Interval Computations
No 3, 1994

Parallel Algorithms for
Interval Computations:
An Introduction

Vladik Kreinovich and Andrew Bernat

The survey of parallel algorithms and parallelization methods used in inter-
val computations including réasons and profits of using parallel computations,
when solving tasks in interval way.

ITapaJsjiesibHbIe aJITOPUTMBI I
MHTEPBAILHLIX BbIUNCICHUM.
BBenenue

B. Kpeiirosug, O. BepHAaT

O630p IapasuielbHEIX AJTOPATMOB U METONOB Iapajlleu3allii, UCTOIIb3Ye-
MBIX B MHTEPBaJLHBIX BEIYUCIEHHAX, ¢ 0GbICHEHAEM IPUINH 1 [IpERMYIIECTB
ACIIOJb30BAHNS NapajlleNbHEIX BHYHCIEHNH IPH peIleENY 3a/1a49 HHTEPBAIb-
HLIMU METONAMM. ‘

© V. Kreinovich, A. Bernat, 1994

Conte:

1 Parall
putat:

2 Why
21 A
it

2102 (
I
2:35(
3 Why

3.1 1
3.2 1

4 Warr
leliza
usab.

5 Usin
5.1
5.9
5.3

in inter-
utations,

IJISA
M.

HoJb3ye-
VYIIECTB
repBaJib-

We all love parallel computations

J B’cause for them, there are no limitations!
And to use world-wide net

From an every man’s flat

That’s indeed the Great Dream of all nations.

N\

Contents
1 Parallelism: one more (ya-a-awn) aspect of interval com-
putation or an exciting glimpse into the future? 9
2 Why are ir}terval computations necessary? - 10
2.1 A (brief) general overview of the problems that our world
TAREE @0 5 000 ¥ 0o et bt 4 ittt e =l B 10
2.2 Computational aspects of analysis, and where interval com-
putation comes into the picture 10
2:3 Computational problems related to synthesis 14
3 Why parallelism is necessary for interval computation? 14
3.1 Interval computation is NP-hard 14
3.2 NP-hardness R o oy S S e Bl T 68 ENE gk 15

4 Warning: almost all algorithms are (thedretically) paral-
lelizable, but this parallelization is not always practically

usable 16
5 Using parallelism in interval computation 18
5.1 f is linear: The simplest possible case 18
OR) S SLalMOStIITEaTr | o oo o« o e R T o o e e 19
9.3 Explicit parallelization of algorithms 22

5.3.1 Parallelizing interval computations 22

V. Kreinovich, A. Bernat

5.3.2 Finding solutions in parallel
5.3.3° Matrix operations . 4w s s uwiw s om0k & & SEE 5 8 s
9.3.4 _ Non-linear fumcfions « , v'w s ¥ vwn o v vws s wi
5.3.0 Artificial Intelligence (AI) B S o g g
5.3.6 Spatially localized objects
5.3.7 Monte-Carlomethods.
5.4 Parallelizing interval computation in synthesis problems . .

5.4.1 Solving a system of equations and inequalities in par-

allelr ten” SelT el vin oy Lttt i Siai% 5 it

5.4.2 Parallel interval oqtimization

5.5 Implicit parallelism
9.0.1 Applying general parallelization techniques
0.9.2 Interval methods help to find what is parallelizable
5.5.3 Interval methods help to parallelize

0.5.4 We can save even more time if we do not start com-
putations with full accuracy

5.6 Non-parallelizable algorithms & neural networks

5.6.1 Neural computations & intervals

Improving interval estimates with parallelism
Ol Hansenls i mietliodr |, S50 Zb 405 nfhy 15 Ura e, &5t

6.2 Multi-interval computations and their parallelization

6.3 Multiple methods and their parallelization
Hardware
(IR CeTIEFAINCaNe (ovei & « w5 vows o w0 el dw g el s B oy

7.2 Interval linear operati(;ns
AR P PIICAEIOTIS ™ o 5 o & & ‘5 oswie 8 s vise o' musy dhie o 8 s
7.4 Monte-Carlo methods

7.0% Optimization problems o5 v v oo wim o ot & e 2

24
25
25

25

29
30
30

31
32
32
32
33
33

34
35
39

40
41
43

44

45
46
46
47
47
43

Parallel Algor
7.6 Ne
8 Softwal
Referei

1 Par
of
glin

Let’s face it
essary, but)
There is

problems, ¢
important t

Necessa:
ficult. Exci
interval me
that gives ¢
trick there

The ma;
ers that pa
our enthusi

In this
We have t}
reports in :
a survey, '
to make it
missed or a

Let us 1

ol i ey
1
We made
ever made us
We present hin

ch, A. Bernat

ns .

L par-

able

com-

24
25
25

25

29
30
30

31
32
32
32
33
33

34
35
39

40
41
43
44

45
46
46
47
47
48

Paraltel Algorithms for Interval Computations. .. 9

7.6 Neural networks ot e asatie i g LA 48
8 Software .49
References 49

1 Parallelism: one more (ya-a-awn) aspect
of interval computation or an exciting
glimpse into the future?

Let’s’face it, there are many things in interval computation that are (nec- .
essary, but) dull.

There is a universe of numerical problems out there. For many of these
problems, existing algorithms do not give a guaranteed estimate. It is
important to find an interval version whose results will be guaranteed.

Necessary? Oh, yes. Technically difficult? Often extraordinarily dif-
ficult. Exciting? But, honestly, it is difficult to get excited about a new
mterval method of solving, say, stochastic integro-differential equations
that gives accuracy n~°¢ instead of n=%° (unless of course, there is a new
trick there or an exciting application)!. 5

The main puri)ose of this Editors’ introduction is to persuade the read-
ers that parallel computations are exciting. We want the reader to share
our enthusiasm.

In this Introduction, we have tried to be as up-to-date as possible.
We have therefore included conference abstracts and available technical
reports in addition to published papers. However, this introduction is not
a survey. To be more accurate, it is not yet a survey. We would love
to make it more comprehensive, and we welcome any references that we
missed or any suggestions for enhancing its usefulness.

Let us begin!

'We made this example up. carefully avoiding any mentioning of any real problem that has
ever made us yawn. If by accident there is someone who has actually proved such a theorem,
we present him /her with our most sincere (yawn, sorry) apologies.

10 V. Kreinovich, A. Bernat

2 Why are interval computations
necessary?

2.1 A (brief) general overview of the problems
that our world faces

Before we start convincing the reader that parallel methods are necessary
for interval computations, let’s first describe why interval computations are
necessary in the first place.

Again, this is not a survey, so we do not enumerate all possible reasons,
but we will try not to miss the main ones.

Crudely speaking, all problems that we are solving in real life can be
divided into two big groups: analysis and synthesis.

o Analysis means that we already have an object, and we are interested
in some properties of this object.

e Synthesis means that we are not satisfied with the existing objects,
and we would like to design new objects with desired properties.

Both types of problems use computations.

2.2 Computational aspects of analysis, and where
interval computation comes into the picture

Analysis means that we are interested in some properties of a known-object.

Some of these properties, we can simply measure (like a body temper-
ature). No computation is necessary here. However, such measurements
are never absolutely accurate. Therefore, the result # of measuring z can
differ from the actual value of x. How large can an error Az = & — z be?
Manufacturers of measuring instruments guarantee some accuracy A; this
means that the error will never exceed A: |Az| < A. So, if our measure-

ment result is &, then the possible values of + = & — Az form an interval
[— A, Z+ A

Parallel Algo;

Sometir
some statis
dard devia
(see, e.g., [

Some q
ties, it is e
situations ¢
excite the 1
There is no
to weigh tl
speed of el

Since w
these value
Lly.eo.y Xy
the value
have an al
Tl =1
And here ¢

The pr

For exa
z; (i.e., if -
then we wi
basic prob
(see, e.g.,

We kn.

1) n int

2) an a
num

We are inf

f(Xyq,...

vich, A. Bernat

ems

\Te Necessary
yutations are

sible reasons,

J life can be

re interested

ting objects,
‘operties.

where
ture

1own-object.

ody temper-
easurements
suring ¢ can
= — 1z be?
racy A; this
ur measure-
_an nterval

Parallel Algorithms for Interval Computations. .. : 11

Sometimes, in addition to the accuracy, the manufacturer guarantees
some statistical characteristics of the measurement error; typically a stan-
dard deviation. This situation is well-developed in measurement theory
(see, e.g., [86]). '

Some quantities we can simply measure. But for many others quanti-
ties, it is either impossible or too costly to measure them directly. Such
situations are very frequent. For example, practically all the numbers that
excite the readers of a popular science journal cannot be measured directly.
There is no ruler to measure the distance between us and a quasar, no scales
to weigh the Earth or our Galaxy, no speedometer to measure directly the
speed of elementary particles. ‘

Since we cannot simply measure, we need to compute such values. All
these values are measured indirectly: we measure several other quantities
T1,...,Z, that are related to the desired one y, and then we reconstruct
the value of y from the results #; of measuring ;. In other words, we
have an algorithm f that takes the values Z; and returns an estimate y =
f(Z1,...,%,). This estimate is called a result of indirect measurement.

And here comes the problem:
The problem is to estimate the error of this estimate.

For example, in case we know the accuracies A; with which we measured
z; (i.e., if we know the intervals [&; — A;, Z; + A;] of possible values of z;),
then we would like to know the interval of possible values of y. This is the
basic problem of interval computation with which the entire field started
(see, e.g., [64]):

We know:

1) n intervals X;;

2) an algorithm f that transforms n real numbers T1,...,%, into a real
number y = f(xy,...,%,).)

We are interested in estimating the interval

f(Xy,. 0, Xn) ={y|ly = f(z1,...,x,) for some z; € X1,...,2, € Xy}

12 V. Kreinovich, A. Bernat

The first algorithms of interval computation were designed to solve this
problem, i.e., either to find f (X1,...,Xn), or, if this is not exactly possible
at least find an interval F' that contains R 15 X))

- Sometimes, the relationship between y and =; is given only implicitly.
We just considered the case when we already have an algorithm that trans-
forms x; into y. In some real-life situations, we.do not have such an algo-
rithm. Instead, we know equations that relate y and z;. So, to determine
Y, we must solve this system of equations.

b

So, suppose that we know intervals X, of possible values of z;, and an
equation that relates x; and y, and we want to find an interval V of possible
values of y. In such a situation, one possibility is first to find an algorithm
that solves the equation, i.e., that transforms z; into y, and then apply
some known method of estimating F' to this algorithm.

But in many cases (even for linear equations), it turns out that one
can compute the interval of possible values of y directly from the system

of equations, and end up with a better estimate and J/or with a faster algo-
rithm.

In some cases, the situation is even more complicated. In our descrip-
tion of the problem, we considered the case when we know the exact rela-
tionship between z; and y. In other words, we considered cases in which

either y = f(z1,...,x,) for some known f, or F(zi,...,z,,y) = 0 for some
known F.

But in many cases, we know the relationship between z; and y only
approximately (i.e., y = f(z,...,2,), but generally speaking, y #
i Z1 e . ,xn)). In such cases, even if we knew the exact values of Z;, we
would still get an estimate § = f(z1,...,2,) that is different from the
desired value y.

This situation occurs, e.g., when we are interested in a physical quan-
tity z that is not uniquely determined by ; (in the sense that it is possible
to have two situations with exactly the same values of Tl,...,T, but dif-
ferent values of z). In such situations, we cannot estimate » from z;, but
what we can estimate is the probabilities for different value of z or other
statistical characteristics y of Y. Such a characteristic y 1s already uniquely
determined by x;.

Parallel Algoi

In some
no ready-m
desired cha
following g

1) we us
and z

2) weru
finite
1S a s
probe

3) we tl
mate

£24.0

As a re
statistical ¢
only an apj

Monte-
for determ:
and fast.
it is used
y = f(zy,
complicate:
integral [
the interva
vector that
integral is e
lcal expect:
equal to th
when N —
Several tim
average as

Anothe
€ven closer
of interval

ich, A. Bernat

to solve this
tly possible,

7 implicitly.

that trans-
ich an algo-
) determine

‘x;, and an
" of possible
1 algorithm
then apply

tt that one
the system
faster algo-

ur descrip-
exact rela-
s in which
0 for some

and y only
ang, y #
s of x;, we
t from the

sical quan-
is possible
t, but dif-
m x;, but
z or other
y uniquely

parallel Algorithms for Interval Computations. .. 13

In some cases, there exist algorithms that estimate y exactly. But often,
no ready-made algorithm is known that will compute the value y of the
desired characteristic for a given x1,...,z,. In such cases, we can use the
following general method (called the Monte-Carlo approach):

1) we use a computer to simulate the stochastic dependency between x;
and z;

2) we run this simulation program several times; as a result, we obtain a
finite set of values z!,..., 2Y; from the statistical viewpoint, this set
is a sample from the population distributed according to the desired
probability distribution;

3) we then use standard methods of mathematical statistics to esti-
mate the desired parameter y of this distribution from the sample

(21,2,

As a result, we obtain an estimate f(z1,...,z,) for y. This f is a
statistical estimate that is based on using a finite sample. Therefore, f is
only an approximate estimate.

Monte-Carlo algorithms are used not only for statistical problerns, but
for deterministic problems as well. Monte-Carlo method sounds- simple
and fast. It actually is (in many cases) simple and fast. That is why
it is used not only when we do not have an algorithm for computing
y = f(z1,...,2,), but also when such an algorithm exists, but is too
complicated. For example, when we know that y is a multi-dimensional
integral I = JqF(§)dy over some area), then instead of approximating
the interval by a multi-dimensional integral sum, we simulate a random
vector that is uniformly distributed on). For this random variable, the
integral is equal to the volume of this area V (2) multiplied by a mathemat-
ical expectation M of F(§). The mathematical expectation is khown to be
equal to the limit of the arithmetic average (1/N)(F(§') + --- + F("))
when N — oco. Therefore, to estimate M, we run the simulation program
several times, compute F(3*) for the resulting ¥, and take the arithmetic
average as the desired estimate for M. *

Another application of a Monte-Carlo method to error estimation is
even closer home: [46-48, 50] use the technique to solve the basic problem
of interval computation.

14 V. Kreinovich, A. Bernat

-

2.3 Computational problems related to synthesis

Synthesis means that we want to design an object with desired properties.
In computational terms, it means that we want to compute the design
parameters Z of the desired object. There are two main types of synthesis
problems. :

1. Problems in which we want to find the values # that satisfy some
given properties. These properties are usually formulated in terms of
equalities and inequalities, so, in mathematical terms, we are inter-
ested in solving an equation, or a system of equations and inequalities.

For example, we want to find the parameters of the controller that
make the plant stable.

In this formulation, if there are several different sets of values that
satisfy the given property, then any of these sets will do. :

2. Problems in which we are looking for a vector # that not only satisfies
the given constraints, but which is optimal in th(-\: sense that for 7, a
given objective function J(Z) attains the biggest*possiblé value.

In both cases, we must take into consideration the fact that the param-
eters are often determined by measurement and thus not exactly known.
Therefore, methods have been developed that take interval uncertainty
into consideration while solving equations or optimization problems. These
methods are also an important part of interval computation.

