
Interval Computations
No 4, 1994

Rounding of Floating Point Intervals

Marc Daumas and David W. Matula

Correct rounding of the infinitely precise arithmetic as prescribed for the float-
ing point operations is not always attainable with reasonable resource. Many
functions return explicit or implicit interval outputs. Yet, the IEEE standard
does not allow efficient use of this information. We present how the IEEE
rounding mechanisms can be extended to accept interval rounding which is
shown to be a first natural step toward non infinitely precise rounding. Along
with the proposal of this faithful rounding for non-infinitely precise operation,
we present the intrinsic properties of this new rounding mechanism.

Округление интервалов с плавающей
точкой

М. Дома, Д. Матула

Корректное округление в арифметике с бесконечной разрядностью, специ-
фицированное для операций с плавающей точкой, иногда требует для сво-
ей реализации неадекватного количества ресурсов. Хотя многие функции
возвращают результат в виде явного или неявного интервала, стандарт
IEEE не позволяет эффективно использовать эту информацию. Нами
продемонстрировано, как можно дополнить механизмы округления стан-
дарта IEEE введением интервального округления, которое, как показано,
является первым естественным шагом на пути к округлению с конечной
разрядностью. Предлагая такое точное округление для операций с ко-
нечной разрядностью, мы также выводим основные свойства, присущие
этому новому механизму округления.

c© M. Daumas, D. Matula, 1994

Rounding of Floating Point Intervals 29

1 Introduction

The IEEE floating point standard has been adopted for most PC and work-
station platforms and is likely to become an available option on mainframes
and supercomputers in their next generation. Several distinct features of the
standard have contributed to its success in removing the chaos from previ-
ous non-standardized floating point numeric computation systems. For the
primitive arithmetic operations (addition, multiplication, division, square
root. . .) the user-controlled fully specified rounding mechanism dictates
unique results. However, this high level of requirement is sometimes not
accessible with a reasonable amount of hardware or in bounded computa-
tion time. Such cases are often limiting the precision on transcendental
functions [2] (sine, cosine, logarithm, exponential. . .) and vector operations
(dot product, matrix multiplication. . .) [3, 6].

Yet there is no widely accepted specification to extend these notions
to interval rounding. We present a coherent, fully specified system for the
rounding of small intervals. Given a small enough interval, less than 1 ulp
wide, this mechanism returns one unique value specified by the rounding
mode chosen by the user. This rounding mechanism guarantees also the
correctness of the rounding regarding directed error. The notions intro-
duced detail well defined rounding mechanism that can be applied to tran-
scendental functions and vector arithmetic which are usually implemented
to compute a small interval that contain the real result. The reader inter-
ested in an in-depth justification of the rounding operation may find some
good arguments in [7]. The authors of the book use semi-morphisms on the
structure of a superset.

Section 2 is a review of the IEEE standard features. It includes defini-
tions of quantities related to a unit in the last place and useful properties
for the argumentation of the rounding mechanisms. This is also an oppor-
tunity to review the limits of the IEEE standard rounding possibilities. We
present in Section 3 the proposal for our first step toward extending the
IEEE deterministic rounding.

30 M. Daumas, D. Matula

2 The IEEE standard

2.1 Three new concepts

When the ANSI/IEEE 754–1985 standard for binary floating point arith-
metic was defined [4], the committee introduced three very successful notions
that are now considered as natural requirements for computer arithmetic.

Type hierarchy. The data representation—bit level encoding—of the float-
ing point numbers is specified to allow easy interchanges between machines
and standardization of the applications at the hardware level. The stan-
dard defines the semantic, the position and the size of each field, yet the
actual organization of the byte in memory may depend on the low level
implementation (big endian vs. little endian).

• The sign bit—each floating point number is stored as a couple with a
separate absolute value field and a separate sign.

• The size of the truncated mantissa depends on the data format; since
the number is normalized its first binary digit is always set to the value
1, hence it is omitted from the storage.

• The exponent is coded with a bias; the size of this field and the value
of the bias are given by the format.

