 1 ∧ X. sup > 1 then Arctan (X)

= Arctan [X. inf, 1] ∪ Arctan [1, X. sup] ;

If X. inf ≥ 0 ∧ X. sup ≤ 1 then{
If X. inf < 0.5 ∧ X. sup > 0.5 then

Arctan (X) = Arctan [X. inf, 0.5] ∪ Arctan [0.5, X. sup] else

If X. sup < 0.5 then Arctan (X) = Π/4−Arctan (1−X)/(1 +X) else{
st := b2 ∗ ld pc+ 1 ; (∗ p binary digits ∗)

S := 2−p/2 ; V := X/
(

1 + Sqrt
(
1 + Sqr (X)

))
; Q := 1 ;

while st > 0 do
{ Q := 2 ∗Q/(1 + S) ; W := 2 ∗ S ∗ V/

(
1 + Sqr (V)

)
;

If W. sup > 1 then W. sup := 1 ;

W := W/
(

1 + Sqrt
(
1− Sqr (W)

))
;

W := (V +W)/(1− V ∗W) ;

V := W/
(

1 + Sqrt
(
1 + Sqr (W)

))
;

If V. inf < 0 then V. inf := 0 ;

S := 2 ∗ Sqrt (S)/(1 + S) ;

If S. sup > 1 then S. sup := 1 ; dec (st)}
}

;

Arctan (X) := Q ∗ Ln
1 + V

1− V
−
[
0, 2−p−1 +

(
13 ∗ (1− S)/Sqr (p)

)
. sup

]}
.

Using the algorithm described above we have a loss of precision because
the argument of the logarithm is close to 1. In this case the asymptotic
relation (1+vi)/(1−vi) = 1+O(1/p) shows that we lose ld p binary digits.

For the derivation of a relative a priori error bound in the sequel we will
consider the final error terms of s, q, v, ln(1 + v)/(1− v) and assume

ε(l) ≤ 10−4, δ(l)2 ≤ 10−4ε(l), (5n3 + 1)2ε(l) < 10−2.

Looking at the transformation for the sequence {sj}, we get the relative
errors (cf. [13]):

∆S1
= 2−p/2ε(l), ∆Sj

= sj
(
1 + 4.7 · (j − 1)

)
ε(l), Sj ⊆ sj(1±∆Sj

).

92 W. Luther, W. Otten

The sequence {sj} increases to 1 with quadratic convergence, so that n3 =
b2 ld (l/ logB 2)c + 1 steps are sufficient. Then after n3 steps we obtain for
Q the relative error

∆Q ≤ 1.2 · n3 · (n3 + 2)ε(l), Q ⊆ q(1±∆Q).

Simultaneously, we have to calculate the value V . The following lemma
proved in [13] shows the error estimations for the terms necessary.

Lemma 5.

i) Let X = x
(
1 ± δ(l)

)
, 0 < x ≤ a, a ≤ 0.99 in the “-” case. Then it

follows

X/l

(
1 +l

√
1±l X2

)
⊆ x

1 +
√

1± x2

(
1± 2.03ε(l)± 1.01δ(l)± 1.01csgn ×

×
(

a2

1± a2
{1.005δ(l) + 0.505ε(l)}+ 2.11ε(l)

))
.

c+ :=

√
1 + a2

1 +
√

1 + a2
,

c− := 0.5.

ii) Let 0 < v ≤ a ≤ 1, V = v
(
1 ± δ(l)

)
, 0 < s ≤ 1, S = s

(
1 ± ρ(l)

)
.

Then it holds

2 ·l S ·l V/l(1 +l V
2) ⊆ (2sv)/(1 + v2) ·

{
1± 1.01×

×

(
ρ(l) + ε(l) + 1.01

[(
1 +

2.01a2

1 + a2

)
δ(l) +

(
1.01a2

1 + a2
+ 3.01

)
ε(l)

])}
.

iii) From 0 < v ≤ a ≤ 1/
√

2, 0 < w ≤ b ≤ 1/
√

2, V = v
(
1 ± δ(l)

)
,

W = w
(
1± ρ(l)

)
, it follows

(V +lW)/l(1−l V ·lW) ⊆ (v + w)/(1− vw) ·

{
1± 1.01×

Computation of Standard Interval Functions... 93

×
[(

3.02 +
1.01ab

1− ab

)
ε(l) +

(
1.01ab

1− ab
+

v

v + w

)
δ(l) +

+

(
1.01ab

1− ab
+

w

v + w

)
ρ(l)

]}
.