3 Why parallelism is necessary for interval
computation?

3.1 Interval computation is NP-hard

In the previous section, we formulated the basic problem of interval compu-
tation. Alas, life is tough. Even for the simplest functions f, this problem
cannot be solved. To be more precise, [19] proves that this problem is in-
feasible (or, to use the precise mathematical term, NP-hard; see, e.g., [26])
- even for polynomial f.

Parallel Algorii

Another
solving a sy
we know on
interested in

3.2 NP-

That a prob.
solves U in p
polynomial «

- exist for pra

problem, dis
for at least s
is possible (t
be a polyno
there would
fact that the
use, there wi
than any po

In other
algorithm is

For inter
Inputs f anc

1) either
that g

2) this al
larger

In either

1. Ifan a
compt
total r

2. Suppo
a give

rich, A. Bernat

thesis

1 properties.
+ the design
of synthesis

iatisfy some
| in terms of
re are inter-
inequalities.

ttroller that

values that

nly satisfies
hat for &, a
» value.

the param-
tly known.
uncertainty
ems. These

nterval

val compu-
is problem
blem is in-

, e.8., [26])

parallel Algorithms for Interval Computations. .. 15

Another example of an intractable problem (in the general, case) is
solving a system of interval linear equations ¥; A;;z; = b; ([49]) when
we know only the intervals of possible values of A;; and b;, and we are
interested in finding the intervals of possible values of z;.

3.2 NP-hardness

That a problem U is NP-hard means that if there exists an algorithm that
solves U in polynomial time, i.e., whose running time.does not exceed some
polynomial of the input length, then a polynomial-time algorithm would
exist for practically all discrete problems such as propositional satisfiability
problem, discrete optimization problems, etc. It is a common belief that
for at least some of these discrete problems no polynomial-time algorithm
is possible (this belief is formally described as P # NP). Thus there cannot
be a polynomial time algorithm for the interval computation case (or else
there would be for all discrete problems, which we don’t believe). So, the
fact that the problem is NP-hard means that no matter what algorithm we
use, there will always be some cases for which the running time grows faster
than any polynomial. Therefore, for these cases the problem is intractable.

In other words: if a problem is NP-hard, this means that no practical
algorithm is possible that will solve all particular cases of this problem.

For interval computation this means that if we have an algorithm that
inputs f and X; and returns an interval F D f(X,,... ,Xn), then:

1) either this algorithm takes too long to compute F (sometimes, a time
that grows exponentially with n); or

2) this algorithm overestimates, i.e., returns an interval F that is much
larger than the minimal interval f (X1 X

In either case parallelism is necessary for interval computations:

1. If an algorithm takes too much time, then it is natural to run several
computational steps simultaneously on several processors. Thus, the
total running time will decrease.

2. Suppose now that an algorithm U (that is currently the best for
a given problem) overestimates. This algorithm U is the best in

16 V. Kreinovich, A. Bernat

the sense that, e.g., among all known algorithms that compute F in
reasonable time, this one produces the intervals F' that are (in the
majority of cases) the closest to the ideal interval f(X1,...,X,). Al-
though F' is the best in the majority of cases, in other cases, other
algorithms can give better estimates F. So, it is natural to combine
this “best” algorithm with one or several other algorithms, and pro-
duce the intersection of all the resulting estimates F' as the estimate

for f(X1,...,X,).

o If U is fast and there is time left, we can use this extra time to
run some other algorithins and thus improve F.

e But when we have thus exhausted a given running time and
still want to improve F', we have no other possibility but to run
other algorithms in parallel.

Well, life is tough, but not that tough. We have argued that paral-
lelism is necessary for interval computations. Let us now show that many
problems of interval computations are easily parallelizable, so para]lehsm
is possible. Before we do that, we 1ssue one warning.

4 Warning: almost all algorithms are
(theoretically) parallelizable, but this
parallelization is not always practically
usable

Parallelization is theoretically possible for virtually any algorithm. We
ergue as follows. Each algorithm is a sequence of computational steps.
The final step consists of applying some elementary operation op to some
previous results a and b: f := op(a,b). If neither a nor b is given, but
each is obtained by some series of computations, then this algorithm can
be parallelized as follows: let one processor compute a, and at the same
time let another one compute b; then, compute f = op(a, b).

However, if one of the values a,b is given, then this method will not
work. There are two possible cases here :

Parallel ¢

ISt If:
aly
tir
18
pa

2. As
va

th

ra

The .
that at
There a;

® CO]
¢ COl

® (0]
giv

All o
ample, v

1) div

2) cor
sin
sec

3) cor

The |
that conr
municati
Therefor
Putation
overall, t
Hence, s1

2

3ax:

wich, A. Bernat

ompute F' in |

t are (in the
oy Xn). Al-
* cases, other
] to combine
ms, and pro-
the estimate

awxtra time to

ng time and
5y but to run

l that paral-
w that many
) parallelism

‘e

this
ictically
rithm. We

tional steps.
1 op to some
s given, but
gorithm can
at the same

10d will not

Parallel Algorithms for Interval Computations. . . 17

1. If both values are part of the input, i.e., they are both given, then this
algorithm consists of a single elementary operation. So, its rynning
time is equal to the time of one elementary operation. This algorithm
is thus already as fast as possible, and of course, we cannot gain by
parallelizing it.

2. Assume now that only one of the values is given. Then, the other
value must be computed. We can apply the above idea to parallelize
the computation of this second value and thus decrease the total
running time.

The only case when this idea will not work is when we have an algorithm
that at each stage, combines some computed result with a given value.
There are a few real-life algorithms of this type:

¢ computing the sum s = 2, + - -+ + 2, of n given values;

¢ computing the product s = 2y x .-+ x z, of n given values;

e computing the scalar (dot) product s = 2y x g1 +- - -+ 2, ¥ Yn of two
given vectors & = (z1,...,z,) and § = (yy,... s Yn)-

All of these algorithms are also parallelizable (see, e.g., [36]). For ex-
ample, we compute a sum using two processors:

1) divide the sum into two parts: from 1 to n/2, and from n/2+1 to n;

2) compute the first sum y; = 27+ - - - + T,/9 on the first processor, and
simultaneously compute the second sum ys = z,, /241t -+, on the
second processor;]

3) compute the final sum s = y; + ys.

The problem with the above-described “theoretical parallelization” is
that communication also takes some time; usually, the time for one com-
munication step is much larger than the time for one computation step.
Therefore, if by parallelizing, we save the time equivalent to one ecom-
putation step, at the expense of one additiofial communication step, then
overall, the running time will increase rather than decrease as we expegcted.
Hence, such a parallelization makes no sense.

2 3akas 3

18 V. Kreinovich, A. Bernat

For example, if f = (z1+9) - (z3+ 24) (3 elementary operations), then
according to the above-described idea, we can compute a = x; 4+ 73 and
b = 23 + x4 in parallel (taking the time of one computational step), and
then multiply these results (one more computational step). Totally, we
need the time of two computational steps for computations (thus saving
one). However, we would need one communication step, since in order
to multiply the values ¢ and b (that have been computed by different
processors), we must bring them to one processor.

In view of the above warning, in the following text we will examine only
reasonable parallelizations, those that actually save time.

5 Using parallelism in interval computation

5.1 [is linear: The simplest possible case

In this case, y = 121+ - -+ Cay. If we know the intervals X; = [z;, z;] of
possible values of z;, then the interval Y of possible values of y is equal to
1. X1+ -+ ¢, X, where cX and X +Y are standard interval operations:

clz™, 2] = [ez7,cx], f c>0
cx™,zt] = [ezt,ca7], <O

a7, a™]+[b7,0%] = [a7+b7,a" +07].

This problem is easily parallelizable (as in the similar non-interval problem,
see above): if we have two processors available, then we do the following:

1) divide the sum into two parts: from 1 to n/2, and from n/2+1 to n;

2) compute the first sum ¥; = ¢ X+ - -4+¢,/1.X;, /5 on the first processor,
and simultaneously compute the second sum Yz = ¢, /941Xy /2414 -+
¢y X, on the second'processor;

3) compute the final sum Y =Y; + V5.

As a result, we need only about half the time to compute the sum. If we
have more processors, then we can apply the same trick to speed up the
computation of each half-sum, etc.

Parallel Algorit

Similar p.
linear operat
and to multy

The abov
tations can 3
multi-linear ¢
that mainly «

As an exa
of linear equ.

. course, use o

equations, pa

5.2 fis.

Very frequent
be safely negl
is ~ 1% (ie.,
this order are
can be safely
Problem as fo

In our ma:
accuracy A,
Values of z;. §
%i as :f;i = (1/

- Clement 5, of

.’L'. L .
t ™ ;18 suct

In thege te
Where Ay =

Y= fay,.

Y

ich, A. Bernat

tions), then
c; + x9 and
| step), and
Totally, we
thus saving
ce in order
dy different

tamine only

utation

o7 o] of
'1s equal to
operations:

al problem,
: following:

/241 to n;

t processor,
n2eth ot

sum. If we
reed up the

parallel Algorithms for Interval Computations. . . 19

Similar parallelization techniques can be applied to computing multi-
Jinear operations such as the scalar (dot) product of two interval vectors,
and to multiplying two interval matrices (see, e.g., [6, 13, 37, 38, 51, 89]).

The above-described parallelization of linear and multi-linear compu-
tations can also speed up an arbitrary algorithm that contains linear or
multi-linear steps. In particular, this speedup is dramatic for algorithms
that mainly consist of such steps. z 7

As an example of such algorithms, we can take the solution of systems
of linear equations (see, e.g., [4, 61, 100, 111]; these parallelizations, of
course, use -other ideas as well). For the special class of such J—diagonal
equations, parallel algorithms were presented in [17, 18, 39, 40]. i

5.2 f is almost linear

Very frequently, the measurement errors are so small that their squares can
be safely neglected (see, e.g., [86]). For example, if the measurement error
is & 1% (i.e., ~ 0.01), then the square of this error is & 0.0001, Terms of
this order are much smaller than 1%, and for all practical purposes, they

can be safely neglected. Thus [is nearly linear and we may solve this
problem as follows.

In our main example (indirect measurements), after measuring x; with
accuracy A;, we get an interval [z}, 7] = [& — Ay, & + Ax;] of possible
values of z;. So, if we are given an interval [x7,27], then we can reconstruct
T as Z; = (1/2)(z7 +), and A; as A; = (1/2)(z} — 7). An arbitrary
element z; of this interval can be represented as #; — Az;, where Az; =
T; — x; is such that |Az;| < A

In these terms, we are interested in finding the upper bound A for |Ayl,
where Ay = § — y (error of indirect measurement), § = f(&y,...,%,), and
Yy = f(z1,...,2,). By the definition of Az, x; = &; — Ax;, therefore,
Ay = f(zq,... yEn) — f(Z1 - Azy,. .. 7, — Az,). Since the values Az; are
assumed to be small, we can expand this expression for Ay in a Taylor
series, and neglect the terms that are quadratic (or of higher order) in
A-ﬁf‘\&? a result, we arrive at the following expression: Ay = [, where

l_ = f1Az 4+ + f 2Azy, and f; denotes the value of the partial derivative

'.? gf at the point (zy,...,%,).

2%

20 V. Kreinovich, A. Bernat
If we want a guaranteed estimate, we must estimate the error of this
approximation, i.e., we must find 7 such that |Ay — | < 7. The largest
possible value of [is attained wlhen each term f;Az; in the sum attains its |
largest value. When f; > 0, this happens when Ax; is the largest possible
(i.e., when Az; = A;). When f; < 0, this happens when Ax; takes its
smallest possible value, i.e., when Az; = —\,. In both cases, this largest
possible value of f;Az; equals |f;|A;. Therctore, the largest possible value
of the sum I is L = |f1]A1 + -+ [fa]Dn. ‘
Similarly, one can easily prove that the smallest possible value of [is — L.
Therefore, possible values of [fill an interval [-L, L]. Since |Ay —1} < 7]
we can conclude that i '

Ayl < JI| +]Ay =1 < L+

So, we can take L + 7 as the desired estimate for A (in terms of intervals,g

we take

i RN AR S D1

F=j—(L+n),i+(L+n)]

(To complete the description of an algorithm, we need to specify how

to compute the derivatives. If f is given as an analytical expression, thenf:??
the derivatives can be computed automatically.) f
This is a pretty good estimate for ¥ = f(Xy,..., X,). The value L is alf
possible value of [for some Az;. For these Axz;, we have Ay = [+(Ay—1) 2
| — |Ay — 1| > L —n. Therefore, A (defined as a largest possible value of
|Ayl) is also greater than or equal to L — 7. So, L—n <A< L +n. :
When n = 0, we get L+n = A, s0o F = Y = f(Xy,...,X,). We ar(’
considering the case when quadratic terms are negligible. This means thaf%
terms that are quadratic in Az; (in particular, 7, which is our estimatf‘g
for these terms) are much smaller than terms that are linear in Aw; (111
particular, than [, and hence, than L which is the largest possible valut
of 1). So, n < L, and therefore, L + n is a pretty good estimate fOI
Ael[L—nL+nl

The above-described algorithm consists of two steps.

1. Estimating the derivatives f;.

9. Computing L = |f1|A1 4+ [fnlAn, and L +7.

Parallel Algori

As soon as v
same way as
of the algori
computation

Such a p
are two mau

‘o First,
we hax
only o

o If wel

allelize

The mai
idea of how
difference tt
always work
we mean th

. consists of s

consists eith
value (that
an arithmet

known. Thi

. these compt

Programimin

For exan
Computatiol
Computed o

1. We st

2. We aj

Tm=x

3. Then,

Th=12a

1vich, A. Bernat |

e error of this
7. The largest |

sum attains its
argest possible |

. Az; takes its |

es, this largest
possible value |
!

ralue of [1s —L.:

I
!
.!.
1s of intervals,|

parallel Algorithms for Interval Computations. . 21
As soon as we know f;, the second step can be parallelized in exactly the
same way as in the case of linear- f. But the main time-consuming part
of the algorithm is computing derivatives. So, if we really want to save
computation time, we must parallelize the first part.

Such a parallelization has been proposed by Shiriaev in ([89]). There
are two main ideas here.

e First, we can compute all n derivatives in parallel. In particular, if
- we have at least n processors, we can ask each of them to compute
only one partial derivative. ~

e If we have more than n processors, then we can go further and par-
allelize the computation of each derivative.

The main idea of the second step is similar to the above-described

| idea of how almost every algorithm can be parallelized (with the main

| difference that there, this idea did not always work, while here, this idea

to specify how;
xpression, then

]
N

| always works). When we say that f is given as an analytical expression,

we mean that f is represented as a kind of “computational scheme” that
consists of several elementary computational steps. Each of these steps

. consists either in applying an elementary function to some already known

‘he value L is a
=l+(Ay-1) >
ossible value of
v < L+1. |
., Xn). We are
‘his means that?
is our estimate
ear in Az; (in
. possible valug
yd estimate foi

value (that is either given or has already been computed), or in applying
an arithmetic operation to two different numbers whose values are already
known. This computational scheme is exactly how a compiler will perform
these computations, if we write this analytical expression in any high-level
programming language (FORTRAN, Pascal, C, etc).

