Interval Computations

No 4, 1994

Numerical Verifications of Solutions for
Nonlinear Hyperbolic Equations

Mitsuhiro T. Nakao

In this paper, we consider a numerical technique to enclose the solutions with
guaranteed error bounds for nonlinear hyperbolic initial boundary value prob-
lems as well as to verify the existence of solutions. Using a finite element
approximation and explicit error estimates for a certain simple linear hyper-
bolic problem, we construct, by computer, a set of functions which satisfies
the condition of Schauder’s fixed point theorem in some appropriate function
space. In order to obtain such a numerical set, we use a kind of multivalued
iterative procedure with efficient use of an initial approximate solution. A
numerical example is provided.
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HOI THIIepOOJIMIecKOi 33,191, ¢ TIOMOIIHI0 KOMITBLIOTEPa, CTPOUTCS MHOYKECTBO
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1 Introduction

In the preceding papers [6-9, 11|, we presented some of the computer assisted
verification methods for the solutions of Dirichlet problems of second order,
using the finite element approximation and Schauder’s or Sadovskii’s fixed
point theorems. Also in [10], we extended the method to initial boundary
value problems for some nonlinear parabolic equations. In this paper, we
show that, under the setting of some appropriate function spaces, a similar
verification principle to that in [10] can also be applied for hyperbolic prob-
lems of second order and that we can provide a computational verification
procedure. Further, a prototype numerical example is presented.

In the following section, we formulate the nonlinear hyperbolic prob-
lem with homogeneous initial and boundary conditions as the fixed point
equation of a compact operator. Also a fundamental theorem which is the
base of our verification problem is proved. In Section 3, using the finite ele-
ment approximation and its error estimates for a simple linear equation, the
concepts of rounding and rounding error are introduced and a verification
condition is presented. And we describe the concrete verification procedure
in computer with a numerical example in Section 4.

2 Fixed point formulation

Consider the following nonlinear hyperbolic problem:

( 0%u
ﬁ—Au = flx,t,u), (x,t) € Q x J,
u(z,t) = 0, (x,t) € 002 x J,
X (1)
u(z,0) = 0, x €,
ou
\ E(Z’,O) = O, T e Q)

where (2 is a bounded and convex domain in IR" (1 < n < 3) with piecewise
smooth boundary 02 and J = (0,7) with " > 0. Set @ = Q x J. For
each nonnegative integer m, we denote by H"™ and H{" the usual and homo-
geneous L2-Sobolev spaces on Q of order m with norm || - ||, respectively.
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Particularly, H° = L? and (-,-) implies the L? inner product on . Also
note that, for m = 1, we use (Vu, Vo) as the inner product on H} and thus

lullF, = (Vu, Va).

Next, for nonnegative integers r and s, according to (3|, let H"(J; H?)
denote the time-dependent type Sobolev space with norm:

Z/H?]Zf

And H™(Q) = H"* denotes the Hilbert space with the following norm:

17

T

i, = [ (a1 +

#e(7;10)) AL
0

Note that H"(J; H®) and H™* coincide with the closure of C*(Q) in the
above norm ([3, 4]). Moreover, we define a Banach space H = H%(Q) N
L>(Q) with norm: ||ullg = [Ju||g2(g) + ||ul|L=(@), where H*(Q) denotes the
usual Sobolev space on ). Also we denote HuH Lz ) by simply ||u]|.

We now suppose the following assumptions on the nonlinear map f in (1).
Al. f(-,u) € HY(J; L?) for any u € H.
A2. f(-,u) is bounded in H'(J; L?) for any bounded subset in H.
A3. For each bounded subset U in H, f is the continuous map from U into
HY(J; L?) with H''-norm.

For example, f(z,t,u) = u”, where p is a nonnegative integer, satisfies
these assumptions. Indeed, Al and A2 follow easily from the imbedding
theorem (e.g. [1]). Let U be a bounded subset of H and, for fixed u € U,
suppose that v — w in H%! norm. Then observe that

0
a(up —v?) = puP ! (up — vg) + p(uP ! — 0Py

It can be readily seen that the first term in the right hand side goes to zero
in the L? norm as v — u in H*! norm. Furthermore, there exists a constant
K such that

1™ = v" Dvellrg) < Kllu = vllrx@llvellzag)
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Noting that v, € H! by the imbedding H'1(Q) — LYQ), ||%H%4<Q) is
bounded, and thus the second term also converges to zero. That is, A3 has
been satisfied.