Using the results from the above lemma we estimate the relative error of
the term v. We consider the first two loops and then the general step
v → w1 → w2 → w3 → v of the algorithm. We get the following results.

First step: Second step:

V0 ⊆ v0

(
1± 4.74ε(l)

)
, V1 ⊆ v1

(
1± 11.8ε(l)

)
, v1 ≤ 0.207116,

W1 ⊆ w1

(
1± 11.5ε(l)

)
, W1 ⊆ w1

(
1± 22.92ε(l)

)
, w1 ≤ 0.0046,

W2 ⊆ w2

(
1± 14.72ε(l)

)
, W2 ⊆ w2

(
1± 26.25ε(l)

)
, w2 ≤ 0.0023,

W3 ⊆ w3

(
1± 7.84ε(l)

)
. W3 ⊆ w3

(
1± 15.6ε(l)

)
, w3 ≤ 0.21,

V2 ⊆ v2

(
1± 19.22ε(l)

)
, v2 ≤ 0.105.

General loop:

Vj ⊆ vj

(
1± δ(l)

)
, vj ≤ 0.105, Sj ⊆ sj(1±

(
1 + 4.7(j − 1)

)
ε(l)), sj ≤ 1,

W1 ⊆ w1

(
1± 1.043δ(l)±

(
5.11 + 4.747(j − 1)

)
ε(l)

)
, w1 ≤ 0.21,

W2 ⊆ w2

(
1± 1.078δ(l)±

(
8.39 + 4.91(j − 1)

)
ε(l)

)
, w2 ≤ vj,

w2

vj + w2

≤ 0.5,

W3 ⊆ w3

(
1± 1.0731δ(l)±

(
7.4 + 2.54(j − 1)

)
ε(l)

)
, w3 ≤ 0.213,

Vj+1 ⊆ vj+1

(
1± 1.11δ(l)±

(
10.76 + 2.63(j − 1)

)
ε(l)

)
, j ≥ 2.

Starting from X = x
(
1 ± ε(l)

)
and V0 = v0

(
1 ± 4.74ε(l)

)
, we have an

estimate after n3 steps:

∆V ≤ (319.92 · 1.11n3 − 23.9n3 − 315.17)ε(l), V ⊆ v(1±∆V) (9)

or ∆V ≤ (356·p0.302−47.8 ld p−315)·ε(l) when B = 2 and n3 = b2 ld pc+1.
The inequality

π

(p+ 5) · 2 ln 2
ψ0 ≤ v ≤ π

p · 2 ln 2
ψ0, p ≥ 30

94 W. Luther, W. Otten

yields

∆ 1+V
1−V
≤ 3.03ε(l) +

3.6

p
∆V .

Now we have to evaluate the relative error of the logarithm Ln 1+V
1−V by

(7). This leads to a further factor which predominates the error in (9) in
most cases

1+
(
1+{1.01+0.4(1.24·l· ldB+6)·(l· ldB+4)}(8.8·n1+4.3·n2+30.2)

)
ε(l).
(10)

Numerical example. Now we give a numerical example for our Arctan -
routine. We have calculated the value Arctan (0.5) using the Turbo-Pascal
extension TPX [8] of the Institut Informatik III at TU Hamburg-Harburg
(Prof. Rump). The calculations are executed with a mantissa length of 320
binary digits.

Arctan (0.5) = 0.4636476099
5926

= 0.4636476090008224
5076

= 0.4636476090008061162142617
1572

= 0.46364760900080611621425623146121440202853765
2616

= 0.4636476090008061162142562314612144020285

370542861202638109330887201978641657417125
5737

In the next iteration step we get 7 more valid digits. Using the formulas de-
rived above we get a relative error bound of ∆ = 107 · 2−304. All algorithms
are also implemented and tested with PASCAL–XSC [11] and INTPAK for
MAPLE [6] with ε-inflated arguments for point intervals.
The results are similar to the results of TPX.

7 Further functions

The given algorithms together with the self-correcting intervalNewton-method
allow us to calculate the functions Tan , Exp with a cost of O

(
ld pM(p)

)
.