For example, the expression sin(z? +3 -) corresponds to the following

| computational scheme (in this scheme, r; will denote the value that is

computed on step 7).

1. We start with a given value ry = z.

2. We apply a function 22 to the known value ry = z, thus getting

r = :C2.

3. Then, we apply an arithmetic operation - (multiplication) to 3 and
To = z, thus getting 7y = 3 . .

22 V. Kreinovich; A. Bernat

4. Third, we apply an arithmetic operation + to r; = z?and ry =3 -z,
thus getting r5 =7, + 79 (= 22 +3 - 2).

5. Finally, we apply sin to r3, thus getting the final result ry.

To describe how the above-described idea of Shiriaev works for a given
function £, let’s consider the final operation in this computational scheme.
This operation can be either an arithmetic operation op that is applied to
two given terms a and b, or an elementary function g applied to a given
term a.

In the first situation, depending on exactly which arithmetic operation
is used, we have the following well-known formulae for f;:

if f=a+b, then f; = a;+b;;

if f=a—0b, then f; = a;—b;;

if f=a-b, then f; = ai-b+b;-q;

if f=a/b, then f; = (a;-b—b; a)/b®

In the second situation, when f(i) = g(a(:i”)), we have the following for-
mula:

fi=4g(a)-a;.

In the first four cases, we can compute a ; and b ; in parallel (for multi-
plication and division, we can also compute a and b in parallel), and then
compute f;. In the second situation (i.e., in the fifth case), we can compute
¢'(a) and a; in parallel.

If we have more than two processors, then we can similarly parallelize
the processes of computing a ; and b, etc. ;

5.3 Explicit parallelization of algorithms
5.3.1 * Parallelizing interval computations

For all interval operations, we can halve the computation time if we run
two processors in parallel according:to the following ideas.

The standard interval computation techniques of computing an inter-
val F from given f and X; consists of the following: we describe the given

. Parallel Alg

algorithm
metic ope
follow thi
of operat;i

The p
ations are
processor
terval. Tl

For 4+ an
results in

[al’ a2]

Here, we
a2b2, and
four valu

Operatio:
because i
This
nication :
time.

In sor

e For
[65]

e For
anc

ovich, A. Bernat

and rp = 3 -z,

3 T4.

ks for a given
;ional scheme.
; 1s applied to
ed to a given

etic operation

following for-

lel (for multi-
lel), and then
can compute

rly parallelize

me if we run

ting an inter-
ibe the given

. Parallel Algorithms for Int-erval Computations. . . 23

algorithm f as a sequence of elementary computational steps, i.e., arith-
metic operations and applications of elementary functions, and then, we
follow this description step-by-step, using operations with intervals instead
of operations with real numbers.

The possibility of parallelization stems from the fact that interval oper-
ations are parallelizable: we can usually employ from two to four different
processors to compute the lower and upper endpoints of the resulting in-
terval. This fact can be easily traced for all arithmetic operations:

/
a1, a9] + [b1,00] = [a1 + by, az + b

' [a1, a9] — [b1,bs] = [a1 — b1, a3 — bo].

For + and —, we can compute two endpoints a; &+ b; and ag % by of the
results in parallel.

[a1, a] - [b1, bo] = [min(a1b1, a1by, ashy, ashy), max(aiby, arby, ashy, ashs)].
Here, we can use 4 processors to compute the products a,b;, a;bs, ashy, and

agby, and then two of these processors to compute min and max of these
four values.

Y[} = [1/b,1/a] i 0¢[a,8],

X/Y = X-(1/Y),
9([a,b]) = [g(a),g(b)] if g is increasing, and
9([a,b]) = [g(b),g(a)] if g is decreasing.

Operations X /Y and+g are evidently parallelizable; X/Y is parallelizable
because it is a sequence of two parallelizable operations.

This parallelization suffers from the necessity to have too many commu-
nication steps, so in general, it will not necessarily reduce the computation
time.

AN

In some cases, a similar idea does speed-up the computations.

e For integral equations, a similar parallelization idea was proposed in

[65].

e For ordinary differential equations, a similar idea was used in [16]
and [91]. -4

24 _ V. Kreinovich, A. Bernat

This idea leads at best to halving the time, because we compute two
endpoints in parallel instead of computing them sequentially.

In some cases, a similar idea can lead to a much better speedup. For
example, we consider the solution of a system of interval linear equations
¥j aijx; = b; where, for the coefficient matrix a;; and the right-hand side
vector b;, we know only intervals of possible values A;; = [a{j,agg] and
B; = [b;, bf]. For different values a;; € A;; and b; € B;, different solutions
are possible. It is known that the right endpoint x;L of the interval X;
of possible values of z; is equal to the biggest value z; among all the
solution of the system 3=; ai';-xj = b (that is obtained from the original one
by substituting the endpoint instead of a;; and b;). Similarly, the lower

endpoint z; is equal to the smallest of these values.

These auxiliary systems can be solved in parallel, thus speeding up the
computation. This algorithm can be further sped up if we take into con-
sideration that not éll combinations of endpoints are necessary to estimate

ot (1)),

5.3.2 Finding solutions in parallel

If we are solving an equation or a system of equations, then a natural idea
is to divide the domain into several subdomains and use several parallel
processors to check different subdomains for possible solutions. In partic-
ular, if this equation (or system of equations) has several solutions, and
these. solutions are sufficiently different (so that they belong to different
SuB&omains), then each processor will compute its own root. For polyno-
mial and for more general equations, such algorithms were presented in [1,
2, 7, 20-25, 29-31, 33, 34, 66, 78-84, 87 (Section 4.3.3), 88, 90, 94, 97, 98,
104-110]. :

For particular e)éamples we have:

~ @ parallel Newton’s method is described in [66] (see also [94]); .
e parallel chord method for finding roots is described in [88];
e parallel bisection rﬁethod is described in [90].

We presented these techniques in this order because: Newton’s method
is known to be the fastest, the chord method is not as fast, and the bisection

Parallel Algorit

method is the
method is pr

However,
function be s
tives. The cl
The bisectior
have 'a functi

. points a and

[90] descr:
to chemical a

[23-25, 8¢

. val computat

! but circles in

© 5.3.3 Mat

_-. Another exar
| 2k agbyj cor
| e.g., [13]).

| 5.3.4 Non

. For essentiall

tion is known

! extracted fro:

Sections, we 1

5.3.5 Artii

Crudely spea
. Bame, byt sti
; to solve a prc

E

Could just de
Vant to comy
Ugorithm an
Algorithm, ¢

e

:h, A. Bernat

mpute two

sedup. For
' equations
-hand side
77> 0] and
t solutions
nterval X;
ng all the
riginal one

the lower

ling up the
> into con-
0 estimate

atural idea
-al parallel
In partic-
tions, and
o different
or polyno-
nted in [1,
94, 97, 98,

U’s method
e bisection

' parallel Algorithms for Interval Computatious. . . 25

method is the slowest of the three. Therefore, whenever possible, Newton’s

' method is preferable.

However, Newton’s method is not always applicable: it requires that the

| function be smooth (differentiable), and that we can compute the deriva-

tives. The chord method is also convergent only under some conditions.

| The bisection method is the most universal: it is applicable whenever we

e ——————————— e —

have ‘a function f : [a,b] — R for which the values f(a) and f(b) in end-
points a and b have different signs.

[90] describes applications of parallel interval computations of the roots
to chemical and petroleum engineering.

[23-25, 83] use circular complex arithmetic instead qf the regular inter-
val computations (i.e., a formalism in which basic objects are not intervals,
but circles in a complex plane):

5.3.3 Matrix operations

Another example of explicit parallelization is matrix multiplication ¢;; =
Sk @ikbrj: computation of different elements ¢;; can be done in parallel (see,

e.g., [13]).
5.3.4 Non-linear functions

For essentiélly non-linear functions f, no generally applicable paralleliza-
tion is known. However, in many cases, parallelization can be naturally

| extracted from the nature of the problem. In the following three subsub-
| sections, we will describe three such cases.

5.3.5 Artificial Intelligence (AI)

" Crudely speaking, the main idea of Artificial Intelligence (not the best
! name, but still used for historical reasons) is as follows. To use a computer
| to solve a problem, we must describe an algorithm. It would be nice if we
. could just describe a problem, i.e., describe what we know and what we

want to compute, and the computer will choose or design an appropriate

- algorithm and solve this problem. In other words, we want to find a “meta”-

| algorithm, that would take an arbitrary problem and solve it.

26 : V. Kreinovich, A. Bernat

In general, this problem is undecidable in the sense that an algorithm
that solves all the problems is impossible. However, there exist systems
that have already solved many important problems (e.g., expert systems).

To make an Al system work, we must fill it with knowledge. This
knowledge mainly comes from measurements. For many of these measure-
ment~. we do not know the probabilities of different values of measurement,
error. Therefore, for these measurements, the only information that we

have about an error is its upper bound A. Hence, if we measured the value -

r and the result is &, then the only information that we have about the

actual value of x is that x belongs to an interval [f — A,z + 6]. In view of

this remark, it is no wonder that intervals are used to represent knowledge

in AL

Another reason why intervals are used in Al is that when we represent
knowledge in an expert system, we must not only describe everything that
we know, but we must also enable the computer to distinguish between the !
absolutely reliable knowledge and heuristic rules, i.e., Tules that in general
works fine but can sometimes err. In other words, we need to somehow
describe that our degree of belief in some statement is larger than our

degree of belief in some other rule or fact.

In standard mathematical logic, a statement is either true or false,
typically represented by 1 and 0, respectively.- In other words, absolute |
belief in a statement A is represented by the number 1 and absolute belief
that A is false is described by the number 0. Therefore, it is natural to
represent the intermediate degrees of belief ¢(A) in different statements A
by numbers between 0 and 1. This natural idea is used in the majority of

expert systems.

How to find the value t(A)? There are many methods. For example, -
we can fix a sequence of “standard” statements, and establish a degree of

belief in a given statement A by comparing this degree of belief with the

degrees of belief in these standard statements. However all methods can ::
generate only finitely many bits of ¢(A). Therefore, they cannot generate |
a precise value of ¢(A); they give only an approzimate value. If we ask an

expert more questions, we may get a better idea of her degrees of belief,

but after each sequence of questions, we have only intervals of possible |

values of ¢(A).

Parallel Alg

For e
Ag, ... A
0,01,...,
A is larges
know abo
we know ¢

Leét’s ¢
that out d
COITEeSP oI
both abso

answer to

If we a
then we a
query, we
convey a (

If a co:
atl:u'hed,
if it is not
because tl

o It cc
dent
and
and
we ¢
true
smal

e It cc
samu
we L

Since in p
(that woul
t(B). So, -
‘ If two
Imagine al

novich, A. Bernat |

t an algorithm

exist systems |

pert systems).

ywledge. This
shese measure-
f measurement
\ation that we
ured the value
ave about the
-6]. In view of
ent knowledge

n we represent
verything that
sh between the
;hat in general
d to somehow
rger than our

true or false,
ords, absolute

R —

—

absolute belief

; 1s natural to |

statements A
he majority of

For example,

sh a degree of |
relief with the |
. methods can |

nnot generate
. If we ask an
rrees of belief,
uls of possible

Parallel Algorithms for Interval Computations. . . 27

For example, suppose that we have fixed 11 different statements
Ay, ..., Ay as standard ones, and we have defined their degrees of belief as
0,0.1,..,09,1.0. If we know that our degree of belief in some statement
A is larger than in A5 but smaller than in Ag, then the only thing that we
know about ¢(A) is that 0.5 < #(4) < 0.6. In other words, the only thing
we know about ¢(A) is that ¢(4) € [0.5,0.6].

Lét’s describe one more source of interval uncertainty in Al Suppose
that out database contains two statements A and B, with degrees of belief
correspondingly #(A) and ¢(B). We ask a query “A&B?” If A and B are
both absolutely true, then we can also be sure that A&B is true, so the
answer to this query is “yes”.

If we are not absolutely sure in A and B, i.e., if t(4) < 1 and t(B) < 1,
then we are not absolutely sure that A& B is true. So, as an answer to this
query, we must (if we want this system truly to behave like an expert) to
convey a (reasonable) degree of belief in A& B.

If a complex statciment A&B is in our database, with a degree of belief
attached, then we just return this degree of belief as an answer. But what
if it is not? From the commonsense viewpoint, the problem i is ambiguous,
because there are several possible cases.

® It could be that arguments in favor of A and B come from indepen-
dent sources. Here, t(A) is our degree of belief in the first source,
and ¢(B) is our degree of belief in the second source. Since #(4) < 1
and t(B) < 1, we have doubts in both sources. The only case when
we conclude A& B is when we believe in both sources. Even if A is
true, B can still be false. Therefore, our degree of belief in A&B is
smaller than ¢(A) and ¢(B).

® It could also be that arguments in favor of A and B come from the
same source. So, if we believe in A, we thus believe in B and hence,

we believe in A&B. In this case, t{(A&B) = t(A).

Since in practical expert systems, we do not keep track of the arguments

(that would require enormous memory), all we keep is the values #(4) and
t(B). So, for t(A&B), we can thus have different values.

If two real numbers a < b are possible values of #(A&B), then we can
imagine all kind of intermediate situations, in which t(A&B) will take all

28 V. Kreinovich, A. Bernat

the values intermediate between a and 0. As a result, for given #(A) and
t(B), the set of all possible values of (A& B) contains all intermediate
points. Therefore, it is an interval.

So, even if the degrees of belief in basic statements are precise, the
deorce.of belief in combined statements is best described by an interval.
(See. e.g., [41-43]).

So, the.knowledge in the knowledge base has interval uncertainty, and
the degrees of belief are also described as intervals. Therefore, if we ask
this expert system about the value of some quantity, most probably the
answer will also be an interval, and not a value. To what extent is this
answer reliable? This is described by the degree of belief in this answer.
This degree of belief is computed based on the initial degrees of belief (of
statements from the knowledge base). These initial degrees of belief are not
known precisely: we only know intervals that contain them. Therefore, the
resulting degree of belief will also not be known precisely: the only thing
that we can really generate is the interval of possible values of reliability.
So, when we ask a query, actually computations with intervals are going on
in the expert system. In other words, such expert systems actually perform
interval computations.

We have already mentioned that Al systems are aimed at solving gen-

eral problems that cannot be easily handled by the existing methods. No
wonder that the algorithms of Al are often very time-consuming. If we use
intervals instead of numbers, the computational complexity increases, and
the situation becomes even worse. So, parallelism is badly needed.

Fortunately, in the majority of the cases, there is a natural paralleliza-
tion: namely, our knowledge is usually (more or less) compartmentalized.
This means that when we look for a solution for a mathematical problem,
we know for sure that our knowledge of, e.g., ethics will not help. So, for
any given query, we do not need to look into all possible rules and facts
from the knowledge base: only into those that are relevant. So, if we have
several queries that are relevant to different parts of the knowledge base,
then in principle, we can handle them in parallel.

Even if we have one query, we can still obtain a speedup if we try to
relate this query with different parts of the knowledge base (this can be
done in parallel). If in an attempt to answer the query, the computer will
generate several auxiliary queries, they can also be answered in parallel.