Next, it is known [4] that, for any ¢ € H*(J; L?), there exists a unique
solution ¢ € H*?* N H(J; H}) to the following simple linear problem:

¢ A2
70 a6 = v, (0.1) € 2 x J,
o(z,t) = 0, (x,t) € 02 x J,
\ (2)
o(x,0) = 0, x € €,
ol0) B
| 5 —(z,0) = 0, z € ().

We denote the above correspondence by ¢ = Awp. Also (2) is equivalent to
the following weak form: find ¢ such that

(du,0) + (Vo, Vv) = (¥, v), veH, tel (3)

So, we define a weak solution for (1) as an element v € L*(J; HY)NH?(J; L?)
such that f(-,u) € H'(J; L?) satisfying

(w, v) + (Vu, Vo) = (f(-,u),v), veHy, teJd (4)

Thus, using the nonlinear map F' = Af, we obtain the following fixed point
formulation of the problem (1):

u=F(-,u). (5)

Now we have the following a priori estimates for the solution of (2).
Lemma 1. Let ¢ be the unique solution for (2). Then

1 €
I6eell* + 1 Bel 2oy + \cbl%zu;m) =< 2H¢H2+3T(H¢(0)H2+El\wtl\z)e ' (6)

2
where |gz$|%2(t];H2 fo (1 \Hg D i 1f0 Hag%‘x |3dt and € means an
arbitrary constant such that 0 < e < 1.

Proof. The following arguments are along the same lines in [4]. First,
differentiating (3) in ¢, we have

(¢ert,0) + (Vr, V) = (Y, v), ve Hy, tel
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Set v = ¢ in the above and integrate it in time to get

t

e @)l6 + lee@®IT = \|¢(0)II3+2/(¢t,¢tt)ds

0
| t t
< WO+ [ s+ [ oulias
0 0

where we have used the well known inequality: ab < %(%aQ + €b?). Thus by
the application of Gronwall’s lemma, we obtain for each t € J

T
1 €
@I+ 1O < (10O)E + 5 [ 1vulfde)e. (7)
0
Next, taking account of the relation \gb(t)\%p(m = ||Ad(t)]|3, we have
D122y < 2N 0ull” + [10[1%). (8)
Thus (7) and (8) yield the desired estimates. O

Lemma 2. The map A : H"!' — HY! defined above is compact.

Proof. First, observe that for each v € H%!

Hence, it is seen that [[¢(0)]q can be bounded by ||®| go1. Therefore,
by virtue of Lemma 1, it is sufficient to show that the inclusion H*? N
HY(J; H') — H'! is compact.

Let {u,} be a bounded sequence in H*? N H(J; H'). Then, by a well-
known compactness theorem (e.g. [14|, Chapter 111, Theorem 2.1), {u,}
is precompact in L*(J; H'). Therefore, we can choose a convergent subse-
quence {u, } of {u,}. Since, {dgg’} is also precompact in L*(J; L?), again
there exists a subsequence {u,»} of {u, } such that {dqé;;”} converges in
L*(J; L?). That is, {u,~} is a convergent sequence in H™' and the proposi-
tion follows. O
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We now prove a fundamental theorem which provides the principle of
the verification. Set H = H N {u(0) = 0}. Here, u(0) = 0 implies that
%in&u(t) = 0 in L*>(Q) sense.

%

Theorem 1. Let U be a bounded, convex and nonempty subset oi[:[ such
that FU C U. Then, there exists a solution u € U for (1). Here, U means
the closure of U with respect to the H*(Q) norm.