Moreover, the standard includes general ideas on extending the existing
data hierarchy to higher levels of precision. We shall consider the data
types: T1 (single), T2 (double), and T4 (quad). The data type T conditions
the numbers’ precision (one unit in the last place, ulp) and the subset F
(respectively F1, F2, and F4) of R which is supported. The set F is the
closure of F with the usual extension (+∞, −∞, NaN . . .).

Closure. To allow the computer to process floating point operations in a
continuous stream of instructions, it is necessary to ensure that any opera-
tion returns a value. Closure is an important issue since the user should be
responsible for the treatment—or the absence of treatment—of numerical ex-
ceptions. As an example, a division by zero should not stall all the machine
forcing the user to restart the faulty process from the beginning. New values

Rounding of Floating Point Intervals 31

These notions are presented in the standard [4]. The type hierarchy have been
extended with the de facto new standards but it is still compatible with the
underlying ideas who were the basis of the first data types definitions.

Type hierarchy

Type Name Fraction Exponent Total Length
(bits) (bits) (bytes)

Single 23 8 4
Single Extended ≥ 31 ≥ 11 ≥ 5
Double 52 11 8
Double Extended ≥ 63 ≥ 15 ≥ 10
PC-Double Extended 64 15 10
Quad 112 15 16

Closure

Infinities (+∞, −∞), Overflow, Denormalized, Not a Number (NaN)

Uniqueness

Operation Domain Result Specification

Addition F
2 −→ F (v, w) 7−→ s = Rx(v + w)

Multiplication F
2 −→ F (v, w) 7−→ p = Rx(v × w)

Division F
2 −→ F (v, w) 7−→ q = Rx(v/w)

Square root F −→ F v 7−→ q = Rx(
√
v)

Figure 1: The IEEE standard specification

32 M. Daumas, D. Matula

are introduced into the set F to comply with this idea: projective infinity
(+∞ and −∞), overflow representation (the correct mantissa is stored with
a special exponent to signal the overflow) and not a number (NaN—to rep-
resent results that cannot be reduced, for example 0/0). In addition, the
standard defines flags to trap on error; in this case, the user should install
an exception handler.

Uniqueness. The rounding mechanism introduced by the IEEE standard
has led to the notion of uniqueness; the result of any operation implemented
by the standard is a totally specified unique floating point representable
number v ∈ F. The format specifies four rounding modes (RN — Round
to Nearest, RU—Round Up towards +∞, RD — Round Down towards −∞
and RZ—Round towards Zero), and four operations according to the active
rounding mode Rx. The result of an operation must be the exact rounding
of the infinitely precise mathematical operation.

2.2 The ulp function

As a convention for notation and to allow a better understanding of this presen-
tation: a real number will be represented by the letter x ∈ R, a real interval by
[a, b] ⊂ R and a finite floating point representable value (respectively arbitrary
large) by the letters v ∈ F and w ∈ F (resp. v ∈ F and w ∈ F).

x+ = min
{
v ∈ F | v > x

}
x− = max

{
v ∈ F | v < x

}
ulp(v) =

{
v+ − v v ≥ 0
ulp(−v) v < 0

ulp(x) = ulp
(
Trunc(x)

)
v[Rx] = {x ∈ R | Rx(x) = v}

Figure 2: The ulp function

The set F of the representable numbers in floating-point format T is
a non-uniform discrete set. For this reason, talking about relative error is

Rounding of Floating Point Intervals 33

sometimes dangerous. A unit in the last place is a quantity used frequently
in floating point arithmetic; it is possible to define it as a function.

Definitions. Each set F is a finite subset of R, thus this is a well ordered
set and each real number x ∈ R has a unique successor in F. For the same
reasons, x ∈ R has a unique predecessor in F.

Definition 1. The type-T successor x+ of the real number x ∈ R is the
smallest number (possibly non finite) in F larger than x. Identically the
type-T predecessor x− of the real number x ∈ R is the largest number
(possibly non finite) in F smaller than x.

