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A Parallel Method for Linear
Interval Equations
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The sign-accord algorithm of Rohn for solving systems of linear interval equa-
tions is considered. This method is motivated by a theoretical analysis of
the problem. A parallel version of the method is developed and tested using
rounded interval arithmetic. Theoretical considerations as well as numerical
tests demonstrate that the parallel method is efficient (i.e. the speedup is al-
most linear) if an appropriate number of parallel processors is allocated. This
number can be estimated before the beginning of the (parallel) computational
process.
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1 Introduction

The problem of solving a linear system of equations with inaccurate coeffi-
cients and inaccurate values of the right-hand side occurs in many technical
and economical situations. Let us give a few examples.

o Measuring instruments cannot be absolutely accurate, so all values
that we get from measurements aré measured within some (known)
uncertainty. . Therefore, if the measured value is 7, and the guaranteed
accuracy of this measuring instrument is A, then the only thing that

- we know about the actual value z of the measured quantity is that
z belongs to an interval [ — A, £ + A].

e In economic situations, linear equations often describe the relation-
ship between prices, rates, etc. However, at any given moment of
time, prices, rates, etc., are not fixed; they can vary a little bit (de-
pending on the place or on the specific bargain). So, for each variable,
we have an interval of possible values.

e In many real-life situations, we have a non-linear dependency be-
tween the quantities. However, one of the main ideas of solving non-
linear equations is to reduce them to a sequence of easier-to-solve
linear ones. So, many numerical methods that deal with interval

uncertainty (e.g., an interval version of Newton-Raphson’s iteration)

have solution of a linear system as a subproblem.

To determine exact bounds on the solution set of a system of linear’
equations can be quite costly. In fact, for known methods, the amount
of computations needed may increase exponentially in the square of the
number of variables (for a detailed description, see Section 2). Therefore
it makes sense to use parallel computing in order to reduce the calculation
time. }

In this paper we consider the sign-accord algorithm of Rohn [15]. We
extend the method by using rounded interval arithmetic, and we show how
to parallelize the resulting algorithm. We provide arguments that in many
_situations, our algorithm will have a nearly linear speedup. These argu-
ments are confirmed through extensive numerical testing. In this paper,
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we present only a few test results. For a more complete description of nu-
merical experiments, the reader is reférred to Toft [16] ([16] also describes
the results of extensive testing of the sequential sign-accord algorithm).

In Section 2 we shortly review Rohn’s method, and describe how to
modify it so that it would include rounded interval arithmetic. Section 3
describes and analyzes the parallel strategy, and in Section 4 several typical

numerical test results are presented. F mally, some concluding remarks are
given in Section 5.

2 The sequential sign-accord algorithm

In this section we first give a precise formulation of the problem to be
solved, then we describe the sign-accord algorithm, and finally we demon-
strate how to extend this method to rounded interval arithmetic.

2.1 Special notations

We assume that the reader is familiar with Interval Analysis and tradi-
tional notations (a complete description is given, e.g., in Toft [16]). In this
subsection, we will only describe a few special denotations.

The mudpoint a,. of an interval of =[a,a] is the center element defined
as _

The radius rad(a’) of a’ is

rad(al) = %(E —a).

This definition is generalized to interval vectors and matrices by taking
midpoints and radii componentwise.

For an interval vector 5! the set of corner vectors Corn(b!) is defined
as

Corn(b') :={b € R | b; € {b;, b}, i = et (1)

(here, R" denotes a set of all n-dimensional vectors b — (b1,...,b,) whose
components b; are real numbers).

6*
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For an interval matrix A’ the set of corner matrices, Corn(A"), is de-
fined similarly.

An n-dimensional sign vector is a vector having components with values
1 or —1. The set of all such vectors is denoted by &" :

S"::{y e R } y; € {1, -1}, i:l,...,n}.
If for two vectors, x € R", y € 8", the predicate
n}: xy; >0 (2)

is true then we say that the signs of 2’s and y's are in accord.