L

Parallel Al

Such
We Ic

1. Foa
era
ind
sor

pIC
S0

Th
als
alg

2. Fo:
ral
Sp!
pa

5.3.6

In many
space.
sense: v
mainly
several «
object 1
This
[85]). F
tegral, v
subdom
This
when a¢
lestial n

Ano
67}. If -
must in

r

ich, A. Bernat

:n t(A) and
ntermediate

precise, the
an interval.

rtainty, and
e, if we ask
robably the
tent is this
his answer.
of belief (of
elief are not
erefore, the

- only thing -

f reliability.
.re going on
Hy perform

olving gen-

ethods. No
g. If we use
reases, and

led.

paralleliza-
mentalized.
al problem,
2lp. So, for
s and facts
. if we have
ledge base,

f we try to
;his can be
nputer will
- parallel.

e = e ——

Parallel Algorithms for Interval Computations. .. 29

Such natural parallelizations are described, e.g., in [54] and [99].

We look at two examples:

1. For automated manufacturing, the object to control consists of sev-
eral instruments on the shop floor. These instruments are reasonably
independent, so it is possible to control them by assigning a proces-
sor to each of them, and reducing the communication between these
processors to the necessary minimum. The input comes from sensors,
so actually, for each variable, we know the interval of possible values.
Therefore, the rules that form a decision-making expert system are °
also formulated in terms of intervals. Corresponding parallelization
algorithms are described in [59].

2. For a general purposc medical system, the area of knowledge is natu-
rally divided into several subareas (corresponding to different medical
specializations), so here, a natural parallelization can be used. This
parallelization is presented in [41-43].

2.3.6 Spatially localized objects

In many problems, we are analyzing objects that are located in real (3-D)
space. The properties of real-life objects are often local in the following
sense: what happens to an object that is located at a point #, depends
mainly on the situation in a neighborhood of #. Therefore, if we have
several spatially separated objects, we can process the evolution of each
object in parallel (with only a little bit of communication required).

This idea can be used to solve partial differential equation (see, e.g.,
[85]). For example, if as part. of this solution, we must compute an in-
tegral, we can use several processors to compute the integral over several
subdomains, and then add up the results.

This idea does not always work because there are physical situations
when action-at-a-distance has to be taken into consideration (e.g., in ce-
lestial mechanics), but it works in many real-life situations.

Another area where this idea is helpful is computer graphics [44, 45,
67|. If we wish to generate an image that consists of several objects, we
must include:

30 V. Kreinovich, A. Bernat

e how the objects interact,

e what is the intensity at different points,

e what is visible and what is not,

e how the objects cast ;shadows on one another,

e ctc.

All of these properties are parallelizable, e.g., to find an interaction of two
sizeable bodies, it is sufficient to divide the entire 3-D (or 2-D) domain
into several subdomains, and describe the interaction in each subdomain.
We can then employ several processors to -handle each subdomain. To
speed up interval methods, the subdivision is done not by halving, but at
the critical points of the curves and surfaces.

5,3.7 Monte-Carlo methods

In Monte-Carlo methods, we perform several simulations, and then process
the results z1,..., 2" of these simulations. These simulations are indepen-
dent, and therefore, they can execute on different processors in parallel
(see, e.g., [5, 12, 46-48]). In particular, in [12], this technique is applied
to Al problems (namely, to the problem of finding an interval of possible
values of degree of belief).

5.4 Parallelizing interval computation in synthesis
_problems

We have already mentioned that there are two types of synthesis problems:

o problems that require solving a system of equations (possibly includ-
ing inequalities), and

¢ optimization problems.

In the following subsections, we will describe how to parallelize the corre-
sponding interval computations.

Parallel Algorit

5.4.1 Solv

In the previo
rithms that s
the solution
scribed in [3,

Suppose t
to each varie
largest real n
At each iter:
each variable
we are dealin
T1T2 = 1), o1

. Since we knc
variables in t
. the values of

_ For exam
' 1/z9, we con

that r € (—
' 21 € [0.5,0.6]

These ite:
computation
Pendently (o
each variable
obtained fron

This inter

is an intersec
| the intervals
Maxz,. Com
in exactly the

1) divide t

2) the first
same ti:
second .

ich, A. Bernat

ction of two
-D) domain
subdomain.
lomain. To
ving, but at

hen process
ire indepen-
i In parallel
e is applied
. of possible

iynthesis

s problems:

ibly includ-

e the corre-

| parallel Algorithms for Interval Computations. . . 31

| 5.4.1 Solving a system of equations and inequalities in parallel

In the previous subsections, we described how to parallelize interval algo-
rithms that selve a system of equations. Let us describe how to parallelize

| the solution of a system of equations and inequalities. This idea was de-

i
i
1
|
!

|
1

l

!
|

]
|

i

scribed in [3, 74, 75].

Suppose that we have a system of equations and inequalities. Initially,
to each variable, let us assign an interval [~U,U] (here, U denotes the
largest real number that can be represented in the particular computer).
At each iterative step, for each variable z;, we decrease the interval for
each variable z;. The idea behind this iteration is as follows: suppose that
we are dealing with a variable z; (e.g., 1), and we have an equation (e.g,
z1Z9 = 1), or an inequality (e.g., z; < 0.3z5) that contains this variable.
Since we know the intervals that contain all possible values of all other
variables in the equation (e.g., z2) we can use this information to restrict
the values of z;.

For example, if we know that 25 € [1,2], then, from the equation z; =
1/z2, we conclude that z; € [0.5,1], and from the inequality z; < 0.3z,

that £; € (—00,0.6]. Combining these two estimates, we conclude that
z1 € [0.5,0.6]. :

These iterations can be easily parallelized because at each iteration,
computation for each equation and for each variable can be done inde-
pendently (on different processors). In order to obtain a new interval for
each variable x;, it remains only to take the intersection of the intervals
obtained from the different equations and inequalities that contain z;.

This intersection, in its turn, can also be parallelized. Indeed, what
is an intersection from a computational viewpoint? The intersection of
the intervals [z, z}] is an interval [z~ 2%] with z* = min zijand e
max £, . Computing the minimum m of n numbers can be done in parallel
in exactly the same way as we compute the sum of n numbers in parallel:

1) divide the set of numbers into two halves; .

2) the first processor computes the minimum m; of the first half; at the
same time, the second processor computes the minimum ms of the
second half; s

32 V. Kreinovich, A. Bernal

3) compute m = min(mi, ma).

Similarly, the maxinni: . be computed in parallel.

5.4.2 Parallel inferval optimization

The main idea of parallelizing interval algorithms for solving optimization:
problems is relatively simple. Suppose that we are given a function f
defined on some area & C R", and we must find a value Z at which f
attains its maximum. Suppose also that we have two processors that call
work in parallel. Then, we can speedup our computations as follows: divide
the area € into two subareas (i and Q, find the maximum of f on each
of them, and then compare the results. If the first processor finishes i
computations faster than the second one, then we can again divide the
remaining area between the two processors. 1f we have more than tw
processors, then we can obtain an even greater speedup.

This idea has been efficiently applied in 8, 15, 32, 56, 57]. In particular
it is applied to finding local extrema: for functions of one variable (in [103]"

and in the general case [60].

5.5 Implicit parallelism

Up to now, we have described special parallelization techniques for intervé
computations. If none of them is applicable, we can try to apply generd
parallelization techniques to the particular case of interval computations

5.5.1 Applying general parallelization techniques

From the computer viewpoint, an interval is an ordered pair of real nut?

bers. So, every computer methodology that parallelizes operations wit
ordered finite sequences can be helpful here. This idea is brought to £
extreme in the works of Cooke, who proposed an ordered finite sequen’
(he calls it a bag) as the basic data type of his new high-level compuf!
language BagL. Parallelization ideas of BagL are thus directly app]icaﬁ

to interval computations [10, 11].

Parallel Al

55.2 1

Suppose
paralleliz
of paralle
routine,

algorithn
involve a
parts as

known n

At fi;
be of arl
1s a way
language
reasonal
steps. H
they are
algorithi
algorithi
depende
question
problem

5.5.3

When w
parallels
If we kn

precise -
not prec
In [

terval u

A di

3a

reinovich, A. Berna!

ing optimiza,tion?
en a function f!
1e £ at which j
rcessors that (:a;n';l
1s follows: dividc-};
um of f on each
essor finishes itsi
again divide the

more than tWQ;

7). In particular
ariable (in [103])

..‘;

iques for interval
to apply general
l computations.|

|
]

»asr of real num:
operations witlh
s brought to thd
1 finite sequenct}fi
1-level compute!
rectly applicablé

Parallel Algorithms for Interval Computations. . . 33

5.5.2 Interval methods help to find what is parallelizable

Suppose that we cannot simply look at the algorithm and see that it is
parallelizable, i.e., it has several independent parts, and the known methods
of parallelization do not work. Looking for parallelizable parts is hard, but
routine, work. So maybe we can use the computer itself to parallelize the
algorithm? A computer understands only a very formal language. So, to
involve a computer, we must formulate the problem of finding independent
parts as a mathematical problem, and solve this problem (by using either
known mathematical techniques or some specially designed method).

- At first glance, the problem is extremely complicated. Programs can
be of arbitrary complexity, and analyzing them is tough. However, there
i1s a way to overcome this difficulty: A program written in a high-level
language consists of several straightforward computations and loops. It is
reasonably easy to check interdependency of straightforward computational
steps. However, these steps do not represent a big time problem, because
they are implemented only once. The main time-consuming part of an
algorithm is a loop. So, in order to really save time when parallelizing an
algorithm, we must be able to answer the following question: is there data
dependency in a loop, or a loop can be safely parallelized? In [112], this
question is reformulated as a mathemagtical problem, and this mathematical
problem is solved by interval methods.

5.5.3 Interval methods help to parallelize

When we discover that an algorithm is parallelizable, then we must actually
parallelize it, i.e., distribute the parallelizable jobs between the processors.
If we know the job lengths, then we can formulate this scheduling as a
precise mathematical problem. However, in real life, the job lengths are
not precisely known: we have only intervals of possible values.

In [58, 77], algorithms are given that schedule the jobs under this in-
terval uncertainty.

A different approach to dynamic load balancing is given in [15].

3 3akas 3

34 V. Kreinovich, A. Bernal

5.5.4 We can save even more time if we do not start
- computations with full accuracy

In the above text, we counted the computation time in terms of elementary
operations. In reality, the time that is required for an elementary opera-
tion, depends on the accuracy required. Adding two double-precision real
numbers takes more time than adding two regular real numbers. Usually,
if we are interested in accurate results, we (out of caution) start with the
maximal possible precision. In many cases, such precision 1s unnecessary,

so we waste time.

The same problem appears when we choose a precision for auxiliary
problems that appear as part of our algorithm. For example, if we must
solve a system of linear equations as an intermediate step, then we usu-
ally solve it with the maximum precision possible, thus using much more
iterations than necessary.

' This makes sense for sequential computations, because who knows,
maybe for this particular problem maximum precision is necessary. But in
parallel computations, we are no longer required to do that. This idea was
proposed by Yakovlev in [114] and further developed and implemented by

Musaev ([68-72]):

1) we can start the computations with a reasonable precision (if we,
have enough processors at our disposal, we can at the same time
start computations with a better precision);

2) if at some point, the resulting precision is not sufficient, i.e., if the
intervals are too wide, then we will redo all the computations that
led to this particular point (or, if have already started computations
with a better precision, follow them further).

This way, we only redo the computations that influenced our results.

Computations in general can be compared with a wave: we pass data
from one processor, from one process, to another. In terms of this analogy,
we (if necessary) reverse the wave and start it anew. Because of this
comparison, methods that involve such processor communication are called

wave computations [114].

\Parallel Algorith

5.6 Non-

If an algorith,
(or if we do n
the idea that

and iry to fin
function y =
. Since initiz
putes a given :
4hvve' cannot rely
rithm. We m
ﬁomputer neec
We must form
“parallelizable

l

L We begin 1

E;quence of co:
revious steps

:&BSSOI‘ In paral

that we have ¢

%tﬂl‘ted before

f :
| Since we a

Earallelizable ¢
'ave any long
0nsist of a she
tesults to each

|

&h Wba’c are f
Pl € simplest ;
.‘113_(‘.ti()ns (not
e also easily j
;'_Ile"]‘r function
“Wpositions
®, We need at
H€ar function
. Variables,

:h, A. Bernal

elementary
,ary opera-
acision real
s. Usually,
ct with the
nnecessary,

r auxiliary
if we must
en we usu-
much more

tho knows,
ary. But in
is idea was
:mented by

sion (if we,
same time

, 1.e., if the
ations that

mputations

ar results.

e pass data
nis analogy,
use of this
n are called

§

par allel Algorithms for Interval Computations. . . 30
] .

, 5'6 Non-parallelizable algorithms & neural networks

f an algorithm that we are trying to parallelize is hard to make parallel
\(or if we do not have an algorithm in the first place), then we can follow
he idea that we outlined earlier: stop trying to parallelize the algorithm
éa,lld t_ry to find another (parallelizable) algorithm that computes the same
H-functwn y=f(z1,...,2,).

!L;' Since .1n1t1ally, we could not design a parallelizable algorithm that com-
gp“tes a given function f, this design is clearly not easy to find. Therefore,
Iwe cannot rely on our abilities and/or intuition to search for such an algo-
yithm. We must use a computer to help us design such an algorithm. A
}tomputer needs a very formal description of what is required. Therefore,

r@ must -formulate our design problem in mathematical terms. What does
¥parallelizable” means in these terms?

[We begin by describing what “non-parallelizable” means. If we have a
ﬁequ.ence of computational steps, and one of them can be started before the
previous steps are done, then we can implement this step on a separate pro-
cessor 1 parallel with the previous steps. So, “non-parallelizable” means
jhat we have a long sequence of operations, and each operation cannot be
tarted before we are done with all the previous ones.

Since we are designing an entirely new algorithm, we will make it as
sarallelizable as possible. This means that the designed algorithm will not
ba,ve. any long non-parallelizable sequences. This algorithm must therefore
aon.‘iISt of a short sequence of simple “subroutines” (blocks) that pass their
fesults to each other, and that can easily work in parallel.

: Wha’c are these blocks? The simpler the faster, and thus the better.
he §1mplest possible algorithms that deal with real numbers are linear
lnctions (not only they are easy to compute, but, as we have seen, they
El‘e. also easily parallelizable). We cannot, however, take all our blocks’to be
Inear fl.m.ctions, because then the resulting paralle] algorithm will compute
‘mpositions of linear functions, and these compositions are always linear.

0, we need at least one non-linear block g if we want to compute a non-
I!neeu' function f.

A
S a non-linear block, we can have non-linear functions of one, two,

:
}?-C-, variables. The more variables, the longer it usually takes to compute
;ﬂ
f

i V. Kreinovich, A. B
reinovici, | cfpat Parallel Algorit

s function. Therefore, the simplest block is when we take a function of one :
one linear bl

variab : :
vaniabile () .| either before

Because we want to save on the computation time, we would like to! of functions «
choose functions g(z) whose computation take the smallest time. Usually,

computing different non-linear functions takes varying computational time. o If the]
Therefore, it is reasonable to expect that there is only one non-linear func-| tions tl
tion g(z) whose computation takes the smallest possible time. In this case, et
all the non-linear blocks will compute this function and will therefore be: faces f
identical. space.