It is important to notice that for a representable floating point number
v ∈ F, the difference v+ − v and v − v− are not always equal. The ulp
function is defined from these quantities. For some real numbers x ∈ R the
values x+ or x− may not be finite. However, with the definition presented,
the function ulp is finite on all number v ∈ F except possibly the largest
and the smallest values of F.

We have defined so far the function ulp on the set F of numbers rep-
resentable in type T . We shall extended to two directions: to the real
numbers and to the denormalized numbers. A denormalized number W is a
word on the alphabet {0, 1}. For the denormalized numbers, we will make
a distinction between the number (real value) and its expression (word). To
avoid any confusion, we will note |W | ∈ F the floating point value of the
denormalized number W using the usual conventions.

Definition 2. The function ulp is the even function that associates to any
type-T representable floating point non negative number v ∈ F+ the value
of the difference v+ − v. The ulp function is extended to real values and
denormalized numbers. Let x be a real number, the value ulp(x) is defined
from the truncated value v = Trunc(x): ulp(x) = ulp(v). Identically, given
a denormalized number W of rank l we define ulp(W) = ulp(|W |)2l.

A floating point value has two different meanings. When first introduced
as a tool for physics, floating point numbers inherited from the properties
of the measuring tools. It is usually possible in physics to get the sign
of a quantity, so it is logical that the sign is coded independently from the

34 M. Daumas, D. Matula

absolute value, but it is barely impossible to get a result without an intrinsic
uncertainty. When a floating point number is used to store a physical value,
it represents an interval: its rounding set.

Definition 3. The rounding set v[Rx] of a floating point number v ∈ F
relative to the type T and the rounding mode Rx is the subset of R whose
elements reduce to v by rounding.

It is important to notice that sometimes a floating point value only repre-
sents one real number. This is verified when a process defines high precision
numbers using multiple word operations for arbitrarily precise arithmetic:
only the last word in the list of numbers represents an interval (its rounding
set); all other numbers are the exact representations of their values.

Properties. For an easier understanding of this analysis, we will restrain
to the floating point values v ∈ F that are away from the limits of the set
F (−∞, −0, +0, and +∞), we will also restrict this work to normalized
numbers. The behavior of the ulp function close to these points is very
straight forward; however, the description of all special cases would make
this presentation tedious. Identically the real number x ∈ R are implicitly
chosen within the set of numbers that rounds to points within the subset
just defined.

A binary number is represented by the infinite sum on a finite domain∑+∞
−∞ di2

i. The standard data format specifies that any floating point num-
ber v ∈ F is represented by a data structure with a (nm + 1)-bit mantissa
1.mv and a ne-bit exponent ev. Leading to the finite sum

(−1)sv2ev

(
1 +

nm∑
1

di2
−i

)
.

The IEEE standard types T1, T2, and T4 are fully specified by these two
integers nm and ne.

Looking at the literature, there are many definitions close to the one
presented of the quantity unit in the last place; as a matter of fact, any
natural definition of the function ulp is equivalent to the Definition 2 except
possibly when v = ±2k, v = ±(2k)+ and v = ±(2k)−.

Rounding of Floating Point Intervals 35

Before going any further, we present quickly three lemmas to relate these
definitions with the usual knowledge of relative error. The relative error is
mathematically defined from an error bound ∆max by ε = ∆max/x. Applica-
tion designers usually verify that the relative error is below 2nm or a fraction
of this value. This also means that the process gives nm bits of precision or
something close to this value. It is interesting to connect the relative error
and the ulp function.

Lemma 1. The ulp function satisfies ulp(v) = 2ev−nm. As a consequence,
the function ulp defined on the representable floating point numbers is con-
stant over intervals [2i, 2i+1) with a jump at 2i for all i. For any representable
floating point v, an ulp(v) is exactly the value of the number encoded with
the same exponent as v (ev) and the mantissa equal to 0.00 . . . 001.

Lemma 2. For any real number x ∈ R there is at most one representable
point in any interval containing x and of length 1

2ulp(x) − ε (ε > 0). Vice
versa, there is at least one representable value in any interval containing
x and of length ulp(x) + µ (µ ≥ 0). The value ulp(x) is bounded by
2dlog2 |x|e−nm.