D, = diag(yy, ...
dlagonal

signaccord(z,y):= Vi € {1,...,

,Yn) denotes a diagonal matrix with vector y in the

The interval hull [U of a nonempty compact subset U of §R" is defined
as the “tightest” interval vector containing the set:

U ;= [min U, max U] (3)

where min and max are to be understood componentwise.

2.2 The solution set

We wish to solve the linear system of interval equations

Alr = . (4)
where A € ™" and b’ € 3". The solution set is defined as
X={zeR |Az=0b, Ac A, bebl) (5)
When A! is regular (i.e., when all matrices A € A are regular), then the
solution set is bounded (smce both A’ and b! are bounded). :
We limit our goal to ﬁndmg the interval hull |X of X. ThlS 1s also
called the interval solution z! = [z, | of (4):
zl =] X. ; . (6)

It is the “tightest” interval vector enclosing the solution set.
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Figure 1: Example of solution set X, Conv X, and [xX

We first give five theorems which characterise either the solution set
itself, or the interval solution. These theorems lead to the construction of
a finite algorithm (i.e., an algorithm that finds the precise expression for
[X in finitely many computational steps).

Oettli and Prager [14] provided a surprisingly simple characterization
of the solution set.

Theorem 1. Let AT € ™", b! € ™. Then the solution set of Alz = b!
is

X ={zeR"| |Aw — b < rad(A!)|z| + rad(b])}. (7)

(Here, 3™ denotes the set of all n-dimensional interval vectors.)

This theorem offers a simple way of testing whether a given point be-
longs to the solution set. It also expresses the fact that the solution set
has a very complicated structure, since the term |z| in (7) causes X to
be generally nonconvex. Consequently, conventional linear optimization
approaches cannot be used to find bounds on X.

Example 1. Figure 1 shows the solution set, its convex hull, and the
mterval solution of (4) in the following example from [3]:

A= 5 Gt b e=(23)):
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—5J

Figure 2: The set of corner solutions Xcorn corre'sponding to Example 1

The interval solution is
Is_'g o — ‘_ Y [_474]
=z, ]| =X = ( [_4,4]).

In Figure 1 we notice the inclusions
X C Conv X C |4,

which of course hold in general.

-

Next, consider all real systems that can be formed by choosing the
coefficient matrix from the set of corner matrices of Al and the right-

hand side from the set of corner vectors of b!. We define the set of corner.

soluttons Xcom as
Xoom ={rx €R" | Az =0, A€ Corn(A!), b € Corn(b’)}. (8)

Clearly this is a finite subset of the solution set X’

Figure 2 shows thév_set of corner solutigns of Example 1. Comparing
Figure 1 and Figure 2 we see that the corner solutions span the convex
hull of the solution set. This natural result is generalised in the following
theorem which is proved in Toft [16].
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Theorem 2. Let A” € ™" be regular, b’ € . Then the set of corner
solutions of A’z = b! satisfies

Conv Xgom = Conv X. (9)
As a simple consequence we have:

Theorem 3. Let AT € I™*" be regular, b’ € 3". Then set of corner
solutions of Alz = b satisfies ‘

IXCO":n = nX : 3 (10)

This Theorem was originally proved in [5]. Theorem 3 is important, since
it states that the problem of finding the solution of a set of linear interval
equations is a finite problem (in the sense that it can be solved by a finite
algorithm). All we need to do to describe [X is to compute the corner
solutions and then find the interval hull of these. However, in order to
find all corner solutions we may have to solve a total of 2% *" systems.
Since each system costs O(n3) the total complemty of this method would
be O( 32n +n)

The following subsections show that we can do much better than this
costly method. :

2.3 Extreme solutions

It turns out that points z for which Oettli and Prager’s inequality (7) turn
into equality have an interesting property. Let us call such a point an
extreme solution, and let A%y, denote the set of extreme solutions:

Xexir = {z € R | |Acw — b| = rad(A”)|z| + rad(b!)}. (11)
It can be shown that Afy;, is a subset of Xggm. Introducing the sign vector
y:=sgn(Ad.z —b.)

one can show that Ay, can be described as the following set (with at most
2" points):

Xoxtr = {7 € R ‘ Az —-b, = Dy(ra,d(AI)I:c| +rad(dh)), y € S*}.  (12)
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Step 1 zl:=0
for each y € S" do
find the extreme solution z,

ol = [(o! U {z,})

Step 2
Step 3

Figure 3: Algorithm for computing ¢! using extreme solutions

Using the next two theorems of Rohn [15], we can then reduce our problem
to finding these points.

Theorem 4. Let A’ € S"*" be regular, b! € S". For each y € S" the
nonlinear equation in (12) has exactly one extreme solution © =z, and

Conv Xgyi = Conv {z, | y € S"} = Conv X. (13)
Similarly to the case of corner solutions, we can easily deduce the following
simple consequence from this Theorem.

Theorem 5. Let AT € ™% be regular, b € S". Then the set Xgxir of

extreme solutions for Alzx = b satisfies

| Xexe = [ X (14)
Theorem 5 motivates the algorithm shown in Figure 3. Since the set Xgxir
contains at most 2" elements, the algorithm appears less costly than the
algorithm using all corner solutions (assuming, of course, that we know a
relatively simple way to find an extreme solution).

2.4 Finding an extreme solution

In order to find the extreme solution z, for a given y € S" we must solve

the equation .
Az — b, = Dy(rad(A”)|z| + rad(b")).
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Step 1 z = sgn(A.'b,) (recommended)
repeat

Step 2 solve Ayx =by
Step 3 if signaccord(z,z) then
Tyt
else
k:=min{j € {1,...,n} \ PN 0}
R = — 2

until signaccord(z, z)

Figure 4: The sign-accord algorithm for finding the extreme solution z,
for a given y

Let’s introduce another sign vector z:=sgn z € &". In terms of z, |z| =
D,z, so the above equation can be rewritten as

(4. — Dyrad(AN)D,)z = b, + Dyrad(b’).

If we denote the matrix of this system by A,, and the right hand side
by by, then we can further simplify the system. Namely, z is an extreme -
solution that corresponds to ¥ if and only if 2 and « satisfy the following
two conditions:

Az =by (15)

signaccord(z,z), z € S™.

(the second condition is equivalent to the constraint |z| = D,x). Thus the
problem is reduced to finding the correct sign vector 2.

Theorem 4 expresses the fact that for each y there exists exactly one
z = , satisfying the two conditions in (15). To find this point z, Rohn [15]
proposes the sign-accord algorithm shown in Figure 4.

The starting value of z in Step 1 is a recommended value. However,
other starting values can be used, because Rohn [15] has proved that if
Al is regular then the algorithm is finite for an arbitrary starting value
of 2. For each starting value, at most 2" steps of type Step 2 will be
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undertaken. Experiments show that for the chosen starting value, the
average computation time is smaller than for other possible values. Thus,
the recommended starting value is an important part of Rohn’s algorithm.

In the best case where only one computation step per extreme solution
is taken, the cost of the algorithm in Figure 3 is O(n32") operations. In
the worst case it is O(n32%")

2.5 Reducing the number of extreme solutions

The problem is now reduced to computing 2" vectors that satisfy the condi-
tions (15). It is, however, often possible to reduce this number even further
by exploiting information about the inverse interval matrix.

The reduction is based on the following result of Rohn [15].