As a higher function we will now discuss the inverse Weierstraß-function
and show that it is possible to calculate inclusions for this function with

Computation of Standard Interval Functions... 95

a quadratic convergent algorithm ([3]). The inverse Weierstraß-function is
defined as

I(u, e1, e2, e3) :=

∞∫
u

dx√
(x− e1)(x− e2)(x− e3)

,

(11)
e3 < e2 < e1, e1 + e2 + e3 = 0.

We now define

a = a0 :=
√
e1 − e3 , b = b0 :=

√
e1 − e2 , c = c0 :=

√
e2 − e3 , u0 = u,

aj+1 :=
aj + bj

2
, bj+1 :=

√
aj · bj,

e
(j)
1 :=

a2
j + b2

j

3
, e

(j)
2 :=

a2
j − 2b2

j

3
, e

(j)
3 :=

b2
j − 2a2

j

3
.

With

uj−1 = uj +

(
e

(j)
1 − e

(j)
3

)(
e

(j)
2 − e

(j)
3

)
uj − e(j)

3

we get

uj =
uj−1 + e

(j)
3

2
+

√(
uj−1 − e(j)

3

)2

4
− a2

j(a
2
j − b2

j)

and for j →∞ holds:

aj ↓ AGM(a, b) , bj ↑ AGM(a, b) ,

e
(j)
1 →

2AGM 2(a, b)

3
, e

(j)
2 ↓ −

AGM 2(a, b)

3
, e

(j)
3 ↑ −

AGM 2(a, b)

3
.

With the substitution x = φ2 + 2AGM 2(a, b)/3 we finally find

I(u, e1, e2, e3) =

∞∫
u∞

dx√(
x− e(∞)

1

)(
x− e(∞)

2

)(
x− e(∞)

3

)
= 2

∞∫
√
u∞−2AGM2/3

dφ

φ2 + AGM 2

=
2

AGM

(
π

2
− arctan

√
u∞ − 2AGM 2/3

AGM

)
.

96 W. Luther, W. Otten

In the special case of u = e1 we have

I(e1, e1, e2, e3) =
π

AGM(a, b)
.

Therefore, the following algorithm is valid.

I(u, e1, e2,−e1 − e2) : e2 < e1 ≤ u, e1 > 0, p binary digits

U := u ; E1 := e1 ; E2 := e2 ; E3 := −E1 − E2 ;

If U. inf < E1. sup ∨ E1. inf ≤ E2. sup ∨ E2. inf ≤ E3. sup then Error else

{ A := Sqrt (E1 − E3) ; B := Sqrt (E1 − E2) ;

st := b ld pc+ 1 + b ld kc ; (∗ p binary digits precision ∗)
while st > 0 do (∗ k number of digits of Int

(
(e1− e3)/(e1− e2)

)
∗)

{ T := A ; A := (A+B)/2 ; B := Sqrt (B ∗ T) ;
A2 := A ∗ A ; B2 := B ∗B ; E3 := (B2− 2 ∗ A2)/3 ;

U := (U + E3)/2 + Sqrt
(
Sqr (U − E3)/4− A2 ∗ (A2−B2)

)
;

dec (st)};
T1 := U − 2 ∗ Sqr (A)/3 ; If T1. inf < 0 then T1. inf := 0 ;
T2 := U − 2 ∗ Sqr (B)/3 ; If T2. inf < 0 then T2. inf := 0 ;
I(u, e1, e2,−e1 − e2) ∈[

2

A. sup

{
Π

2
− Arctan

(
SqrtT2

B
. sup

)}
. inf,

2

B. inf

{
Π

2
− Arctan

(
SqrtT1

A
. inf

)}
. sup

]}

If the parameter u is near e1 it is possible that up to p/2 binary digits are
inaccurate.

Numerical example.

I(4, 2, 1,−3) = 1.04391521983093013208502242501976430059232277

660975478539473317052254975011155863556633223
2516

The inclusion needs 7 iteration steps with a precision of 320 binary digits.

Computation of Standard Interval Functions... 97

8 Execution time

In the above chapters we have given algorithms for elementary functions in
high precision arithmetic based on AGM-iteration. Now we will discuss the
execution time of our implementations in comparison with the one of the
implementation in the PASCAL–XSC modules mp_ari and mpi_ari [11]
which works with a priori estimations and Taylor series expansions [4, 9].