This “uniqueness” is more a guess than a theoretical conclusion. Hence, f(z,

it is quite possible that there is an entire family of different functions g() ollf the-1

with the same computational time. In this case, the only conclusionthat] Datied
we can make is that all the nonlinear functions belong to the same family: e
(and are in this sense similar). ; - tiail '

The previous analysis leads to the following conclusion: we must design% tions (i
our algorithm from building blocks of the following two types: Fl this prc

!
|
1) blocks that implement linear functions, i.e., that transform inpuf Therefore we

i
We have

2) non-linear blocks, le., that transform input z into output y = g(z} Sequent block
. 'j these compor

(where g is a non-linear function). :

B oo

z1,...,%, into output y = ap + @121 4+ 4 Apy;

——

=

A .
The computation time of a parallel algorithm is equal to the sum ol) bofch lir

the running times of its consequent components. Therefore, the total con’ 2) both lir
putation time is minimized if we have the smallest number of consequeﬂf-:r
components. The fewer consequent components we have, the fewer corﬂf_l
munications that are needed, and, therefore, the communication time ¥
also minimized if we have fewer consequent components. !

! p ' The first, two

Among the building blocks that we just described, non-linear ones ta¥
more time. So, the fewer of them, the faster. Since we cannot do witho® 1. If both

3) one of t
after it.

them, we include at least one. If we had only several non-linear componel}h these ty

working in parallel, then we would never be able to compute a,nythiﬂ?-' linear fr

except functions of one variable. So, we also need some linear blocks " that suc
well. :)

3 : i M 2 Similar]

Let’s show that we must reserve time for at least two linear blot*: combing

. o . . i
Indeed, suppose that the total computation time consists of the tim¢ Univerg;

e

sinovich, A. Bernay pa rallel Algorithms for Interval Computations. . . 37

. function of one one linear block plus the time of one non-linear block. The linear block is
either before the non-linear one or after it. In both cases only a limited set

e would like to| ,f functions can be computed.

t time. Usually |

putational time,{ e If the linear part is before the non-linear part, then the only func-
non-linear func.| tions that we can compute this way are f(z;,... ,Lq) = g(zo+ 1o +
ne. In this case,'1 ++++ ¢c,xy,). These functions have the property that their level sur-
vill therefore be% faces f(z1,...,%,) = const are (hyper-)planes in an n-dimensional

i space. For many important functions of several variables (even for
f(z1,z9) = 2125), this is not true.

1clusion. Hence,!

t functions g(z)l ¢ If the linear part is after the non-linear part, then the only functions

conclusion that{ that can be computed this way are f(21,...,2,) = ¢o + c1g1(x1) +

the same family| ++++Cngn(@n). Each of these functions has the following property: its

: partial derivatives §%f/ Ox;0z; = 0 if i # j. Many important func-

we must design tions (including the same function f (%1,22) = z129) do not satisfy
pes: this property.

transform input| Therefore we require at least two linear steps.

! We have just concluded that we need the time for at least three con-
)E sequent blocks: a non-linear step and two linear steps. In what order will

butput y = g(z) . g &
, these components be implemented? In general, there are three possibilities:

1 to the sum of 1) both linear steps are before the non-linear one;

e, the total com-% 2) both linear steps are after a non-linear one;
er of consequent
. the fewer con:g 3) one of the linear steps is before the non-linear one and the other is

mmication time I after it.

|
| The first two possibilities are inadequate for our purpose.
~linear ones tak

nnot do WithOu"! 1. If both linear steps are before a non-linear one, then we can combine

near Componen’fﬁ these two linear steps into one linear step (since composition of two
mpute anythiﬁf; linear functions is again a linear function), and we have already shown
linear blocks a that such algorithms are not universal.

] | 2. Similarly, if both linear steps follow a non-linear step, then we can
vo linear blocks
; j combine these two linear steps into one, and end up with a non-
ts of the time @ . :
L universal configuration.

38 V. Kreinovich, A. Bernal

Therefore one linear step must be before the non-linear one and one after

Finally, we arrive at the following configuration:

1) input n numbers L1, - 29105 .
|

2) K linear elements generate the values yy = wr121+- - -+ Wkn%n +wg"[
1<k<K;

|

3) compute the values z; = g(yx), where g is a given non-linear functim?
(or z, = gr(yx), where all g; belong to a given family of non—hnea}

functions); rlr

: g o 2 |
4) compute a lmear combination of these values z;: y = Wy + Wiz 1
o+ Wgzk. |

As a result, we compute the following function:

k=1 =1

K n |
y=Wo+ > Wig (Z Wi + wko) : '

This configuration is exactly a 3-layer neural network.

Our justification of the above-given three-layer configuration was thal
fewer layers were not sufficient to represent an arbitrary function. Hornil
et al in [35] answer the sufficiency question for a 3-layer network by provin|
that an arbitrary continuous function f defined on an n-dimensional cub
can be, for every ¢ > 0, c-approximated by an appropriate neural networ]i'.gii

(What we described is a mainstream model of neural networks. In man|
cases, more complicated model are used.) }

A=

The results from [35] assume that the function g computed by a nol
linear component of a network is precisely known. In real life, Whethf’%
we compute it on a hardware device, or in software, we obtain only ol
approximation to g. In other words, instead of a function g, we know a
interval function G(z) = [¢7(z), g7(z)], and the only thing we know abolla
the actual g is that g(z) € G(z) for all z. Can we still find a neural netwoﬁ
design that will guarantee that we approximate a given function f Wlth!
given accuracy €7

Of course, if this interval is large, and the desired accuracy € is smal;
then we cannot guarantee thls accuracy. So, the question is: is it poss1b

My T

Parallel Al

for every
neurons, .
computin
The 11
familiar v
Statec

and y, th
function

Since
processin
surement
1s e-close

This 1
not give ¢
first desc
[63] and

5.6.1 T

Suppose
a neural
tations f
of z;, the
describec

Two ¢

1. Ap
put
line
val
Th
tat:
tha

i

|
reinovich, A. Berna._t_:

J.'
ne and one afte,|
{
|
|
:

v Wepy +'wﬂh$
!

»n-linear functig

aily of non—].inea’

!=W0+W121+

ruration was thy
function. Horni
twork by provin
dimensional cu
e neural nefwor

etworks. In man

aputed by a no
real life, wheth
e obtain only af
n g, we know a
g we know abo
a neural networ
function f with

T m—

curacy € is smal
11s: is it possibl

e A =

Parallel Algorithms for Interval Computations. . . 39

for every €, to find the design and the necessary accuracy of the component
neurons, 1.e., accuracy ¢ with which we can compute g, that will guarantee
computing f with accuracy 7.

The intuitive answer that comes to mind is “yes” (particular for those
familiar with approximation theory); this answer is proven in [92, 96].

Stated more formally: if we know a function f that relates zi,...,z,,
and y, the~n for every € > 0, there exists a neural network that computes a
function f(zi,...,z,) with a property that

~

|f(x1,. - 20) = f21,. .0, 2)| < e
Since the main problem that we are dealing with was the problem of
processing measurement results, we are talking about approximate mea-
surements, and so, if ¢ is small, it is quite sufficient to have a function that
is e-close to f.

This result proves that there exists such a neural network, but it does
not give an algorithm for constructing this network. Such an algorithm was
first described in [46, 53]. A modification of this algorithm is presented in
[63] and [73].

3.6.1 Neural computations & intervals

Suppose that we have already implemented an algorithm f (21,...,Zy) as
a neural network ang desire to solve the basic problem of interval compu-
tations for this algorithm: If we know the intervals X; of possible values
of z;, then what is the interval Y of possible values of y? This problem is .
described in [27].

Two solution strategies are:

N

1. Apply a method that is similar to the standard idea of interval com-
putations: follow the algorithm, and for all its components, i.e., for
linear combinations, and for g(x), compute the interval of possible
values of the result based on the input intervals.

Thus we obtain an interval F' O Y with no big increase in compu-
tation time. However, the resulting interval F' may be much wider
that Y.

40

V. Kreinovich, A. Bernat

2. If the intervals are sufficiently narrow (so that terms quadratic in Az;,

can be neglected), there is another possibility: to apply a Monte-
Carlo style method {4648, 50]. This method requires that we run
several processes of computing f in parallel, and then process the
results. So, we need to duplicate the original neural network as many
times as we need to repeat the computations, and then add one more
neural network to process the results. In comparison with the first
idea, we spend more computation time and use more processors. But
as a result, we get the exact value of Y (or, to be more precise, the
value of ¥ that is accurate if we can neglect terms quadratic in Az;).

Several applicatons of these ideas have been presented.

o The general idea of how to apply neural networks to controlling plants

with interval uncertainty is described in [55]:

1) train a neural network to simulate an object;

2) apply minimization techniques to find the optimal control.

e [55] describes the problem of stabilizing vibrations in large space

structures.

e [76] describes a problem in radiation therapy: we have 360 pencil

beams. We must select the intensities so that the effect is desirable.
Neural network is used to learn how.to do that.

Improving interval estimates with
parallelism

The basic problem of interval computations, given an algorithm f and
intervals Xi,..., Xy, is to find an interval F O f(X;,...,X,). The tradi-
tional methodology to solve this problem consists of following an algorithm
f step-by-step, but using on each step operations with intervals instead of
operations with numbers. This methodology leads to overestimated inter-
vals F' because:

| Parallel Algorith:

T e e ——— T

- 6.1

1. The met]
vals that
may not
we subtr:
The resu

2. If an alg
‘of possib
intervals
gorithm
fi= &
we have
that coni

In the next tw

posed to overce
methods.

Hans:

. A method to ¢

The main idea
tional step, we
the input valuc

To be mor
and a function
each step, inst
of the type A
A, is a non-ne
that are quadr
Ti € X;, the va
oAz, + Qay W.
(this represent,
4 partial deriv:

In particul:

ich, A. Bernat

ratic in Ax;,
y a Monte-
shat we run
process the
rk as many
1d one more
ith the first
sessors. But
precise, the
wtic in Az;).

lling plants

ontrol.

large space

360 pencil
is desirable.

thm f and

The tradi-
n algorithm
s instead of
1ated inter-

N e

' and a function f, and we are interested in estimating f(Xj,...

!
Ir parallel Algorithms for Interval Computations. .. 41

' 1. The methodology does not take into consideration that we the inter-
!- vals that we obtained at the intermediate steps of an algorithm f,
" may not be independent. For example, if f =z — 2 and X = [0,1],
we subtract [0,1] from [0,1] using the formulae of interval arithmetic.
The result is F' = [~1,1], while the correct answer f(X) =[0,0]. -

| 2. If an algorithm has a branch, i.e., an if-then statement, then the set
‘of possible results is not an interval but a union of several disjoint
intervals that correspond to different cases. For example, if our al-
gorithm computes the square root of z; and then “if zo > 0 then
f = /z1 else f := —,/2z1”, then for X; = [1,2] and X, = [-1,1],
we have f(X1, Xs) = [-v?2,—1] U[1,+/2], while the smallest interval
that contains this set ([—v/2,v/2]) contains many extra elements.

In the next two subsections, we will describe methods that have been pro-
posed to overcome these problems and we will show how to parallelize these

. methods.

' 6.1 Hansen’s method

A method to overcome the first problem was proposed by Hansen in [2§].

i The main idea of Hansen’s method is that at each intermediate computa-

' tional step, we keep track of the dependency of the result of this step on
the input values z1,...,z,.

To be more precise, we assume that we have n intervals X;,..., X,
, Xn). At
each step, instead of intervals, we are dealing with “generalized intervals”
of the type A = (a,ay,...,an, A,), where a and a; are real numbers, and

| A, is a non-negative real number (that is supposed to bound the terms
| that are quadratic in Az;). This interval means that for arbitrary values

z; € X;, the value of the auxiliary variable a is equal to @ + a;Azy + -+ - +

(this representation coincides with linear order terms in Taylor series; a; is

i

!

k 0, ATy + ¢q, Where |gq| < Ay, Az; = & — x;, and Z; is the midpoint of X;
t

|

. a partial derivative of a with respect to z;).

In particular, since x; = &; — Ax;, we thus represent z; as

(5:1307 0% ¢)07 —I(at the i-th pIacé)707 O aOaO)'

A3

O

12

2 V. Kreinovich, A. Berng

Arithmetic operations are defined in a natural way.

o lfa=a+aAz1 4+ +a,Az, + ¢, lga| < Ay, and b = b+ blAml +
4 b Az, + g, Ile < B, thena+b= (a+b)+(a1+b1)A:v1+
(an + bn)Azy + (¢a + @) Since |gq + @] < |ga] + |gs] < A, + - By, wi
can define addition of generalized intervals as (&, d, 4,) + (b b ,By) =
(6+b,d+ b, A; + B!

e A similar formula works for subtraction:
(a,d, A)) -

(6,5,B,) = (6 — b,@ — b, 4, — B,).

e For multiplication, the formula is slightly more complicated: *

ab = (d—l—alAa:l—i— +anA:cn+qa)(l;+b1Ax1+ -+ b, Axn—l-q
= (a+a- Ax+qa)(b+b Ax+qb)—ab+(ab+ba) Az +gq]

where ¢ = (d - Az + qa)(g- Ar + @) + (agy + I;qa). Since |Az;| < A
we can conclude that :

@ Az| =

la1Azy + -+ + a,A,| < la1]A1 4+ + |an| A,
Likewise, |b - Az| < |b1]A1 + - - -+ |ba] A,.. Therefore,
lal < (lafAs+ -+ |an|An + A) (11| A1 + -+ + [ba] Ay + B,) |

+lal4, + |b|B,
and we can define mulfiplication as

AB = (a,d, A,)(b,5, B,) = (ab,ab + b, (4B),) F.

where (AB), denotes the following expression: |
(lonfAr 4+ lan|An 4+ A) (b1 Ay +- -+ by An + By) + [a| A, + [b| B}

e Similar estimates are obtained for division, and for the applicatio’f
of elementary functions.

Parallel Alg

In the
by A, ant

which twe

Hanse
tional int
tional tin
numbers

Addit
n + 2 prc
multiplic:
(and is tk
combinat
Since a v
the paral
paralleliz

6.2 M
p

If we wisl
consider
intervals
g are def
intervals

1£+75-
Jj, these

The
(see also
compute

[

‘reinovich, A. Bery,.|
b
i

1b=b+bAz
1+b1)A$1+,{:
Bl < Ay + By, wi
AQ) +(ga (-;7 Bq) QI

=

=iy,

iplicated:

-+ b, Az, +
+ba)-Ax+q

Since [Az;| < A

o+ |an|A,.

T T T — -—==-.=—-mﬂ-—'-—wg—.-—-—-_.,

=Y
4

+ |bn|An + By)

4B),)

)+ 184, +[b| By

i
I
|

r the application

!.

|
1

Parallel Algorithms for Interval Computations. . . 43

In the method as described, quadratic terms are bounded from above
by Ay and from below by —A,. There exists a version of this method in
which two different numbers are used for the lower and upper bounds.