Theorem 6. Let A' € S"*" be regular, b’ € S". Then for each 5, 1 <

¢ < n, the following two properties are true for the interval solution [z, %]
of Alg = b!: ) '

1. There exist sign vectors y,z € 8" and an extreme solution zy, for
which (zy); = x;, signaccord(z,, z), and

(A;)ijy; <0, j=1,...,n. (16)

2. There exist sign vectors y,z € S" and an extreme solution x,, for
which (z,); = =;, signaccord(xy, z), and

(A;)i95 20,5 =1,...,n. (17)

In many real-life situations, the signs of some components of the inverse
interval matrix (A’)~" are constant (i.e., either for every A € A! the (4,7)
component Bj; of the inverse matrix B = A~! is positive, or for every
A € A!, B;; < 0). Such components of (A”)~! will be called sign stable. If
a matrix (A7)~!has sign-stable components, then it is possible to reduce
the number of extreme solutions x, which need to be considered. If, for
instance, (A’ ),_J1 is sign stable, then the value of y; needed to find z; or %
is given by the corresponding inequality of Theorem 6. Thus, if (A! )z‘J1 is
sign stable for p different values of j, then the number of sign vectors ¥
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(and hence the number of extreme solutions that we need to compute in
order to find z; or T;) is reduced to 2"7P. In many cases, all components
of the inverse interval matrix (A!)~! are sign stable. In such cases, the
pumber of extreme solutions needed for finding 2! is 2n. For a detailed
description of the selection procedure we refer to Toft [16].

In summary, if ) is the set of sign vectors y selected using the inequal-
ities of Theorem 6 then the interval solution is determined by '

o' =z, | ye I}

In practice, of course, we do not know the signs of the inverse interval
matrix. However, an enclosure may provide the necessary information.
Rohn [15] suggests the following enclosure (assuming strong regularity of
Al ie. assuming that the spectral radius p of |A;!|rad(A’) is less than 1):

B=4;'—Cl47!, (18)

B=A'+C|A;Y (19)

where C = R(I — R)\_l, R = |Ac‘1|rad(AI ), and I is the identity matrix.
Rohn [15] provides the following sufficient criterion which is easy to

test. ‘

Theorem 7. Let A € I"*" be strongly regular, and let

ClAT! < A7 (20)
where C = R(I — R)™!, R = |A;}|rad(4).

Then all components of (A1)~ are sign stable.
2.6 Final theoretical algorithm
In summary, the final algorithm is given by Figures 4 and 5, where }/ is
found using Theorem 6, (18), (19), and, probably, also (20).

2.7 Controlling rounding errors

To assure that the correct mathematical results are contained in the restilts
achieved on a computer, all calculations must be performed using rounded
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Step 1 find the set Y of selected sign vectors
zl:=0
for each y € Y do

Step 2 find the extreme solution z,

Step 3 gl =](z" U{z,})

Figure 5: Algorithm for computing z’ using a reduced number of extreme
solutions

interval arithmetic (in which the result of applying an arithmetic operation
to two intervals takes into consideration additional rounding error). Since
- we want to implement our algorithm in rounded interval arithmetic, we
must thus modify each step of the above-described algorithm accordingly.
Let’s describe how we modify these steps.

o Computation of A7!: By finding A, using rounded interval arith-
metic and then applying an inversion procedure using interval Gaus-
sian elimination we obtain an interval matrix fI(A;!). Precondition-
ing with the midpoint inverse is used.

e Solution of Ay,x = b,: Using interval Gaussian elimination with par-
tial pivoting we find an interval vector fl(x). Again preconditioning
with the midpoint inverse is used. The result of the sign-accord al-
gorithm is then an interval vector fl(z,).

o Verification of p(|A;*[rad(A”)) < 1: This criterion is used in the
procedure for reducing the number of extreme solutions. Here an

interval method for finding eigenvalues could be applied. However, -

we are not aware of any available implementation. Therefore we have
been experimenting with different scaled infinity norms providing

upper bounds for the spectral radius. Unfortunately such methods
seem to be rather pessimistic in practical cases.