Proof. First, notice that U is also closed in H™'. Since this fact follows
by the quite similar arguments to that in [10] (Theorem 1), it is omitted
here. Next, we show that U is a bounded subset in H. For arbitrary u € U,
there exists a sequence {u,} C U such that u, — v in H*(Q). Particularly,
u, — w in L*(Q). Thus, there is a subsequence {u,} which converges to u
in pointwise for almost everywhere in (). Therefore, the boundedness of U
in L>®(Q) also assures the same property for U.

Next, using the assumption A3 and the continuity of the map F' = Af,
we have by the hypothesis

Af(-,U) c Af(,U) C U.

Therefore, by the assumption A3, Lemma 2 and application of Schauder’s
fixed point Theorem, we have the desired conclusion. O

3 Rounding and verification condition

Since the operator F' = Af is infinite dimensional, it is impossible to com-
pute F'U for given U C H directly with a computer. We thus introduce the
rounding R(FU) and the rounding error RE(FU) as in [6, 10| etc.

Let Sj, be a finite dimensional subspace of L*(J; H}) N H?(J; L?) depen-
dent on h (0 < h < 1). Usually, S is taken to be a finite element subspace
with mesh size h which satisfies the initial and boundary conditions.

Now define a projection P, : L*(J; HY) N H*(J; L?) — S, associated
with the solution to (2), by the following simultaneous discretization scheme
in space and time:

//{ Lovs)a + (Vo' Vo tds dt = //@/J,Usgdsdt vesS, (9)
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where ¢" = P,¢. Although (9) seems to be a somewhat peculiar scheme,
it will be proved later to be more easy to obtain the constructive error
estimates for (9) than in other existing approximation schemes.

Proposition 1. (9) has a unique solution in Sy, for each ¢ € H(J; L?).
Indeed, when f = 0, setting v = ¢" in (9) we have

S

T t

d
[ [ 55116 By + 196" ) ds it = .
0 0

Therefore,

T
/ (1682210 + IV 220y )t = 0
0

which implies ¢" = 0, thus, the proposition follows from the well known
property of the solution for linear system of equations.

Next, we have the following error estimates.

Theorem 2. Let ¢ and ¢" be the solutions for (2) and (9), respectively. If
Sy, is a subspace of H?(Q), which means in general a set of C? class piecewise
polynomials both in space and time, then for e = ¢ — ¢", we have

Jeal+ 9l < 2( = ¢+ A |+ Tl — bl + A1) inf o vl (10)

Proof. Observe that using (2) and (9), for arbitrary v € Sy,
t

[

d
d_ (es,e5) + (Ve, Ve)|ds dt

N | —
DN | —

T
[ e+ velP)ae =
0

[(esss €5) + (Ve, Vey) | ds dt

(= ol (0= v),)

I
T — i Ty T
S S~

— (V¢ V(p— v)s)}ds dt.
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Thus, integrating by parts and using the Schwarz inequality, we have the
desired estimates. O

We now suppose that S;, has the following approximation property.
For any v € H*?> N HY(J; HY),

inf ||lu — o] < 2 11
UlgShHU v|| < Cih7|ulp2g) (11)

where |u|§{2(Q) = ij:ll Hazgng |?> and x,,1 = t. Also Cy is supposed to be

a positive constant, independent of h, which can be numerically estimated.
This is a natural assumption for many finite element subspaces (cf. [10]).

We now give an L>(Q)) estimate for the solution of (2).

Lemma 3. Let ¢ be the solution for (2). Then there exists a positive
constant C' = C(€, €) such that

1]y < C(I1(, 0)llo + [l [l + [labell)

where € is the same parameter as in Lemma 1.

Proof. For almost everywhere t € J and x € {2, by the Sobolev imbedding
theorem and well-known estimates (e.g. in [5]), there exists constants Cy
and C3 such that

oz, )] < Collo( )|l a2 (12)

CoCs][Ad(+, 1) o
CQC3H¢”('7 t) - w(a t)HO

Here, for example, we can choose the above constant as Cy < 1.476 and
C3 < 3, respectively, for the two dimensional unit square ([5]).