Hansen’s method leads to much better estimates for F' than the tradi-
tional interval techniques. However the method takes excessive computa-
tional time: for every operation, we need at least n + 1 operations with
numbers instead of one. For large n, this is significant.

Addition and subtraction are defined component-wise, so we can use
n + 2 processors to make these additions and subtraction in parallel. For
multiplication C' = AB, computing ¢ and ¢ is also done component-wise
(and is thus parallelizable). Computing C, consists of computing two linear
combinations, and we already know how to parallelize such computations.
Since a vector part of the generalized interval contains partial derivatives,
the parallelization of this part is done in exactly the same manner as the
parallelization of automated differentiation.

6.2 Multi-interval computations and their
parallelization

If we wish to avoid the second problem, then, instead of an interval, we must
consider finite unions of intervals 7 = UI;. Such unions are termed mult:-
intervals. Arithmetic operations op and application of elementary functions
g are defined for multi-intervals 7 and 7 in the same manner as for regular
intervals: op(Z,J) = {op(z,y) |z € I,y € J} and g(Z) = {g(z) |z € T}.

If 7 = UI; and*J = UJ;, then in terms of component intervals I; and
Jj, these'operations take the following form:

e 9(Z) = Ug(I;); the result is a multi-interval with component intervals
g9(I;); For different 1, these intervals can be computed in parallel;

e op(Z,J) = Uop(I;, J;); the result is a multi-interval with components
Op(Ii, JJ)

The idea of computing multi-intervals in paralleal is described in [113]
(see also [93]), where it is shown that each elementary step of multi-interval
computation can be computed in parallel.

44 V. Kreinovich, A. Bernat

e For ¢(7), component intervals I; for different i can be computed in
parallel. :

e For op(Z,J), component intervals op(I;, J;) for each pair (z,5) can
be computed in parallel.

6.3 Multiple methods and their parallelization

We have already mentioned that if we compute an estimate F for
f(X1,...,X,) using different techniques, and then take the intersection,
this will often result in a better estimate F. By “using different tech-
niques”, we mean one of the following options:

e applying one and the same method (e.g., naive interval computa-

tions) to different expressions that represent the same function f
(e.g., z1(x2 + z3) as opposed to z1z9 + z123); or

e applying different version of a method (e.g., different interval iterative
algorithms) to one and the same expression; or

e applying different methods (e.g., naive interval computations and
Hansen’s method) to one and the same expression; or

¢ applying different methdos to different expressions.

Since all these methods can be run in parallel, we do not lose any
computational time. An important particular case of this idea ([118]) is
when parallel computers actually compute different sets containing the
desired results: e.g., one computer computes a rectangle that contains the
desired pair (z1,22), another computer computes a circle, the third one
uses ellipsoid arithmetic to compute an ellipsoid that contains (zi,zs),
and the fourth may compute an analytical expression for the result. These
parallel processes represent, so to say, different aspects of localization, so
their simultaneous computation is called multi-aspectness in ([118]).

Some of these methods are iterative; for example, some interval com-
putation techniques for finding a root z of a function lead to a sequence of
decreasing intervals each of which contain the desired root. On each step,
we use the previously computed interval to compute the updated (smaller)

T T N S R T - i T F— A

Parallel A

one. If

soon as

can forw
use this .
Thus, w
ideas we
the aboy

It iss
this inte
(or a sys
equatior
z (to +A
with the
intervals
estimate
different

This
problem
and if w
errors (:
empty, t

7 H

We have
essential
cation s
paralleli
the com
time, ar
problem
a paralle

In t}
the gene

ich, A. Bernat

omputed in

ir (4,7) can

on

1ate I fo;
ntersection,
‘erent tech-

1 computa-
function f

ral iterative

ations and

t lose any
a ([118]) is
;alning the
ontains the
» third one
1s (z1,22),
sult. These
lization, so
18)).

erval com-
iequence of

each step,
d (smaller)

T—S

———

T——

-

—— e r———

Parallel Algorithms for Interval Computations. . . 45

one. If we have several iterative algorithms working in parallel, then as
soon as one of them computes a new iteration (i.e., a new locus for z), it
can forward this locus to other algorithms, and these other algorithms can
use this locus in their own computations (this idea is called recomputation).
Thus, we have another example of wave computations. These (and similar)
ideas were described in [114-118] (they can be used in conjunction with
the above-described case of wave computations).

It is not necessary to wait until the very end of computation to calculate
this intersection. Suppose, e.g., that we are solving a differential equation
(or a system of such equations). The majority of methods for solving these
equations consist of computing the values of the unknown functions Z(#),
Z(tp+At), ..., in consequent moments of time. If we use different methods
with the same integration step At, then after each step, we can intersect the
intervals obtained by different methods and thus obtain a better interval
estimate for z(¢). This idea allows us to avoid the “wrapping effect” for
differential equations (see, e.g., [62, 116, 117]).

This idea can be also used as a test for the consistency of the original
problem (if the intersection is empty, then this problem is inconsistent),
and if we know that the problem is consistent, as an additional test for
errors (if we know that a problem is consistent, and the intersection is
empty, that means that we have made a mistake somewhere).

7 Hardware

We have already mentioned that the efficiency of a parallelization depends
essentially on how many communication steps we need. Since a communi-
cation step usually takes much more time than a computation step, each
parallelization that creates new communication steps runs the risk that
the communication time will exceed the expected decrease in computation
time, and therefore, the resulting algorithm will not be efficient. So, the
problem of choosing an approproate hardware is crucial for the success of
a parallel algorithm. ‘

In this section, we will briefly describe the existing choices, both for
the general case and for specific parallel interval algorithms. These specific

16 V. Kreinovich, A. Bernat

architectures will be described in the same order in which the corresponding
algorithms were described in the text.

7.1 (General case

For a general case, the possibility of using transputers for interval com-
putations is described in [13]. More precisely, this paper deals with the
possibility of adding the possibility of parallel computation on transputers
to the interval modification of Pascal, PASCAL-XSC.

7.2 Interval linear operations

One can use transputers and s1ill gain a reasonable speedup ([13, 100]).
Another possibility is to use a more specialized hardware.

When we are solving interval linear problems, the main computational
operations are linear operations with real numbers. Therefore, we can use
hardware that is specially taylored to linear operations: so-called wector
processors. They are efficient for normal linear comiputations, and it turns
out that they are very helpful for interval linear computations as well (see,
e.g., [89]).

Vector progcessors are usually designed with operations on real numbers
in mind: This design may be the best in terms of the speedup of linear
operations with real numbers, but not in terms of operations of intervals.

So, it is desirable to design a vector processor that will be specially suited
for linear interval computations.

We have already mentioned that the typical linear operation

f(x1,...,2,) consists of computing the value ciz; + - -+ + c,z,. In other
words, a typical linear operation is a scalar (dot) product c - z, where
c=(c1,..-,¢,) and z = (xy,...,2,). An ideal processor for computing an

interval scalar product is described in [6] and [51].

Linear operations are important not only because we often need to
estimate the value f(X),...,X,) for a linear function f, but also because
linear operations are part of other (more complicated) algorithms. These
algorithms include different operations with vectors and matrices (e.g.,
solving a system of linear equations). [37] and [38] described how to design

i.P.:fa.rad!'fel Algorithm

{'a vector proces;
fast and with c

7.3 Al ap

‘One of the mai
applications, a
related parts. T
handle this par
connection sche

If two parts
corresponding -
imake a direct
only one step. |
common, and t
makes no sense
and this “eats u
between the prc
between the p:
described, e.g.,

7.4 Mont:

A specific featt
equire any con
Pendently, and

¢ in the bey

® at the en

and proce
]
~ Since there
itlnle), so the 1
10 protocols af
Wehitectyre is

,, A. Bernat

ssponding

rval com-
with the
ansputers

13, 100)).

yutational
‘e can use
ed wvector
d it turns
well (see,

-numbers

of linear
intervals.
lly suited

operation
In other
x, where
puting an

1 need to
> because
1s. These
ces (e.g.,
to design

I yarallel Algorithms for Interval Computations. . . 47

. yector processor that would compute the matrix and vector operations
ifﬂﬁt and with correct interval estimates.

7.3 Al applications

One of the main sources of parallelism in AI applications is that in these
applications, a knowledge base can be often divided into several weakly
elated parts. Therefore, we can assign to each part a processor that would
handle this part of the database. The key, therefore, is the inter-processor
connection scheme.

If two parts have something in common, so that from time to time, the
corresponding processors need to exchange information, then we better
imake a direct link between them, so that the communication will take
only one step. On the other hand, if two parts have practically nothing in
common, and therefore hardly even communicate with each other, then it
rakes no sense to add a link (because an extra link has to be maintained,
and this “eats up” additional computer time). So, the graph of connections
etween the processors must be ideally the same as the graph of connections
vetween the parts. This specialized (domain-dependent) architecture is

. ldescribed, e.g., in [54] and [99)].

7.4 Monte-Carlo methods

A specific feature of Monte-Carlo methods is that they practically do not
require any communication at all: each of the processors computes f inde-
pendently, and we only need communication at two moments of time:

¢ in the beginning, when we pass the data to all the processors, and

e at the end, when we collect the results y* from all the processors,
and process them to compute y. ;

Since there is no necessity for complicated protocols (that use processor
E‘time), so the ideal architecture for Monte-Carlo problems would require
10 protocols at all: we just pass the data, and then collect it. Such an
architecture is described in [46-48].

18 V. Kreinovich, A. Bernat
|

If we must use a non-ideal architecture, we must design the routing |
algorithms that will be the best for Monte-Carlo applications. Such routing |
is described in [101] and [102]. t
|
!
In addition to transputers [9], the main choice here is between centralt
(master-slave) and truly distributed computing. Each of this methods has {
4

7.5 Optimization problems

its advantages and’disadvantages (a comparison is made in {32]).

o In master-slave configurations, the central processor is in control all
the time. '

— The advantage is that the central processor has all the informa- |
tion about all the processors, and can thus make truly optimal |
decisions on the job distribution.

— The disadvantage is that the only way for two neigboring pro-
cessors to communicate with each other is to ask the permission
of the central “bureaucrat”.

o In truly distributing computing, procesors can frecly communicate
and share resources.

— The main advantage is that this configuration enables the neigh-
boring processors to share the workload with practically no time
wasted on delayed communications with the center.

— The main disadvantage is that in such a system, there is no one |
to see the big picture, and to suggest non-trivial optimal global |
L ! 4 . |
job distribution. :

An ideal possibility would be to combine the advantages of both approaches |
(this avoiding the drawbacks of both anarchy and autocracy), but how to|
do this is an open problem.

7.6 Neural networks z
i:

The very idea of a neural network, in which only two basic operations ar¢|
performed, prompts the necessity for a special hardware. Several hardware |

|

Parallel A

impleme
taylored

8 S

Since pe
nice to
There e
guages (

XSC iS {

For 1
[10, 11].

Ackr

This wo
authors
special

e th

o
“I
fe:

o Sl
o A
o E

10ovich, A. Bernag |

sn the routing
.. Such routing

etween central
s methods has

[32])-

s in control all

11 the informa-
: truly optimal

eigboring pro- |

the permission
* communicate |

bles the neigh-
tically no time
J€r.

there is no one
optimal global

oth approaches
y), but how to

T

e —————

operations are
veral hardware|

]

i

Parallel Algorithms for Interval Computations. .. 49

implementations of neural networks are known. A hardware idea that is
taylored to interval neural computations is described in [27].

8 Software

Since parallellism is so important for interval computations, it would be
nice to have a programming language for parallel interval computations.
There exist several interval extensions of well-known programming lan-

guages (PASCAL-XSC, C-XSC, etc). A parallel extension of PASCAL-
XSC is described in [14].

For further ideas, see [117]. For a more general parallel language, see
[10, 11]. -

Acknowledgments

This work was partially supported by NSF grant No. CDA-9015006. The
authors are greatly thankful to many researchers who helped with this
special issue. Especially, we want to thank:

e the anonymous referees;

e Prof. Dr. J. Wolff von Gudenberg who organized a special session
“Languages for parallel scientific computaion” at the CSAM’93 con-
ference in St.Petersburg;

Slava Nesterov for his encouragement;

Alexander Yakovlev for his valuable comments, and

Eldar Musaev for the complicated task of supervising this issue.

References

[1] Alefeld, G. and Herzberger, J. On the convergence speed of some

algorithms for the simultaneous approzimation of polynomial roots.
SIAM Journal of Numerical Analysis 11 (1974), pp. 237-243.

4 3akas 3

50

2]

3]

[4]

3]

[6]

8]

[9]

[10]

V. Kreinovich, A. Bernat

Alefeld, G. and Herzberger, J. Uber Simultanverfahren zur Bestim-
mung Reeler Polynomwurzeln. Z. Angew. Math. Mech. 54 (1974),
pp. 413-420.

Babichev, A. B., Kadyrova, O. B., Kashevarova, T. P., Leshchen-
ko, A.S., and Semenov, A. L. UNICALC, a novel approach to solv-
ing systems of algebraic equations. Interval Computations (2) (1993),
pp- 29-47.

Beeck, H. Parallel algorithms for linear equations with, not sharply
defined data. In: Feilmeier, M. (ed.) “Parallel Computers — Parallel
Mathematics. Proceedings of the IMACS (AICA)-GI Symposium,
March 14-16, 1977, Technical University of Munich”, North Holland,
Amsterdam, 1977, pp. 257-261.

Bernat, A., Cortes, L., Kreinovich, V., and Villaverde, K. Intelligent
parallel simulation — a key to intractable problems of information
processing. In: “Proceedings of the 23-rd Annual Pittsburgh Confer-
ence on Modelling and Simulation, Pittsburgh, PA, 1992, Part 27,
pp- 959-969.

Bohlender, G. and Griiner, K. Realization of an optimal computer
arithmetic. In: Kulisch, U. and Miranker, W. L. (eds) “A New Ap-
proach to Scientific Computation”, Academic: Press, Orlando, FL,
1983, pp. 247-268.

Braes, D. and Hadeler, K. P. Simultaneous inclusion of the zeros of
a polynomial. Numer. Math. 21 (1973), pp. 161-165.

Caprani, O., Godthaab, B., and Madsen, K. Use of a real-valued local
minimum in parallel mterval global optimization. Interval Computa-
tions (2) (1993), pp. 71-82.

Caprani, O. and Madsen, K. Performance of an Occam/transputer
implementation of interval arithmetic. In: “Abstracts for an Inter-
national Conference on Numerical Analysis with Automatic Result
Verification: Mathematics, Application and Software, Lafayette, LA,
February 25 — March 1, 19937, p. 12.

‘Cooke, D. A high level language to deal with maultisets: discrete analog

of intervals. In: “Abstracts for a Workshop on Interval Methods in .

|

§
]

Parallel Algor

AI‘tiﬁl
p. 10.