As a result, in our current algorithm, we simply compute the spectral
radius using floating point arithmetic. Therefore, there is no interval
guarantee at this point in our present implementation.
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| . : : : ;

o Determining the predicate signaccord(z, z): x is found using rounded
interval arithmetic, leading to an including interval fi(z). If this in-
terval vector has one or more components that contain 0 as an interior
point, then how do we decide whether the sign-accord criterion is sat-
isfied? We have not been able to find a satisfactory answer to this
question; therefore we use a procedure where the predicate tested is

dz € fl(z) : signaccord(z, z). (21)

This method is safe when the computed solutions are sign stable,

and it can find sign unstable solutions. If, however, a sign unstable

interval vector is'accepted as the extreme solution then we have no
guarantee that it is the solution, and a warning is given to the user.

Thus there are two unresolved problems in our implementation. The prob-
lem of including the spectral radius of |A;!|rad(A’) can be resolved using
an interval method for eigenvalues. The other problem, the usage of the
sign-accord algorithm in cases where the solutions fl(x) may have zero
(or “almost zero”) components, is, however, harder to solve. There is no
guarantee that the algorithm stops at the correct point, and apparently
this problem has not been addressed in the literature. Further research is
neéded at this point.

3 The parallel algorithm

It follows from the previous section that finding exact bounds on the so-
lution set of a system of linear interval equations can be a rather costly
affair. Fortunately the sign-accord algorithm is suitable for parallel com-
puting, which gives hope of a reduction of the time required to solve a
given problem. The parallel computer we have in mind is of the type Mul-
tiple Instruction-Multiple Data (MIMD), see Akl [1]. Data is exchanged
between the processors through an interconnection network. When we use
terms like send and receive we mean transmitting data on the intercon-
necting network.
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3.1 The parallel strategy

The foundation of our strategy for the parallel algorithm is the observation
that the extreme solutions can be found independently. Therefore several
extreme solutions are found in parallel, each being calculated using the
sequential sign-accord algorithm.

Of course the method could also have been parallelized in other re-
spects. For example many parallel algorithms for solving a linear system
of equations have been proposed in recent years, see for instance Vorst and
Dooren [17]. However, such methods would involve a much more compli-
cated setup of the processors and much more communication between the
processes than the larger grained strategy indicated above.

Therefore we suggest a central algorithm where a master process com-
municates with a number of slave processes. There is no communication
between the slaves. The master process finds the set ) of selecting sign vec-
tors and distribute the relevant jobs (a job is to find one extreme solution)
to the slave processes, one ‘at the time. The slaves solve their problems
by using the sequential sign-accord algorithm, and then send the relevant
results back to the master which gathers the extreme solutions to the final
solution.

The algorithm for the master process is shown in Figure 6. After )
has been found initializing data is sent to the slaves. More specifically this
data is A7, b7, A7!, and det(A.). In Step 3 idle slaves are repeatedly told
which extreme solutions to find, as pointed out by the y-vectors. To ensure
that only free slaves get jobs the slaves only get a y-vector upon request.
In Step 4 the master waits until all the slaves are ready to report their
results, and when this is the case the results are collected in Step 5. Note
that the master does not carry out any calculations other than generating
the sign vectors.

The algorithm for the slaves is shown in Figure 7. After receiving
initializing data from the master each slave repeatedly asks the master for
work. If the master does not request the result then the sign vector y is
received-and the corresponding extreme solution found. Obviously, there is
no reason to return each extreme solution to the master immediately after
it has been found by a slave. Each slave can keep its own loca] result 7/
which expresses the interval hull of all the extreme solutions found so far.

A Parallel M
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Step 1 find the set Y of selecting sign vectors
Step 2 send initializing data to slaves
Step 3 repeat
find next y € Y and drop y from Y
wait for a slave requesting work
send y to the slave
until Y is empty

Step 4 wait for slaves to finish
Step 5 =0
for: :=1 to s do
request result from slave ¢
receive result r! from slave 4

zl = (xf U rT)

Figure 6: Algorithm for the master process

Step 1 receive initializing data from master
Step 2 r1:=0
Step 3 repeat

request work from master

if master requests result

Step 4 send result r to master
else
Step 5 receive y from master

find the extreme solution xé

=)
until result is reported

Figure 7: Algorithm for the slave processes
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This (local) result is then reported back to the master upon request.