Further, using the relation ¢ (z,t) = ¥ (x,0) + fot Ui(z, s)ds, we get

[0 B)llo < Nl (-5 0)llo + T4l

Therefore, by (12) and the estimates (7) in the proof of Lemma 1, we obtain
the conclusion of the Lemma. O

<
<

Now, based upon the above arguments, for any ¢ € H(J; L?), we define
the rounding R(A%) and the rounding error RE(A) as follows:

R(AY) = Py(AY)
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and

RE(AY) = {6 € H | |9l < hy/2C1 K1 Ky}

respectively. Here, C is the constant in (11) and

Ky = Ki(¢", ) = 2(|[¢ — ¢ + A" + Tllvby — oy + Ast]),

2
) eeT
where ¢" = R(A).

Moreover, the definitions of R(AG) and RE(AG) for the set of functions
G C H'(J; L?) are defined in the obvious manner (cf. [6]).

d
Ky = Ka(tb, ) = 20| + 37 <w<o>3 + Hd—f

.....

linear combinations of {¢;} with interval coefficients. And let IR* be the
set of nonnegative real numbers. For any a € IR", set [o] = {¢ € H |
[¢llga < a}. Also for Uy, € Spp and a, f € IR", we define the ordered
triple (Up, o, B) as

(Un,a,B)={¢p € H| ¢ € U+ [a] and ||| 1=q) < B}

Then, we have the following verification condition.

Theorem 3. For U, € Sy, and a, 8 € RT, set G = f(-,U) where U =
(Uhaaaﬁ)'

Suppose that
( R(AG) C Uy,

7\

IRE(AG) || < o, (13)

[ CUIGO)lo + G+ IGell) < 8

where C' is the same constant in Lemma 3 and the norm for a set of functions
means the supremum value for norms of all functions in it. Then, there exists
a solution u € U for (1), where U means the closure of U with H*(Q) norm.

Proof. First, note that by Theorem 2, (11), Lemma 1 and the definitions of
rounding and rounding error, we have

FU C R(FU) + RE(FU). (14)
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Next, taking account of Lemma 3, the last condition in the proposition
means that
1EU @) < 1Ull=(@)- (15)

We now set v = 2||G||> + 3T (|G(0) |2 + L|%¢|1?)eT and Us, = U N
{\u@p@) < 2v}. Then, Lemma 1 implies that

|FU3» < 2. (16)
On the other hand, by virtue of the continuity of f in ¢, we have
HFU(t)HH2(Q) — 0, as t — 0. (17)

Then the imbedding theorem yields that |[[F'U(t)||z~) — 0 which implies

FU,, C H. Hence, from (14) — (16) we obtain FUy, C U, and thus, by
Theorem 1 we have the desired conclusion. O

4 Verification procedures and a numerical ex-
ample

In the present section, we describe an actual computing algorithm for gen-
eration of the set U which satisfies the verification conditions in Theorem 3,
and also give a numerical example of verification.

We use an iterative procedure, which is similar to that in [6, 10] etc.,
except for the use of the smooth approximation space S, in x and t, i.e.
S, C H*(Q) with homogeneous initial and boundary conditions. Let 4 be
some smooth approximate solution of the problem (1) which may not be
necessarily in Sy. By setting w = u — @, we rewrite (1) as follows:

( O*w
— —Aw = d+ g(z,t,w), (x,t) € Q x J,
Ot?
w(z,t) = 0, (x,t) € 082 x J,
4 (18)
w(z,0) = 0, x €,
\ aa—ltu(x,O) = 0, z € )
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where d = f(x,t,0) — Uy + At and g(x,t,w) = f(z,t,w+0) — f(x,t,0).

We now set wg =0€ S5y, ag= Py =0, and Wy = (wg,ozo,ﬁo). Let
er > 0,1 <k <3, be given small numbers. For ¢ > 1, when

M .
wiy = Z[A?_”ﬁyfl)}d)j € Srn

Jj=1
and a;_1, 5;_1 are nonnegative real numbers, set

( M

ity = Y [AVY - e AT 4 g,
{ Qi1 = C]JZ11—|-€2, (19)
Bz’—l = fi1+es
\
and also set Wi ; = (12)?_1,642-_1,31-_1), which are so-called ei-inflations

(ef. [12))
Then, we choose w! € Srj and oy, 3 € IRT satisfying, for G;_; =
d+g(-, Wi1),

( (W], ¢5) + (Vw), v¢;) D (Gin,¢5),  1<j< M,
! o= he\/2C1 K1 (w!, Gi_1) K2 (Gi1,€), (20)

Bi = C(1Gi1(0)lo + I|Giall + [(Gi-1)ell)

\

respectively. Here, C, K1, Ko, C', and € are previously defined constants and
parameter. Also the first formula in (20) means that u! is determined by an

interval vector solution for the system of linear equations with interval right
hand side.