Therefore we have implemented all described algorithms using
PASCAL–XSC and the multiple-precision arithmetic of the modules mp_ari
and mpi_ari. Here we have used the algorithms with multiple-precision
point arithmetic and the enclosures for point arguments are computed using
outward rounding of the results and a sufficiently large number of guard
digits. The quantity of these guard digits is given by the a priori estima-
tions (7), (9) and (10). For interval arguments we utilize the monotonicity
of the functions in connection with point evaluations for the lower and upper
bounds of the interval argument. In this case the algorithms are equal to
the given PASCAL pseudo code where all interval operations are changed
to point operations and the last inclusions are omitted.

To compare the execution time TAGM of our implementation with the
time TPXSC of the PASCAL–XSC functions in mpi_ari we have calculated
for example the values arctan(0.5) and ln(3.0) with various precisions. The
needed constants Π and Ln 2 were precalculated. We get the following re-
sults.

ln(3.0) arctan(0.5)

precision TPXSC/TAGM guard digits TPXSC/TAGM guard digits
1600 bits 2.6 51 1.3 72
6400 bits 5.2 53 4.0 77
9600 bits 6.5 53 6.1 78

Both implementations of the square root lead to the same evaluation time.
For the precision of a quad data-type (128 bits) we find that our implemen-
tation of logarithms needs the same execution time as the PASCAL–XSC
function and the inverse tangent needs approximately twice as much time.

The precision of the results was the same as in the PASCAL–XSC im-
plementation. So we see that the advantage of quadratic convergent AGM
procedures grows with increasing precision.

98 W. Luther, W. Otten

9 Conclusion

We have presented quadratic convergent algorithms for the verified inclu-
sion of elementary functions like arctan, ln and higher functions like the
Weierstraß function. The quadratic convergence provides faster procedures
than Taylor series expansions if we need high precision. Another advantage
is that it is not necessary to reduce the function arguments to a specific in-
terval. The presented algorithms in connection with a priori error estimates
lead to inclusions by using only multiple-precision point arithmetic with a
sufficiently large number of guard digits.

References

[1] Borwein, J. M. and Borwein, P. B. The arithmetic-geometric mean and
fast computation of elementary functions. SIAM Review 26 (1984),
pp. 351–366.

[2] Borwein, J. M. and Borwein, P. B. π and the A.G.M. Wiley, 1987.
[3] Bost, J. B. and Mestre, J. F. Moyenne arithmético-géométrique et

périodes de courbes de genre 1 et 2. Gazette des Mathématiciens 38
(1988), pp. 36–64.

[4] Braune, K. Standard functions for real and complex point and inter-
val arguments with dynamic accuracy. Computing Suppl. 6 (1988),
pp. 227–244.

[5] Brent, R. P. Fast multiple-precision evaluation of elementary functions.
J. of ACM 23 (1976), pp. 242–251.

[6] Connell, A. E. and Corless, R. M. An experimental interval arithmetic
package in Maple. INTPAK description from MAPLE share library,
ETH Zürich.

[7] Gal, S. and Bachelis, B. An accurate elementary mathematical library
for the IEEE Floating Point Standard. ACM Transactions on Math.
Software 17 (1991), pp. 26–45.

[8] Husung, D. TPX Version 1.1US. TU Hamburg-Harburg, 1992.
[9] Krämer, W. Inverse standard functions for real and complex point and

interval arguments with dynamic accuracy. Computing Supplement 6
(1988), pp. 185–212.

Computation of Standard Interval Functions... 99

[10] Krämer, W. Computation of interval bounds for elliptic integrals. In:
Atanassova, L. and Herzberger, J. (eds) “Computer Arithmetic and En-
closure Methods”, North-Holland, 1992, pp. 289–298.

[11] Krämer, W. Eine portable Langzahl- und Langzahlintervallarithmetik
mit Anwendungen. ZAMM 73 (7/8) (1993), T849–853.

[12] Lawden, D. F. Elliptic functions and applications. Springer, 1989.

[13] Luther, W. and Otten, W. Computation of standard interval functions
in multiple-precision interval arithmetic. Schriftenreihe des Fachbere-
ichs Mathematik der Universität-GH Duisburg, SM–DU–233, 1993.

Received: November 11, 1993
Revised version: July 13, 1994

Universität–GH Duisburg
Informatik II
Lotharstraße 65
D–47048 Duisburg
Germany
e-mail: werner@marvin.uni-duisburg.de