The above protocol has the following drawback. When the last sign
vector is sent, the master waits until all of the slaves are ready to report
their results. Therefore, the slaves that finish first are idle until the last
slave has finished. In the meantime the first slaves could just as well
report their results to the master. Still, in spite of this disadvantage, we
recommend the above algorithm because it is easy to implement.

As an alternative to the dynamic job distribution of Figure 6 we could
have considered a static job distribution, i.e. an initial distribution of all
jobs to the slaves. This would require less communication. However, as
experiments have indicated, this strategy can be less efficient because of
differences in the amount of work (i.e. the number of sign-accord iterations)
used to find one extreme solution. Thus, some slaves could receive a bunch
of difficult jobs whereas others might have only easy jobs to solve, and as a
result the latter slaves would have more idle time. Therefore we recommend
the dynamic distribution.

3.2 Time estimate

In this subsection we give a rough estimate of the total computation time
T}, of the parallel algorithm when p processors are used. This is the time
spent from the moment when the master process started to the moment
when the final result is found. Basically this time depends only on the
following parameters:

p = number of processors;
s = number of slaves, s =p — 1;

m = total number of extreme solutions to be found (i.e the total number
of jobs);

cop = time used to find Y ;
wp = time used to initialize the slaves;

w) = average time from the moment when a request is sent from a slave t0
the moment when the message (i.e., the value y) is received by this
slave;

1
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¢; = average time used for to find one extreme solution;

¢y = average time used to include a solution xi in '

we = average time from the moment when a request is sent from the master
to the moment when the local result 7! is received by the master;

c3 = average time used to include 7! in z.
Notice that w; depends on s, because w; includes the queueing time at the
master processor.

Now we assume that all jobs take equal time. Of course this assump-
tion does not always hold in practice (it would, for instance, require that
all extreme solutions were found in the same number of sign-accord iter-
ations). But very often extreme solutions are found in one iteration only,
and therefore we find it useful to make the analysis under the equal time
assumption. Then the maximum number of jobs done by any slave is

r=(m+s—1)divs.

Therefore, some slaves will be idle in the last round unless m is a multiple
of s,i.e. r =m/s. Now the total calculation time can be estimated as the
sum of the following quantities:

e the time used to. initialize: ¢y + wy;

e the time used in Step 3 by the most busy slave: rx(the time used in
one repeat-loop);

e the time used to collect the results: s * (wy + c3).
Hence, the total computation time is
Tp:Co—I-IUO-I—T*(’LUl+C'1-|—CQ)+S*(U)2—|—63). (22)

An ideal parallel method would produce a computation time which is p
times smaller than that of the sequential method (if p processors are used).
This goal cannot quite be obtained here because the master is waiting most
of the time, so we can at best obtain T, = T1/(p — 1).

7 3akas 3
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But if m is very large compared to s and n is not too small then
wg, Wy ws, g, and cs are negligible compared to c;. If, furthermore, we
neglect ¢y (the time spent before the slaves need to be allocated) then the
computation time T, is proportional to r, and thus

szr*clé(r/m)*leTl/’sle/(p—l). (23)

If, however, m is only a few times larger than s then w; may be comparable
with ¢y, and the difference between r and m/s may be significant. In this
case, the speedup is smaller.

4 Numerical results

The parallel algorithm has been implemented and tested on a Meiko Trans-
puter System consisting of 64 T800 Inmos Transputers, where 60 are avail-
able to the user. In our tests we have used up to 33 Transputers. Typical
results are presented in this section.

4.1 Measurements used

When evaluating the performance of the parallel algorithm we use the fol-
lowing measures: The parallel time is the total computation time T, minus
the initialization time cg. The reason for excluding Step 1 of the master
algorithm is that no slaves need to be allocated at that time. Therefore we
also exclude Step 1 when measuring the computation time for the sequen-
tial algorithm.