Lemma 3. A value x known from x0 with a relative error bounded by
λ× 2−nm ≤ 1/3 is known to be at most 3/2λ× ulp(x) away from x0.

2.3 The limits of the standard

In the machine, infinitely precise rounding is often achieved by performing
internal computation using more bits than the input or output formats. For
example, the IEEE standard addition and multiplication are usually com-
puted with implicit infinite length registers. The algorithms for the division
and the square root operations are a little different since the remainder gives
enough information to fix the sticky bit.

Many additional functions not required by the IEEE standard are im-
plemented on existing chips. Floating point units are able to perform com-
pound operations (multiply and add—IBM RS6000), or compute transcen-
dental functions (sine, cosine, logarithm, exponential. . .). As a property, the
correct rounding is strongly connected to the ability to carry on operation

36 M. Daumas, D. Matula

for additional precision. Moreover, the process must be able to deduce the
extended sign (strictly positive, null or strictly negative) of the sticky bit.

For transcendental functions this methodology does not generalize. It is
not possible to compute the result exactly in bounded time since its floating
point representation is non-finite and there is no known algorithm to get the
extended sign of a truncated tail portion. The case is fundamentally different
for the accumulation process, but we are left to a comparable situation: the
result can be computed exactly in finite time. However, this process is often
considered too expensive.

Moreover, the user does not have the possibility of efficiently simulating
this process. The only extensions now available to the user that is looking
for some more accurate results is to extend the size of the mantissas invloved.
This race for precision is not acceptable because it is very expensive regard-
ing time if it is implemented in software or regarding silicon area if some
circuit is available. We should turn to alternative methods as presented for
vector operation in [1] and adapt our algorithm to the notions advocated.

Previous work has shown that for many useful functions, the IEEE
roundings cannot be implemented in bounded computation time: there
is no known algorithm able to compute the transcendental functions with
the correct rounding in any situation with bounded execution time. Re-
search has not led to any accepted standard for transcendental functions or
for vector primitive operations. Some work [5] focuses on monotonous or
piece-wise monotonous function behavior—their representation should also
be monotonous.

The next theorem explains why it is not possible to round an interval
(or equivalently a function) known with an uncertainty of arbitrary extended
sign.

Theorem 1. For any arbitrarily small non-null error interval I = [α, β]
there is a real number x such that x+α and x+β round to different values
in the active rounding mode.

Proof. Without loss of generality, we can suppose that α < 0 < β. Other-
wise, we use x′ = x+ α+β

2 , α′ = α− α+β
2 , and β′ = β − α+β

2 .
If the active rounding mode is Round to Nearest, the value x = 1+1+ is

the median of the interval [2, 2+], thus it satisfies x−2 = 2+−x = 1
2ulp(x).

Rounding of Floating Point Intervals 37

Hence x + α rounds to 2 and x + β rounds to 2+. Identically, if the user
decides to work with directed rounding, the value x = 1 satisfies x+ α < 1
and x+ β > 1. 2

From the result of this Theorem and the algorithms used to compute
transcendental functions, it is now possible to deduce that among the func-
tions usually defined in floating point units, all the transcendental functions
may lead to results different from the rounded infinitely precise result.

3 Faithful rounding

We have already utilized for the standard infinitely precise rounding mech-
anisms the initials Rx: RN (Round to Nearest), RU (Round Up towards
+∞), RD (Round Down towards −∞), and RZ (Round towards Zero).