Then, from Theorem 3, we have the following actual verification condi-
tions in computer.

Theorem 4. If there exists some integer N such that

h ~h A 5
wy CWy_q, ay < ay-1, and By < PBy-1.
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Then there exists a solution u € t+W y for (1), where Wy = (wly, oy, Bx)
and W means the closure of Wy in the H*(Q) norm. And w? C @} _,

implies that each coefficient interval in wf{,- is included in the corresponding

interval in W% ;.

Now we will provide some numerical examples which were actually veri-
fied by computer with the procedure described above.

The model equation is as follows:

( 82u 82u 2 .. 9 2_9 4 :
52 "5 Ku® + Psin® mz(2 + t*n* — K Pt*sin7x),
(x,t) € Qx J,
) u(z,t) = 0, (z,t) € 002 x J, (21)
u(z,0) = 0, r € €,
ou
\ E(x,()) == 0, T & Q

where QQ = (0,1), J = (0,1), and K, P are constants. The exact solution
of this problem is v = Pt*sin 7x.

Now, in order to construct the approximation space, let 9, : 0 = zy <
xr1 < --- <z = 1 be a uniform partition of the interval Q and set h = 1/L.
For simplicity, define the partition of J as §; = 6,. We denote by M? the
set of C? class piecewise cubic functions, i.e. cubic splines, on Q or J, let
S, ={v e M3(Q) | v(0) =v(1) =0} and let S; = {w € M3(J) | w(0) =
wy(0) = 0}. And we adopt Sy = S, ® S; as the approximation space Sy,
Then, we have dim S,; = (L + 1)%

Next, we estimate the constant C; in the approximation property (11).
Let P, and P; denote L? projections from H?(Q) and H?(J) into S, and S,
respectively. Then, it is easily seen (e.g. [13]) that, for any w € H?(),

. 2
lw = Prwlirx) < inf flw —vllr) < pthmem(m

The same estimates hold for P;. For any u € H?(Q), notice that
|lu — Pyul| < ||ul|, where P,u is a function of space and time in the sense of
P u(-,t) for each t € J. Then we have

inf lu— x| < u— PP
XESH
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< = Peull + llu = Pl + [lu = Pow — Bi(u — Pyu)|
2

< ;hQ(HumH +lluell + | (w = Pow)el)
2

< th(Hum\lJr?HuftH)-

Thus from the above inequality, we can take the constant in (11) as C} =
%\/6 And observe that

T t

ula,t) = / s (€, £)dE = / / (€ m)dn dE < [l
0

0 0

Hence, using Lemma 1, we can estimate C' in Lemma 3.

Thus we can implement the verification procedures (19), (20), using the
above estimates and some of the calculation techniques which are similar to

those in [7, 10].

We actually verified for several cases. For example, in the case that
K = 0.5, P = 0.1, we completed the procedure with iteration numbers
N = 7 and error ay = 0.0702 under the conditions of ||d|| < 1072 and mesh
size h = 0.1 (i.e. L =10).

Remark. From our experience, it is expected that we would also be able to
verify for the problems with larger K and P than the present case provided
that we can use smaller mesh size. However, owing to the various limitations
of our computer facility, we could not use such a sufficiently small partition.
Further, it was observed that better initial approximation yielded easier
verification with the same mesh size. Anyway, as the main purpose of this
report, we can show that a similar verification principle to that in |7, 10] can
also be applied to hyperbolic problems of second order, but the development
of the practical verification procedure is left as a future subject which may
be dependent on the computer technology itself, e.g. such as the appearence
of super parallel computers, etc.
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