The speedup using a total of p processors is defined as

parallel time for sequential program

(24)

speedup = .
5 . parallel time using p processors

It follows from (22) and (23) that the best we can get is
speedup =p — 1.

The parallel time for a process can be divided into calculation time and
commaunication time. In (22) the calculation times are denoted by ci, ¢
and the communication times by wi, wy. In our timings we measure the
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calculation time, and we find the communication time as the difference
petween the caiculation time and the communication time.

For each example below we furthermore present the wutilization ratio,
that 1is

utilization ratio

mean value of the calculation times for the slaves  (25)

mean value of the parallel times for the slaves

If the utilization ratio is 1 then the slaves are spending all of their time
calculating, and if it is 0 then they only communicate.

In order to give a feeling of how eflicient the job distribution is we also
measure the job dispersion ratio, that is

job dispersion ratio

dispersion of the calculation times for the slaves (26)

mean value of the calculation times for the slaves

If the job dispersion ratio is 0 then the slaves all spend the same amount of
time on calculating. Otherwise, some slaves spend more time than others
and the dispersion ratio ‘gives the dispersion relatively to the mean value
of the calculation time for the slaves.

This way, the utilization ratio decreases when the job dispersion ratio
increases. The reason is that the fastest slave has to wait for the slow-
est before the master requests the result, and this waiting time causes the
utilization ratio to fall. If the utilization ratio decreases, but the job dis-
persion ratio stays very small, the decrease cannot be caused by slaves
waiting for each other.

4.2 Test examples

The algorithm has been tested extensively. In Toft [16]-, we describe in
detail dozens of experimental results; here, we only present a few typical
results related to the following example from Gregory and Karney [7].

LTk
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Exam- | n | Radius # of | Sequen-
ple of extreme | tial par.
AT | solutions | time (s.)

P1 5 10.030 32 0.86
P2 |10 ]0.0045 390 47.18
P3 15 | 0.001 126 43.40
P4 |30|0.00013 | 1022 2471.27

Table 1: Characteristics of the test examples

The midpoint matrix is the following:

R ] O) S Tt R A ) (1)
= A e A e S 1

0 =1 s s 1

DRI G il L Tty S e N S A T R e
IR | BT | SR 1

(it o o [t 21, 2 -1 1

e v o ) 6, 0.1 =21 294 \ 1l

and the radius matrices are:
(rad(AI))U’ = constant, 7,7 =1,...,n,
(rad(bf))i = constant, 1 =1,...,n.

The radius of all components of the right-hand side is fixed at 0.001 for
the examples presented here. The radii of all components of the coefficient
matrix are as indicated in Table 1. In each of these four examples the
number of iterations in the sign-accord algorithm is 1.

4.3 Results

Table 2 shows the results of applying the parallel program to Example P1.
The time corresponding to 0 slaves is the sequential time. One can see that
up to 4 slaves can be used reasonably efficiently; but a larger number of
slaves cannot be recommended for this problem. The utilization ratio falls
drastically, and since the job dispersion ratio stays small, the equation
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Number | Parallel | Speedup | Utilization Job
of time ratio dispersion
slaves | (seconds) ratio
0 0.86 1.00 ~ =
1 0.90 0.96 0.97 0.00
2 0.46 1.85 0.95 0.00
4 0.26 3.27 0.88 0.00
8 0.20 4,28 0.67 0.02
16 0.24 31517, 0.36 0.02
32 0.44 1.98 0.12 0.02

Table 2: Results from Example P1, n=5, 32 jobs

(22) is valid. Furthermore, we always have r = m/s in this case, and
thus the bad speedup is not caused by an uneven job distribution, i.e.
the communication time must dominate when there is more than a few
slaves. We conclude that the problem is “too easy”, i.e. each job does not
use enough computation time, and the number of jobs is too small. As a
result the communication time dominates when many processors are used.
Consequently, this kind of problem should be solved sequentially, or with
only a very limited number of parallel processes.