Standard Rounding Mode RU RD RZ RN
Corresponding Faithful Mode RUU RDD RZZ RND or RNU

Table 1: Faithful rounding modes

The notation Rxy, where x and y may be one of the letters N, D, U, or Z,
is proposed to extend these conventions to the faithful rounding of intervals.
We should eventually propose five “standard” roundings RUU, RDD, RZZ,
RND, and RNU to correspond to the existing modes RU, RD, RZ, and
RN for standard arithmetic operations (see Table 1). We propose also the
creation of two flags: Correct Rounding (CR) and Faithful Rounding (FR).
If the interval can be correctly rounded the flag CR should be active and
the correct rounding mode Rx induced from the faithful rounding mode Rxy
returns the same result as the faithful rounding mode Rxy. Otherwise, if
the interval can be faithfully rounded, only the FR flag is active, and the
result of the faithful rounding Rxy is returned. If even faithful rounding is
not possible, the unit should return a result yet to be specified and keep
both flags inactive.

38 M. Daumas, D. Matula

The non deterministic faithful rounding presents with a 1
2
ulp requirement and

a 2 ulps guarantee a very loose rounding, to be used as a last choice.

RUD([a, b]) =

{
RU(a) if RD(b) ≤ RU(a)
not defined otherwise

RDU([a, b]) =

{
RD(b) if RU(a) ≥ RD(b)
not defined otherwise

Rounding Down-Up Mode

v = RUD([a, b])

{
⇒ [a, b] ⊂ [v−, v+] v+ − v− ≤ 2ulp(v)
⇐ b− a ≤ 1

2
× ulp(x) ∃x ∈ [a, b]

v = RDU([a, b])

{
⇒ [a, b] ⊂ [v−, v+] v+ − v− ≤ 2ulp(v)
⇐ b− a ≤ 1

2
× ulp(x) ∃x ∈ [a, b]

Figure 3: Non deterministic faithful rounding

3.1 Non deterministic faithful rounding

All the rounding specifications presented in this section are deterministic in
the way that a given interval rounds to either one precisely defined value or
the interval cannot be rounded. This is the same way the IEEE standard
infinitely precise rounding is deterministic. The so-called non determinism
emphasizes the fact that the user cannot deduce that any value in the interval
was either Rounds Down to the result or Rounds Up to the result. The
difference between these two modes rely on the preference given when the
interval can effectively be rounded following the IEEE standard.

Rounding of Floating Point Intervals 39

Definition 4. The interval [a, b] Rounds Up-Down to v = RU(a) if any
value of the interval either Rounds Down to v or Rounds Up to v. Symmet-
rically the interval [a, b] Rounds Down-Up to v = RD(b) if any value of the
interval either Rounds Up to v or Rounds Down to v.

The user does not know which mode is used (Round Down towards
−∞ or Round Up towards +∞) to round the interval, in fact different
rounding modes can be used for the two parts of the interval. Given a
rounded value the user can only present a 2-ulp guarantee on the initial
result. An irregularity is introduced by the values were the function ulp is
not continuous; in this case, the interval is only 3

2 ulp large.

Theorem 2. Given a result v rounded with the non deterministic faithful
rounding modes RUD or RDU, the initial interval [a, b] is known to be
included into the interval [v−, v+] of length at most 2× ulp(v). Conversely
an interval [a, b] of length less than 1

2ulp(x) (x can be arbitrarily chosen in
the interval [a, b]) can be rounded using either one of the non deterministic
faithful rounding modes RUD or RDU.

We have summed up in Figure 3 the properties of the two non determin-
istic rounding modes, RUD and RDU. With the definition of these modes,
we have included a figure of the rounding of some floating point intervals.
The real axis is projected vertically and thick horizontal bars cross the axis
on representable floating point values. Some of the midpoints are repre-
sented for the RN mode. Both active rounding modes are represented of
the left. The rounded result of the drawn interval is indicated by an arrow.
We outline the properties of the rounding modes in the last statement: we
present the consequence of [a, b] being rounded to v and a sufficient con-
dition to round an arbitrary interval [a, b]. We could have applied much
stronger properties whenever [a, b] is far enough from any power of 2, yet we
have derived here general properties that could be implemented easily with
no further tests.

Comments on the proof. The proof is straight forward. However, care
must be given to details not overlooking any. The case where v = ±2k often
leads to the loss of one bit meaning a factor of 1

2 in precision.

40 M. Daumas, D. Matula

3.2 Faithful rounding

RNU([a, b]) =

 RN(a) if RN(a) = RN(b)
RD(a) if RN(a) 6= RN(b) but RD(a) = RD(b)
not defined otherwise

RND([a, b]) =

 RN(a) if RN(a) = RN(b)
RU(a) if RN(a) 6= RN(b) but RU(a) = RU(b)
not defined otherwise

Rounding Nearest-Down Mode

v = RND([a, b])

{
⇒ Infinitely precise rounding RN or RD mode
⇐ b− a ≤ 1

4
× ulp(x) ∃x ∈ [a, b]

Figure 4: Faithful rounding RNy

Given a smaller relative error, it is possible to deterministically define
which rounding mode is used for the interval in a different set of round-
ing modes. The rounding modes used are Rounding Nearest-Up (RNU),
Rounding Nearest-Down (RND), Rounding Up-Nearest (RUN) and Round-
ing Down-Nearest (RDN).

Definition 5. The interval [a, b] Rounds Nearest-Up to v if it Rounds to
Nearest to v or else it Rounds Up to v. It Rounds Nearest-Down to v if it
Rounds to Nearest to v or else it Rounds Down to v.

If the interval cannot be rounded with the primary mode, Round to
Nearest, the secondary mode is used to round the interval Up towards +∞

Rounding of Floating Point Intervals 41

RUN([a, b]) =

 RD(a) if RD(a) = RD(b)
RN(a) if RD(a) 6= RD(b) but RN(a) = RN(b)
not defined otherwise

RDN([a, b]) =

 RU(a) if RU(a) = RU(b)
RN(a) if RU(a) 6= RU(b) but RN(a) = RN(b)
not defined otherwise

Rounding Down-Nearest Mode

v = RDN([a, b])

{
⇒ Infinitely precise rounding RD or RN mode
⇐ b− a ≤ 1

4
× ulp(x) ∃x ∈ [a, b]

Figure 5: Faithful rounding RxN

or Down toward −∞. If this is possible, this is the value returned by
the floating point unit. On a process that guarantees faithful rounding
(RNU or RND), the user is sure to get the correct rounding of the infinitely
precise result in the primary mode (RN) or the secondary mode (RU or RD).
Although the user cannot a priori predetermine which mode will be used,
the user has a posteriori information on the mode used by just checking a
flag which may be set by the computer. If the correct flag (CR) is active,
the primary mode was used, otherwise, it was the secondary mode.

Definition 6. The interval [a, b] Rounds Up-Nearest to v if it Rounds Up
to v or else it Rounds to Nearest to v. It Rounds Down-Nearest to v if it
Rounds Down to v or else it Rounds to Nearest to v.

There are many similarities between these four modes which are pre-
sented Figures 4, 5. RNU and RND on one part and RUN and RDN on

42 M. Daumas, D. Matula

the other part are very close to each other. Moreover, the situations that
are faithful non correct roundings for the RND rounding mode are correct
roundings for the RDN rounding mode, and vice versa.

The faithful rounding is not a loss in the uncertainty control of the func-
tion since the result is always the correct rounding of the infinitely precise
value, but the users cannot impose the rounding mode used. Although the
two active modes are set for the rounding, the user can only trap on the
faithful rounding flag and the correct rounding flag to detect which one was
used.

Theorem 3. The faithful rounding mechanism guarantees that the value is
the correct rounding of the infinitely precise result using the primary or the
secondary mode. Vice versa an interval [a, b] of maximum length 1

4 ×ulp(x)
can be faithfully rounded with any of the specified faithful modes.

3.3 Directed faithful rounding

In the previous section, we have presented faithful rounding specifications
that ensure the rounding of an interval to be the correct rounding of the
infinitely precise mathematical interval with one predefined mode; the mode
is not fully specified by the user, yet the process has to pick the rounding
mode in a set of two modes specified by the user.

The directed rounding modes were introduced in the IEEE standard
to allow interval arithmetic implementation at the user level. This is to
guarantee that allowing error during the rounding process cannot make the
user loose the knowledge that the result is a directed approximation of the
infinitely precise result.