[11] Cooke

cation
appea

[12] Cortes

compr
true. 1
Intelli

[13] David.
puter
Interv:

VAL’9

[14] Davide
Compn

[15] Erikssc
tation
Compt

[16] Fomin,
Cauchy
plemen
ceeding

pp. 62-
[17] ' Fomin,
algebra
Moscow

[18] Fomin,
an inte
ety
Russian

[19] Gagano
nomial
4q*

wich, A. Bernat

v zur Bestim-
1. 54 (1974),

P., Leshchen-
roach to solv-
ns (2) (1993),

h not sharply
rs — Parallel
Symposium,

orth Holland,

K. Intelligent
f information
wurgh Confer-
992, Part 27,

nal computer
“A New Ap-
Orlando, FL,

f the zeros of

l-valued local
val Computa-

m/transputer
for an Inter-
matic Result
afayette, LA,

i1screte analog

1 Methods in

[

J

Parallel Algorithms for Interval Computations. . . o1
Artificial Intelligence, Lafayette, LA, Febrﬁary 25 — March 1, 1993”,
p- 10. ;

[11] Cooke, D. The term semantics of a high level language with appli-
cations to interval mathematics. Interval Computations (1995) (to
appear).

[12] Cortes, L. How to design an expert system that for a given query Q,
computes the interval of possible values of probability p(Q) that Q is
true. In: “Abstracts for a Workshop on Interval Methods in Artificial
Intelligence, Lafayette, LA, February 25 — March 1,1993”, p. 11.

[13] Davidenkoff, A. Parallel programmang wn PASCAL-XSC on a trans-
puter system. In: “Proceedings of the International Conference on
Interval and Stochastic'Methods in Science and Engineering INTER-
VAL’92”, 2 1992, Moscow, pp. 17-18. ‘

[14] Davidenkoff, A. Parallel programming in PASCAL-XSC. Interval
Computations (to appear).

[15] Eriksson, J. and Lidstrom, P. A parallel interval method implemen-
tation for global optimization using dynamic load balancing. Interval
Computations (1995) (to appear).

[16] Fomin, Yu. I. and Cherkasov, A. A. Parallel methods for solving the

- Cauchy problem for ordinary differential equations in interval im-
plementation. In: “Program Systems of Mathematical Physics. Pro-
ceedings of the 8th USSR National Workshop”, Novosibirsk, 1984,
pp. 62-69 (in Russian).

[17](Fomin, Yu. . and Kodachigova, L. K. A sweep method for linear
algebraic system with strongly sparse tri-diagonal matriz. VINITI,
Moscow, Taganrog, 1988, Publ. No. 3692-B88 (in Russian)

[18] Fomin, Yu. I. and Kodachigova, L. K. An interval sweep method for
an nterval linear algebraic system with strongly sparse tri-diagonal
- swnatriz. VINITMéscow, Taganrog, 1988, Publ. No. 3694-B&8 (in
Russian).
[19] Gaganov, A. A. Computational complexity of the range of the poly-
nomial in several variables. Cybernetics (1985), pp. 418-421.

4*

92

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

V. Kreinovich, A. Bernat
"
Gargantini, I. Parallel algorithms for the determination of polynomial
seros. In: Thomas R. S. D. and Williams H. C. (eds) “Proceedings of
the 3rd Manitoba Conference on Numerical Mathematics, Winnipeg
1973, Part VIII”, Utilitas Matematic Publ., 1974, pp. 195-211.

Gargantini, 1. Parallel square root iterations. In: Nickel K. (ed.)
“Interval Mathematics”, Lecture Notes in Computer Science 29,
Springer-Verlag, 1975, pp. 196-204.

Gargantini, L. Comparing parallel Newton’s methods with parallel La-
guerre’s method. Comput. Math. Appl. 2 (1976), pp. 201-206.

Gargantini, I. Parallel Laguerre iterations: the complex case. Numer.
Math. 26 (1976), pp. 317-323.

Gargantini, I. The numerical stability of simultaneous iterations via
square-rooting. Comput. Math. Appl. 5 (1979), pp. 25-31.

Gargantini, I. Parallel square-root iterations for multiple roots. Com-
put. Math. Appl. 6 (1980), pp. 279-288.

Garey, M. and Johnson, D. Computers and intractability: a guide to
the theory of NP-completéness. Freeman, San Fransisco, 1979.

Gulati, S., Gemoets, L., and Villaverde, K. Error estimates for the
results of intelligent data processing, especially neural networks. In:
“Abstracts for a Workshop on Interval Methods in Artificial Intelli-
gence, Lafayette, LA, February 25 — March 1, 1993”, p. 13.

Hansen, E. R. A generalized interval arithmetic. In: K. Nickel (ed.)
“Interval mathematics”, Lecture Notes in Computer Science 29,

Springer-Verlag, 1975, pp. 7-18.

Haque, A. L. M. S. Parallel Laguerre’s method for multiple zeros: .

implementation and test of the algorithm. Master Thesis, Depart-
ment of Computer Science, Faculty of Graduate Studies, University
of Western Ountario, London, Canada, 1980.

[30] Henrici, P. Uniformly convergent algorithms for the simultaneous de-

termination of all zeros of a polynomial. In: Ortega, J. W. and Rhein- |

boldt, W. C. (eds) “Studies in Numerical Analysis 2, Numerical So-

lutions of Nonlinear Problems”, SIAM, Philadélphia, 1970, pp. 1-8.

!
|

L

Parallel Algc

[31] Henr
the s
jon,
ment

Henr

for p
Conf

neeri

32

[33] Herz
mat .

(197

[34] Herz

zero

“Par
IMA
Marc

[35]

Horn
netzb
pp. 4
[36] JaJa
Read

[37] Kircl
“Pro
Italy.

[38] Kircl
Moo
Metk
1988

[39] Kod:
algeb
Mosc

[40] Kod:
paral

vich, A. Bernat

of polynomial

roceedings of

cs, Winnipeg
95-211.

ckel K. (ed.)
Science 29,

h parallel La-
01-206.

case. Numer.

iterations via

31.

e roots. Com-

ty: a guide to
y, 1979.

mates for the
networks. In:

tificial Intelli-
p- 13.

.. Nickel (ed.)

r Science 29,

nultiple zeros:

1esis, Depart-
es, University

wiltaneous de-
W. and Rhein-

Numerical So- |

1970, pp. 1-8.

| 4

|

parallel Algorithms for Interval Computations. ..

31]

32

[33]

[34]

[35]

[36]

[37]

[38]

39

[40]

93

Henrici, P. and Gargantini, I. Uniformly convergent algorithms for
the simultaneous approzimation of all zeros of a polynomial. In: De-
jon, B. and Henrici, P. (eds) “Constructive Aspects of the Funda-
mental Theorem of Algebra”, Wiley, London, 1969, pp. 77-113.

Henriksen, T. and Madsen, K. Combined real and interval methods
for parallel global optimization. In: “Proceedings of the International

Conference on Interval and Stochastic Methods in Science and Engi-
neering INTERVAL’92”, 2 1992, Moscow, pp. 30-32.

Herzberger, J. Uber eiﬁ Verfahren zur Bestimmung Reeler Nullstellen

mat Anwendung auf Parallelrechnung. Elektron. Rechenanlangen 14
(1972), pp. 250-254. '

Herzberger, J. Some multipoint-iteration methods for bracketing a
zero with application to parallel computation. In: Feilmeier, M. (ed.)
“Parallel Computers — Parallel Mathematics, Proceedings of the
IMACS (AICA)-GI .Symposium, Technical University of Munich,
March 14-16, 1977”7, North Holland, Amsterdam, 1977, pp. 231-234.

Hornik, K., Stinchcombe, M., and White, H. Multilayer feedforward
networks are universal approzimators. Neural Networks 2 (1989),
pp. 359-366. '

JaJa, J. An introduction to parallel algorithms. Addison-Wesley,
Reading, MA, 1992.

Kirchner, R. and Kulisch, U. Arithmetic for vector processors. In:
“Proceedings of the 8th Symposium on Computer Arithmetic, Como,
Italy, May 1987”, IEEE Computer Society, 1987.

Kirchner, R. and Kulisch, U. Arithmetic for vector processors. In:
Moore, R. E. (ed.) “Reliability in Computing. The Role of Interval
Methods in Scientific Computing”, Academic Press, Boston, N.Y.,

1988, pp. 3-41. -

Kodachigova, L. K. and Fomin, Yu. I. A solution estimate for linear

algebraic interval system by parallel interval sweep method. VINITI
Moscow, Taganrog, 1988, Publ. No. 3341-B88 (in Russian).

Kodachigova, L. K. and Fomin, Yu. I. On stability of some methods
parallelizing the sweep and the estimation of the solution width for

o4

[41]

V. Kreinovich, A. Bernat

a tri-diagonal interval linear algebraic system. In: Zyuzin, V. S,
Ermakov, O. B., and Zakharov, A. V. (eds) “Proceedings of the
Conference on Interval Mathematics, Saratov, May 23-25, 19897,
pp. 22-25 (in Russian).

Kohout, L. J. and Stabile, 1. Interval-valued inference and informa-
tion retrieval in medical knowledge-based system CLINAID. In: “Ab-
stracts for a Workshop on Interval Methods in Artificial Intelligence,

Lafayette, LA, February 25 — March 1, 19937, p. 16.

[42] .

[43]

[44]

[4]

[46]

Kohout, L. J. and Stabile, L Interval-valued inference in medi-
cal knowledge-based system CLINAID. Interval Computations (3)
(1993), pp. 88-115.

Kohout, L., Stabile, I., Kalantar, H., San-Andres, M. F., and Ander-
son, J. Parallel interval-based reasoning in medical knowledge-based
system CLINAID. Interval Computatiofis (1995) (to appear).

Koparkar, P. A. and Mudur, S. P. A new class of algorithms for
the processing of parametric curves. Computer-Aided Design 15 (3)
(1983), pp. 41-45. :

Koparkar, P. A. and Mudur, S. P. Subdiwvision techniques for process-
ing geometric objects. In: Earnshaw, R. A. (ed.) “Fundamental Algo-
rithms for Computer Graphics. Proceedings of the NATO Advanced
Study Institute. Ilkley, Yorkshire, England, March 30 — April 12,
1985”, Springer-Verlag, Berlin, Heidelberg, 1985, pp. 751-801.

Kreinovich, V., Bernat, A., Villa, E., and Mariscal, Y. Parallel com-
puters estimate errors caused by émprecise data. In: “Proceedings of
the Fourth ISMM (International Society on Mini and Micro Comput-
ers) International Conference on Parallel and Distributed Computing
and Systems, Washington, 1991” 1, pp. 386-390.

Kreinovich, V., Bernat, A., Villa, E., and Mariscal, Y. Parallel com-
puters estimate errors caused by imprecise data. Interval Computa-
tions (2) (1991), pp. 31-46.

Kreinovich, V., Bernat, A., Villa, E., and Mariscal, Y. Parallel com-
puters estimate errors caused by imprecise data. In: “Technical Pa-

pers of the the Society of Mexican American Engineers and Scien-

Parallel Alg

[51]

[52]
[53]

[54]

[55]

[56]

57

tists
pPp-

Kre

of
tati

‘Kre

nd
mel

Kul
t1o1
(ed
Orl

Ku
3(
Ku
Nex
Las
ma
anc
pPp.

La;
ter
on

em

Lec
str.

wa.

Le:
tio

vich, A. Bernat

uzin, V. S.,
dings of the
3-25, 1989”7,

md wnforma-
[D. In: “Ab-
Intelligence,

ce in medi-
utations (3)

and Ander-
wledge-based
year).

jorithms for
esign 15 (3)

for process-
nental Algo-
J Advanced
— April 12,
[-801.

arallel com-
rceedings of
ro Comput-
Computing

arallel com-
1 Computa-

arallel com-
chnical Pa-

and Scien-

R e T

parallel Algorithms for Interval Computations. . .

49]
50]

[51]

52)
[53]

[54]

[55]

[56]

[57]

99

tists 1992 National Symposium, San Antonio, Texas, April 1992”,
pp. 192-199. '

Kreinovich, V., Lakeyev, A. V., and Noskov, S. I. Optimal solution
of interval linear systems 1s intractable (NP-hard). Interval Compu-
tations (1) (1993), pp. 6-14.

Kreinovich, V. and Pavlovich, M. I. Error estimate of the result of
indirect measurements by using a calculational experiment. Measure-

ment Techniques 28 (3) (1985), pp. 201-205.

Kulisch, U. and Bohlender, G. Features of a hardware tmplementa-
tion of an optimal arithmetic. In: Kulisch, U. and Miranker, W. L.
(eds) “A New Approach to Scientific Computation”, Academic Press,
Orlando, FL, 1983, pp. 269-290.

Kurkova, V. Kolmogorov’s theorem is relevant. Neural Computation
3 (1991), pp. 617-622.

Kurkova, V. Kolmogorov’s theorem and multilayer neural networks.
Neural Networks 5 (1992), pp. 501-506.

Lassez, J.-L., Hyunh, T., and McAloon, K. Simplification and elim-
wation of redundant linear arithmetic constraints. In: Lusk, E. L.
and Overbeek R. A. (eds) “Logic Programming. Proceedings of the
North American Conference”, I, MIT Press, Cambridge, MA 1989,
pp- 37-51.

Layne, D. Adaptive predictive control using neural networks and in-
terval optimization. In: “Abstracts for an International Conference
on Numerical Analysis with Automatic Result Verification: Math-
ematics, Application and Software, Lafayette, LA, February 25 —
March 1, 1993”, pp. 55-56.

Leclerc, A. Parallel interval global optimization in C++. In: “Ab-
stracts for an International Conference on Numerical Analysis with
Automatic Result Verification: Mathematics, Application and Soft-
ware, Lafayette, LA, February 25 — March 1, 1993”, p. 57.

Leclerc, A. Parallel interval global optimization and its implementa-
tion in C++. Interval Computations (3) (1993), pp. 148-163.

56

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

67]

V. Kreinovich, A. Bernat

Liu,J. W.S., Lin, K.-J., Shih, W.-K., and Yu, A. C.-S. Algorithms for
scheduling imprecise computations. Computer (May 1991), pp. 58—
68.

Lovrenich, R. Zone logic for manufacturing automation: intervals in-
stead of optimization, goals instead of algorithms. In: “Abstracts for

a Workshop on Interval Methods in Artificial Intelligence, Lafayette,

LA, February 25 — March 1, 1993”, p. 22.

Lyager, E. Finding local extremal points using parallel interval meth-
ods. Interval Computations (this issue) 1994.

Madsen, K. and Toft, O. A parallel method for linear interval equa-
tions. Interval Computations (this issue) 1994.

Menshikov, G. G. Interval co-integration of differential equations con-
nected by a substitution of the variable. In: “Proceedings of the Inter-

national Conference on Interval and Stochastic Methods in Science
and Engineering INTERVAL’92”, 2 (1992), Moscow, pp. 75-77.

Mines, R., Nakamura, M., and Kreinovich, V. Constructive proof
of Kolmogorov s theorem, neuml networks and mter'uals In: “Ab-
stracts for a Workshop on Interval Methods in Artlﬁcml Inte]llgence
Lafayette, LA, February 25 — March 1, 1993”, 24 25.

Moore, R. E. Interval analysis. Prentice Hall, Englewood Cliffs, NJ,
1966. -

Moore, R. E. Simple simultaneous super- and subfunctions. In:
Garloff, G. et al (eds) “Collection of Scientific Papers Honoring Prof.
Dr. K. Nickel on Occasion of His 60th Birthday. Part I”, Inst. f.
Angew. Math., Universitat Freiburg I. Br., 1984, pp. 259-274.