Increasing the size of the problem and the number of jobs leads to a
better speedup, as seen in Table 3. Now, up to 16 processors can be uti-
lized efficiently; if more slaves are used, the communication time starts to
influence the results’(probably because of bottleneck problems that influ-
ence w;). Notice that the time for one slave is slightly smaller than the
sequential time. This is because the master is doing some work (finding
the y-vectors) while the slave is working.

In Table 4 the performance is similar, but slightly worse. The differ-
ence is due to the fact that the smaller number of jobs gives a worse job
dispersion rate.

Increasing the order n to 30 and the number of jobs to 1022 gives
excellent conditions for a good speedup, as illustrated for Example P4 in
Table 5. As shown in Table 5 ideal speedup is obtained. The utilization
ratio is close to 1 and the job dispersion ratio is close to 0.
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Number | Parallel | Speedup | Utilization Job
of time ratio dispersion
slaves | (seconds) ratio

0 47.18 1.00 = =

1 46.95 1.00 1.00 0.00

2 23.59 2.00 0.99 0.00

4 11.93 3.95 0.98 0.01

8 6.16 7.66 0.96 0.01

16 3.42 13.80 0.90 0.02
32 2.32 20.37 0.74 0.03

Table 3: Results from Example P2, n=10, 390 jobs

Number | Parallel | Speedup | Utilization Job

of time ratio dispersion

slaves | (seconds) ratio
0 43.40 1.00 —~ =
1 43.25 1.00 1.00 0.00
2 21.69 2.00 - 1.00 0.00
4 11.09 3.91 0.98 0.02
8 5.73 (51 0.96 0.03
16 325 13.34 0.89 0.04
32 2.47 17.60 0.69 0.06

Table 4: Results from Example P3, n=15, 126 jobs
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Number | Parallel | Speedup | Utilization Job
of time ratio dispersion
slaves | (seconds)’ ratio
0 2471.27 1.00 = T
1 2447.76 1.01 1.00 0.00
2 1224.10 2.02 1.00 0.00
4 613.26 4.03 1.00 0.00
8 307.16 8.05 1.00 0.00
16 154.57 15.99 0.99 0.00
32 79.29 31.17 0.98 0.01

Table 5: Results from Example P4, n=30, 1022 jobs

In an attempt to reduce the communication time we tried to send jobs
from master to slaves in batches of 2 or 10, but this did not make a sig-
nificant difference. Neither did the use of a static distribution improve the
speedups: most often the opposite was the case because of unpredictable
differences between the computing times required by the individual j(;bs.

5 Conclusions

It has been demonstrated that the sign-accord algorithm is suitable for
parallel computing. However, the problems to be solved need to have a
notable size in order to utilize the parallel system well. Problems that are
too “easy” (i.e., fast to solve) should therefore not be solved in parallel,
but this is not a big problem, because such problems can be efficiently
solved sequentially. Large systems, i.e. systems with many variables (and
therefore most often many jobs in the sign-accord algorithm) utilize the
parallel capacity well, and linear speedup has been obtained in several
examples.

The number of parallel processors to be allocated for a specific problem
should be determined in such a way that the ratio between the number
of jobs to be done and the number of processors used is not too small.
Since the number of jobs is known before the parallel processors need to
be allocated, this initialization is possible in practice.
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If an appropriate number of processors is allocated then the paralleliza-
tion is very efficient, i.e. an almost linear speedup is obtained.

The use of rounded interval arithmetic guarantees that the computa-
tion results enclose the desired solution set. However, in connection with
rounding errors a problem in the sign-accord algorithm has been revealed.
The method is strongly based on finding the signs of computed results, but
if a result interval contains 0 as an interior point then this determination
cannot be made. This situation occurs, for instance, if some of the cor-
ner vectors defining the theoretical solution z’ have 0-components. Thus,
there is a gap between the class of problems that can be solved in theory
and those that can be solved in practice by the sign-accord algorithm. This
issue and several others discussed are subject to further research.
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