The major drawback of faithful rounding: it is not compatible with
directed approximation. Still keeping the same uncertainty, we present Fig-
ure 6 the Round Up-Up and Round Down-Down mode from the following
definition.

Definition 7. The interval [a, b] Rounds Up-Up to v if it Rounds Up to v
or else it Rounds to Nearest to v−. It Rounds Down-Down to v if it Rounds
Down to v or else it Rounds to Nearest to v+.

Rounding of Floating Point Intervals 43

RUU([a, b]) =

 RD(a) if RD(a) = RD(b)
RN(a)− if RD(a) 6= RD(b) but RN(a) = RN(b)
not defined otherwise

RDD([a, b]) =

 RU(a) if RU(a) = RU(b)
RN(a)+ if RU(a) 6= RU(b) but RN(a) = RN(b)
not defined otherwise

Rounding Down-Down Mode

v = RDD([a, b])

{
⇒ Infinitely precise rounding RD or RN mode
⇐ b− a ≤ 1

4
× ulp(x) ∃x ∈ [a, b]

Figure 6: Directed faithful rounding

The RZZ (Rounding Zero-Zero) mode can be obtained from the RDD
and the RUU modes. Actually, any RxZ or RZx mode can be obtained
from the associated Round Up towards +∞ or Round Down towards −∞
rounding modes.

4 Conclusion

Because the initial set of functions implemented through the IEEE standard
was relatively small, the need for interval arithmetic and interval rounding
were totally under-minded compared to the advantage of correct rounding
and reproducibility notions.

44 M. Daumas, D. Matula

Now that the community is well aware of the importance of reproducible
computation, we need to back up from this paradigm. The faithful round-
ing is a first step toward non infinitely precise rounding. It is the interval
rounding mechanism needed to extend the IEEE standard; this extension on
interval rounding can be efficiently applied to transcendental function and
vector operation rounding. Moreover, this mechanism can be implemented
with no loss of precision for the user in comparison with infinitely precise
rounding.

This mechanism may be added to existing hardware only with a few mod-
ifications. Transcendental functions are already correctly defined regarding
the faithful rounding mechanism. To allow the user to control efficiently
the error, a new flag is to be included that signals non infinitely precise
rounding, i.e. faithful rounding. It is possible to associate with any IEEE
specified rounding mode Rx a faithful rounding mode Rxy. Later, the user
may have the hardware possibility to chose any couple Rxy.

References

[1] Bohlender, G. What do we need beyond IEEE arithmetic? In: “Com-
puter Arithmetic and Self Validating Numerical Methods”, Academic
Press, 1990, pp. 1–32.

[2] Braune, K. Standard functions for real and complex point and interval
arguments with dynamic accuracy. Scientific computation with auto-
matic result verification, Suppl. 6, Springer-Verlag, 1988.

[3] Daumas, M. and Matula, D. W. Design of a fast reliable dot product
operation. In: “11th IEEE Symposium on Computer Arithmetic”, 1993.

[4] IEEE standard for binary floating-point arithmetic. ANSI/IEEE Std
754-1985. The Institute of Electrical Engineering and Electronics Engi-
neers, New York, 1985.

[5] Ferguson Jr., W. E. and Brightman, T. Accurate and monotone approx-
imations of some transcendental functions. In: “10th IEEE Symposium
on Computer Arithmetic”, 1991, pp. 237–244.

[6] Kirchner, R. and Kulisch, U. Arithmetic for vector processors. In: “8th
IEEE Symposium on Computer Arithmetic”, 1987, pp. 256–269.

Rounding of Floating Point Intervals 45

[7] Kulisch, U. and Miranker, W. L. Computer arithmetic in theory and
practice. Academic press, 1981.

Received: November 11, 1993
Revised version: September 4, 1994

D. W. Matula
Southern Methodist University
Dallas, TX 75275
Email: Matula@Seas.Smu.Edu

M. Daumas
École Normale Supérieure de Lyon
Lyon, France 69364
Email: Marc.Daumas@Lip.Ens-Lyon.Fr