Morlock, M. Uber das Newton-Simultanferahnen und Seine Anwen-
dung auf die Abgebrochene Exponentialreihe. Diploma, Institute for
Informatics, University of Karlsruhe, 1969.

Mudur, S. P. and Koparkar, P. A. Interval methods for processing
geometric objects. IEEE Transactions on Computer Graphics and
Applications 4 (2) (1984), pp. 7-17. '

|
|

[68]

[69]

[70]

Parallel Algor

Musax
ings c

1990”
Musa

lems

Confe

sian).

Musa

* tional

[71]

[72]

[73]

74

75

76

Engin

Musa
concu

60.
Musa

repre:
meric
Apph
1993”

Nakas
for K

works

Narin
proce.

(5) (1

Narin
know.
val M
Marc]

Newn
tion 1
on N
emati

Marc!

‘ch, A. Bernat

jorithms for

1), pp. 58~

ntervals in-
bstracts for
, Lafayette,

‘erval meth-

terval equa-

tations con-
f the Inter-
3 In Science
T5=1T.

ictiwe proof
5. In: “Ab-
ntelligence,

| Cliffs, NJ,

wctrons. In:
1oring Prof.

I”, Inst. f.
-274.

me Anwen-
nstitute for

' processing
aphics and

parallel Algorithms for Interval Computations. .. 57

68]

Musaev, E. A. Wave computations in interval analysis. In: “Proceed-
ings of the Seminar on Interval Mathematics, Saratov, May 29-31,

- 1990”7, pp. 95-100 (in Russian).

[69]

701
(71

[72]

[73]
[74]

[75]

[76]

Musaev, E. A. Hierarchical wave computations. In: “Urgent Prob-
lems of Appied Mathematics. Proceedings of the USSR National
Conference, Saratov, May 20-24, 1991, Part 17, pp. 110-112 (in Rus-
sian).

Musaev, E. A. Wave computations. In: “Proceedings of the Interna-
tional Conference o1 Interval and Stochastic Methods in Science and
Engineering INTI ! .1.792” 2 (1992), Moscow, pp. 79-81.

Musaev, K. A.. Wauro computations. A technique for optimal quasi-
concurrent self-validation. Interval Computations (1) (1992), pp. 53—
60.

Musaev, E. A. An approach to reliable computations with minimal
representation. In: “Abstracts for an International Conference on Nu-
merical Analysis with Automatic Result Verification: Mathematics,
Application and Software, Lafayette, LA, February 25 — March 1,
1993”, pp. 67-68.

Nakamura, M., Mines, R., and Kreinovich V. Guaranteed intervals
for Kolmogorouv’s theorem (and their possible relation to neural net-

works). Interval Computations (3) 1993, pp. 183-199.

Narin'yani, A. S. Subdefiniteness in the knowledge reprcsentation and
processing system. Izvestiya Acad. nauk SSSR, Tekhn. Kibernetika
(5) (1986), pp. 3-28 (in Russian).

Narin’yani, A. S. NE-factors: different pragmatics of an interval in
knowledge representation. In: “Abstracts for a Workshop on Inter-
val Methods in Artificial Intelligence, Lafayette, LA, February 25 —
March 1, 19937, p. 26.

Newman, F. and Cline, H. A neural network for optimizing radia-
tion therapy dosage. In: “Abstracts for an International Conference
on Numerical Analysis with Automatic Result Verification: Math-
ematics, Application and Software, Lafayette, LA, February 25 —
March 1, 1993”, p. 73.

58

[77]

(78]

[79]

[80]

[81]

[82]

[83]

V. Kreinovich, A. Bernat

Park, C. Y. and Shaw, A. C. Ezperiments with a program timing tool
based on source-level timing schema. Computer (May) 1991, pp. 48~
O

Petkovic, M. S. On the generalization of some algorithms for the
simultaneous approzimation of polynomial roots. In: Nickel, K. (ed.)

“Interval Mathematics”, Academic Press, N.Y., 1980, pp. 461-471.

Petkovic, M. S. A family of simultaneous methods for the deterini-
nation of polynomial complex zeros. Internat. J. Comput. Math. 2
(1982), p. 285-296.

Petkovic, M. S. Generalized roor iterations for the simultaneous de-
termination of multiple complex zeros. Z. Angew. Math. Mech. 62
(1982), pp. 627-630.

Petkovic, M. S. On an iterative method for simultaneous inclusion of
polynomial complex zeros. J. Comput. Appl. Math. 8 (1982), pp. 51—
56.

Petkovic, M. S., Milovanovic, G. V., and Stefanovic, L. V. On the
convergence order of accelerated stmultaneous method for polynomsial
complex zeros. Z. Angew. Math. Mech. 66 (1986), pp. T428-T429.

Petkovic, M. S. On the simultaneous method of the second order for

_ finding polynomial complex zeros in circular arithmetic. Freiburger

[84]

[85]

Intervall-Berichte (3) (1985), pp. 63-95.

Petric, J., Jovanovic, M., and'Stama,tovic, S. Algorithm for simul-
taneous determination of all roots of algebraic polynomial equations.

Mat. Vesnik 9 (1972), pp. 325-332.

Plum, M. Enclosures for solutions of parameter-dependent nonlinear
elliptic boundary value problems: theory and implementation on a

~ parallel computer. Interval Computations (this issue), 1994.

[86]

[87]

[ol

Rabinovich, S. Measurement errors: theory and practice. American
Institute of Physics, N.Y., 1993.

Schendel, U. Einfuehrung in die Parallel Numertk. R. Oldenbourg,
Verlag, Muenchen-Vien, 1981.

Parallel Algo

[88] Scher
(Par

[89] Schm
“Abs
with
Softw

[90] Schns
val N
rcal g
feren
Math
—M

[91] Senio
ings «
leliza
(in'R

[92] Shiri:
[43 A.bS
with
Softw

[93] Shvet
mecon
Inten
ence

203 (.
[94] Simci
Inters
[95] Sirisa
ramei

Meth
Marcl

[96] Sirisa
sensii
tions

wich, A. Bernat

m timing tool

(991, pp. 48~

thms for the
ckel, K. (ed.)
p. 461471,

the‘ determa-
wat. Math. -2

taneous de-
h. Mech. 62

mnclusion of

182), pp. 51—

. V. On the
r polynomial
'428-T429.

nd order for
. Freiburger

n for simul-
il equations.

nt nonlinear
tation on a

94.

2. American

Jldenbourg,

r

parallel Algorithis for Interval Computations. . . 59

88]

89]

Scheu, G. Uber eine Wahl des Parameters beim Parellelverfahren
(Parallel-Chord-Method). Computing 20 (1978), pp. 17-26.

Schmidt, L. Vector processor support for semimorphic arithmetic. In:
“Abstracts for an International Conference on Numerical Analysis
with Automatic Result Verification: Mathematics, Application and

/ Software, Lafayette, LA, February 25 — March 1, 1993”, p. 92.

[90]

1]

[92]

[93]

[94]

[95]

[96]

Schnepper, C. A. and Stadtherr, M. A. Application of a parallel inter-
val Newton/generalized bisection algorithm to equation-based chem-
tcal process flowsheeting. In: “Abstracts for an International Con-
ference on Numerical Analysis with Automatic Result Verification:
Mathematics, Application and Software, Lafayette, LA, February 25
— March 1, 1993”7, p. 93.

Senio, P. S. Design of the interval Runge-like method. In: “Proceed-
ings of the 5th USSR National Conference and Workshop on Paral-
lelization of Information Processing, Lvov, 1985, Part 4”, pp. 50-51
(in Russian). -

Shiriaev, D. Fast automatic differentiation for vector processors. In:
“Abstracts for an International Conference on Numerical Analysis
with Automatic Result Verification: Mathematics, Application and
Software, Lafayette, LA, February 25 — March 1, 1993”, p. 98.

Shvetsov, I. E. and Telerman, V. V. Intervals and multi-intervals in
incompletely defined computational models. In: “Proceedings of the
International Conference on Interval and Stochastic Methods in Sci-
ence and Engineering INTERVAL’92”, 1 (1992), Moscow, pp. 201—
203 (in Russian; English abstract Vol. 2, p. 100).

Simcik, L. and Linz, P. Boundary-based interval Newton’s method.
Interval Computations (4) (1993), pp. 89-99.

Sirisaengtaksin, O. Neural networks that are not sensitive to the pa-
rameters of neurons. In: “Abstracts for a Workshop on Interval
Methods in Artificial Intelligence, Lafayette, LA, February 25 —
March 1, 1993, p. 30.

Sirisaengtaksin, O. and Kreinovich, V. Neural networks that are not
sensitive to the imprecision of hardware neurons. Interval Computa-

tions (4) (1993), pp.100-113.

60

[97]

[98]

[99]

[100]

[101]

102]

[103]

[104]

[105]

[106]

V. Kreinovich, A. Bernat

Stefanovic, L. V. and Petkovic, M. S. On the simultaneous itmproving
k inclusive discs for polynomial complex zeros. Freiburger Intervall-

Berichte (7) (1982), pp. 1-13.

Stefanovic, L. V. Some modified methods for the simultaneous de-
termination of polynomial zeros. Dissertation, Faculty of Electronic
Engineering, Nis, 1986 (in Serbo-Croatian).

Swain, M. J. and Cooper, P. R. Parallel software for constraint prop-
agation. In: “Proceedings AAAI-88 Seventh National Conference on
Artificial Intelligence, Morgan Kaufmann” 2 (1988), pp. 682—686.

Ullrich, C. and Reith, R. A reliable linear algebra library for trans-
puter networks. Interval Computations (1995) (to appear).

Villa, E. and Bernat, A. Estimating errors of indirect measurements
on real and realistic parallel machines. In: “Abstracts for a Work-
shop on Interval Methods in Artificial Intelligence, Lafayette, LA,
February 25 — March 1, 1993”7, p. 34.

Villa, E., Bernat, A., and Kreinovich, V. Estimating errors of indirect
measurements on realistic parallel machines: routings on 2-D and
8-D meshes that are nearly optimal. University of Texas at El Paso,
Computer Science Department, Technical Report No. UTEP-CS-
93-14a,.1993.

Villaverde, K. How to locate mazima and mimima of a function in
parallel from approzimate measurement results. In: Kreinovich, V.,

Traylor, B., and Watson, R. (eds) “Abstracts of the First UTEP .

Computer Science Department Students Conference, El Paso, TX,
19917, pp. 43-44.

Wang, D. and Wu, Y. A parallel circular algorithm for the simulta-
neous determination of all zeros of a complex polynomial. Freiburger
Intervall-Berichte (8) (1984), pp. 57-76.

Wang, D. A parallel circular algorithm for the simultaneous determa-

nation of all zeros of a complex polynomial. Journal of Engineering
Mathematics (Xi’an) (1985), pp. 22-31 (in Chinese).

Wang, X. and Zheng, S. The quasi-Newton method in parallel circular

iteration. J. Comput. Math. 2 (1984), pp. 305-309. s

-

Parallel Algo

[107] Wany
for fi
verge

[108] Wany
for fi
gence

[109] Wany
arith
Chin

[110] Wany
itera

[111] Wolf

Inter

[112] Xing
arith
natio
Verif
Febr

[113] Yako
Kibe
Russ

[114] Yako
(inte
teria.
Bran
pp- 4

[115] Yako
“Urg
Nati
(in b

[116] Yako
ges. !
Stoc]
(199:

wvich, A. Bernat

US UMProving
ger Intervall-

Wtaneous de-
of Electronic

wstrawnt prop-
.onference on
.. 682-686.

1y for trans-
ar).

weasurements -

for a Work-
fayette, LA,

s of indirect
on 2-D and
s at El Paso,
UTEP-CS-

1 function in
einovich, V.,

First UTEP .

1 Paso, TX,

the stmulta-
1. Freiburger

ous determa-
Engineering

allel circular

r

AN
~

(107

[108]

[109]

[110]
[111]

[112]

[113]

[114]

[115]

[116]

parallel Algorithms for Interval Computations. ..

61

Wang, X. and Zheng, S. A famaly of parallel and interval wterations
for finding all roots of a polynomial simultaneously with rapid con-
vergence. J. Comput. Math. 2 (1984), pp. 70-76.

Wang, X. and Zheng, S. A family of parallel and interval sterations
for finding simultaneously all roots of a polynomial with rapid conver-
gence. II. Math. Numerica Sinica 4 (1985), pp. 433-444 (in Chinese).

Wang, X. and Zheng, S. Parallel Halley iteration method with circular

arithmetic for finding all zeros of a polynomial. Numer. Math. J.
Chinese Univ. 4 (1985), pp. 308-314 (in Chinese).

Wang, X. and Zheng, S. Bell’s disk polynomials and parallel disk
iteration. Freiburger Intervall-Berichte (2) (1986), pp. 37-65.

Wolff von Gudenberg, J. Parallel accurate linear algebra subroutines.
Interval Computations (1995) (to appear).

Xing, Zh. and Shang, W. Interval test: an appliation of interval
arithmetic in data dependency analysis. In: “Abstracts for an Inter-
national Conference on Numerical Analysis with Automatic Result
Verification: Mathematics. Application and Software, Lafayette, LA,
February 25 — March 1, 1993”7, p. 111.

Yakovlev, A. G. Machine arithmetic of multi-intervals. Voprosy
Kibernetiki (Problems of Cybernetics) 125 (1987), pp. 66-81 (in
Russian).

Yakovlev, A. G. On some possibilities in organization of localizing
(interval) computations on electronic compuiers. Inf.-operat. ma-
terial (interval analysis), preprint 16, Computer Center, Siberian
Branch of the USSR Academy of Sciences, Krasnoyarsk (1990),
pp- 33-38 (in Russian).

Yakovlev, A. G. Specific Ipamllelism of localizing computations. In:
“Urgent Problems of Appied Mathematics. Proceedings of the USSR
National Conference, Saratov, May 2024, 1991, Part 1”7, pp. 151-158

(in Russian).
Yakovlev, A. G. Possibilitics for further development of SC-langua-
ges. In: “Proceedings of the International Conference on Interval and

Stochastic Methods in Science and Engineering INTERVAL’92”, 2
(1992), Moscow, pp. 134-136.

62 V. Kreinovich, A. Bernat

[117] Yakovlev, A. G. Posssbilities for further development of SC-langua-
ges. In: “Abstracts for an International Conference on Numerical
Analysis with Automatic Result Verification: Mathematics, Appli-
cation and Software, Lafayette, LA, February 25 — March 1, 1993”,
pp. 112-113.

[118] Yakovlev, A. G. Multiaspectness and localization. Interval Computa-
tions (4) (1993).

Received: September 20, 1993 Department of Computer Science
Revised version: August 29, 1994 University of Texas at El Paso,
El Paso, TX 79968, USA
E-mail: vladik@cs.utep.edu
abernat@cs.utep.edu

Interval Cor
[No 3, 1994

F
by (

Finding
ficult. I
that no
located

Altho
shows a
the par:
number
order of

Haxoxm
IOCTaTO
HAEM B ¥
3KCTpeM
TpeMyMz:

“-\h-_'-_-——__
© E. Ly:

