
Interval Computations
No 2, 1994

Interval Approach to Testing Software

Vladik Kreinovich, Thomas Swenson, and Alex Elentukh

The experience of many programmers shows that it is actually impossible to
extract all the faults from a sophisticated software. Therefore it is necessary
to estimate the time interval during which the remaining faults will not influ-
ence the program. The statistical models which are used to get such estimates
are semi-heuristic and lack convincing theoretical explanation. In this paper,
we consider an interval approach to program testing. We formulate the prob-
lem of choosing the best interval software reliability model as a mathematical
optimization problem, and solve this problem.

Интервальный подход к
тестированию программного

обеспечения
В. Крейнович, Т. Свенсон, А. Элентух

Опыт многих программистов показывает, что для достаточно сложного
программного обеспечения практически невозможно гарантировать пол-
ное отсутствие ошибок. Поэтому желательно оценить величину временно-
го интервала, в течение которого оставшиеся в программе ошибки не бу-
дут влиять на ее работу. Статистические методы, используемые для таких
оценок, являются наполовину эвристическими и не имеют убедительного
теоретического обоснования. В работе предлагается интервальный подход
к тестированию программ. Задача выбора наилучшей интервальной мо-
дели надежности программного обеспечения ставится и разрешается как
математическая задача оптимизации.
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1 Introduction

It is possible to eliminate all the errors from a small simple pro-
gram. For a sufficiently simple program it is possible to eliminate all the
errors.

Moreover, there exist methods (called “proving program correctness”)
that can guarantee that all the errors has indeed been removed and the
resulting program is “flawless”. These methods were initiated by the pio-
neering works of McCarthy [20, 21] and became widely applicable starting
from the breakthrough paper [11] (for recent surveys on program correctness
see [2, 3] and [4]). Alas, these methods do not work for more complicated
programs.

For more complicated programs it is difficult to decide when to
stop testing. For complicated programs it is much more difficult to decide
when to stop testing, since it is extremely difficult (and often practically im-
possible) to prove formally the correctness of such a program. A reasonable
idea is to stop testing when several tests in a row do not discover any more
bugs, but to rely on such a criterion would be sometimes misleading. It is
often practically impossible to perform a fully exhaustive test, and therefore
failures often occur during the customer’s usage, long after the product has
been tested and released. Moreover, the experience of many programmers
shows that it is actually impossible to extract all the faults from system-type
software, that is commonly involved in resource contention, or from the pro-
grams with a sophisticated user interface. So if such a program works fine
it simply means that we have not yet reached the point where it will start
erring. For example, Robert L. Glass in his essay “Some thoughts on software
errors” [10, pp. 33–36] summarizing his “over 35 years of experience in the
industrial and academic worlds of software engineering” concludes that “not
all software errors are found EVER” and so “we cannot remove all errors
from software”. And he is not alone in this opinion: this viewpoint is widely
spread in the literature (see, e.g., [7]) and is also shared by the users who
still find bugs in the old compilers, operating systems and other software.

The only thing that we can do is to estimate the time before a
next failure. If we take seriously this wide-spread opinion that it is impos-
sible to eliminate all the errors, then when do we stop testing? Whenever we
stop there will be some bugs remaining, so we can never guarantee that the
released product will always work fine. The only thing that we can try to
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guarantee is that it will work fine for some given period of time. So in order
to decide when to stop testing we must fix some desired time interval and
stop testing when the program is guaranteed to work fine during this time
interval. In order to do this we must be able to estimate the time interval
during which the remaining errors will not influence the program.

Existing methods: basic idea. Suppose that we are on some stage of
a debugging process, and we need to know when to expect the next failure,
i.e., the next occasion when the program will not function properly. If we
keep documenting the debugging process, then we have the moments of time
t(1), t(2), . . . , t(m), when the first, second, . . . , m-th bug were discovered.
Therefore we know what would have happened if we stopped debugging one
bug earlier: the interval t(m) − t(m − 1) between that previous bug and
the last bug is the time during which the program would have worked fine.
Likewise we can easily compute the times during which the program would
have worked fine if we stopped debugging two, three, etcḃugs earlier: these
times is correspondingly equal to

t(m− 1)− t(m− 2), t(m− 2)− t(m− 3), . . .

So we have a sequence of time intervals during which the program would
work fine if we stopped testing after 1st, 2nd, . . . , (m− 1)-st failures.

So to estimate the desired value t(m + 1) − t(m) of the time interval
before the next failure, we must apply some extrapolation procedure to
this sequence. In order to be able to extrapolate we need a model f(n)
describing how often the bugs appear. Such models are called software
reliability models.

When a model f(n, ~C) with parameters ~C = (C1, . . . , Cp) is chosen, we
can predict the time t(m+1)−t(m) before the next failure as follows: First,
we find the values of the parameters ~C for which f(1, ~C) ≈ t(1), f(2, ~C) ≈
t(2), . . . , f(m, ~C) ≈ t(m). Then, we use f(m+ 1, ~C)− f(m, ~C) for this ~C,
as a prediction of the time t(m + 1)− t(m) during which the program will
work fine. If this predicted interval exceeds the specified time T0, then we
can stop testing.

What model f(n, ~C) to use?
Existing models of software reliability: briefly. Nowadays many

statistical models of software reliability help to obtain time estimates; see,
e.g., a survey in [25]. This book contains also the results of experimental
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comparison of different models. The authors of this experimental study
used different criteria for their choice: computational simplicity, capability,
predictive validity, etc. It turned out (see Section 13.5 of [25]) that with
respect to all these natural criteria two models are superior: so-called basic
Poisson execution time model (proposed first in [23]) and the logarithmic
Poisson execution time model proposed first in [26]. In both models failures
occur as a random process (namely, nonhomogeneous Poisson process). In
the basic model failure intensity λ decreases linearly with the number of
experienced failures µ. So in due time the failure intensity becomes equal
to 0; this means that all bugs have been found and no more failures will
occur. In the logarithmic model failure intensity decreases exponentially
(as λ0 exp(−θµ)). The expected total number of failures increases with
execution time t as c (1− exp(−kt)) for the basic model and as a ln(1 + bt)
for the logarithmic model (hence the name of this model), where a, b, c, k
are constants.

We can “invert” this dependency and get the dependency of the average
time t̄(n) of n-th failure on n: in the basic model it is t̄(n) = c ln(N−n)+k,
where c, k are constants and N is a total number of errors in the initial pro-
gram; in the logarithmic model it is t̄(n) = c (exp(kn) − 1), where c, k are
constants.

Comments

1. Why did we choose Musa’s experiments and not any of the competing
ones? After the experimental comparison of various models, whose results
are given in [25], several others researchers undertook likewise comparisons.
Some of them came out with different results, namely that in their experi-
ments some other methods turned out to be better than both the basic and
the logarithmic models. Actually on practically every conference several pa-
pers with competing experiments appear (see, e.g., [27]). However, to the
best of our knowledge, the amount of experimental data and varieties of data
covered by [25], is still greater than by any of the competing experiments,
therefore we used Musa’s results as the most general ones. These models
have also been recommended in [28, 29].

2. The above-described approach gives the reliability estimates that do
not take into consideration the environment in which the analyzed software
will be used. Estimates that take environment into consideration have been
proposed in [5, 6, 24].
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The main problem with the existing statistical models is that
their foundations are not very convincing: at most, they prove that these
models form a reasonable first approximation. So, we need new (theoretically
more plausible) foundations for program testing.

What we are going to do. There have already been cases when
statistical models lacked sufficient theoretical foundations and were thus
unreliable: this problem surfaced in the early 60s in error estimation. To
deal with the situations when probabilities are not known, interval analysis
was invented (see, e.g., [22]).

In this paper, we follow the same pattern: namely, we propose an interval
software reliability model. We also formulate the problem of choosing the
“best” interval software reliability model (for approximating the expected
time of n-th failure) as an optimization problem, and solve this problem.

As a result, we explain why existing models work fine.

Comments
1. The basic underlying ideas and preliminary results were published in

[8, 9, 12–16, 18, 19].
2. We want to warn the readers that the main goal of this paper is

to propose new ideas, and not the solution that would always work. In
spite of the visible progress, we have not yet achieved a complete solution
to the problem of testing software. Namely, in this paper, we consider an
“optimistic case”, when all the bugs are eventually discovered, and as a result,
the program runs better and better, and fewer and fewer failures occur. In
this case, the main problem is when to stop testing software. However, every
programmer working in a real world knows that in many practical cases, the
situation is not that rosy:

• In some cases, in spite of all the debugging efforts, failures continue
to occur with a non-decreasing rate. In this case, the problem is not
when to stop, but how to change debugging so that the program will
start working better (and is this program worth working at all).

• Cases like the above ones when everything goes wrong are not the most
difficult ones: in these cases, we always have an option of throwing
the program into the wastebasket and starting anew. An even more
complicated situation occurs when the debugging process so to say
“goes wild”: for some time interval, there are no bugs at all, then
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suddenly, lots of bugs are discovered. Then again everything seems
fine and the programmers think that they are done, but no, bugs start
coming back. In this case, if we try to cover the rate with which the
bugs are discovered by a reasonable interval function, we get nothing
better than an interval [0,∞).

Our approach is far from being final. We have just criticized the existing
statistical models for lacking convincing foundations. We believe (and we
will try to convince the readers) that the foundations for our interval models
are more convincing. However, we agree with the anonymous referees that
our foundations are still not absolutely convincing. Again, our main goal is
not to propose the final results, but to propose a new approach.

Auxiliary (minor) problem: how to count the errors. There are
several aspects of this problem.

i) First, do we count the bugs discovered before we initially executed a
program on a computer? Some programmers prefer to scrutinize the
code first and find lots of errors before touching a terminal. Other
designers type the raw code in and start debugging on the computer.
Since the usual statistical procedures use only the bugs that were dis-
covered during the computer run, these procedures will underestimate
the total number of bugs for the designers who do some preliminary
code analysis and thus end up with the biased predictions of the pro-
gram’s reliability.
This problem is not easy to deal with, because it is difficult to force a
designer to write down all the errors he revealed in his mind, (before
touching the computer). Moreover, even if we succeed in forcing him
to do it, this additional activity will seriously slow him down and will
certainly badly interfere with his ability of creative thinking.
So what we need is not an administrative solution to this problem,
but some kind of a mathematical solution that will somehow take care
of these possible additional revealed bugs without actually counting
them (i.e., in some indirect way).

ii) Second, how do we count bugs: do we take one failure for one bug or
count the number of lines that demanded a change? Or somehow else
take into consideration the fact that, citing [10] again, “errors are not
equal”. If we count just failures, then we can count them automatically,
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but we lose some essential part of the information. This problem is
discussed in detail in Section 9.1.4 of [25]. However, we do not have
the feeling that this problem has been completely and satisfactorily
solved.

2 Interval approach

2.1 Motivations of the following definitions

Basic idea. We will not try to describe a random process t(n). Instead, we
will try to find an interval function f(n) = [f−(n), f+(n)] that will describe
the actual debugging process, i.e., for which t(n) ∈ f(n) for all n.

So, we must somehow choose a family of interval functions f(n, ~C). As
soon as a family is chosen, the answer to the question “when to stop testing?”
is as follows:

• first, based on the known values t(1), . . . , t(m), we find the values of
the parameters ~C for which t(n) ∈ f(n, ~C) for all n;

• for this ~C, we produce f−(m+ 1, ~C)− t(m) as the guaranteed inter-
val during which the software will function properly. If this interval
exceeds the desired value T0, then we stop testing, else, we continue
testing. In case we continue testing, we can estimate the necessary
additional testing time as the time f+(N, ~C)− t(m), where N is the
first integer for which f−(N + 1, ~C)− f+(N, ~C) ≥ T0.

Comment. In the following, bold-face type will denote intervals.
We must choose a family of interval functions. Before we start

discussing what is the best choice (and what do we mean by “the best”)
let’s first make the following remark (that will later on prove to be helpful).
Suppose that an interval function f(n) = [f−(n), f+(n)] describes the results
t(n) of some actual debugging process performed by an actual programmer
(i.e., t(n) ∈ f(n) for all n). As Robert Glass remarks in [10], “not all software
error finders are equal”. The differences range in magnitude up to 30 : 1.
So for another programmer, who is c times faster, cf(n) will be a good fit.
For the third programmer, who started the actual debugging process later,
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a good fit will be cf(n) + a, where c is his relative rate of debugging and
a is the moment of time when he started debugging. In view of that it is
reasonable to demand that if a function f(n) is a good fit (i.e., belongs to
a family of functions f(n, ~C)), then all its linear transformations a + bf(n)
must also belong to such a family.

This family of functions must be at least 2-dimensional (i.e., we need
to fix the values of at least two parameters to choose a function from this
family). So, the smallest possible number of parameters is two, when the
family consists of the functions a + bf0(n) for different a, b and some fixed
interval function f0(n).

What is a criterion for choosing a family of functions? What
does it mean to choose the best family of functions? (in answering this
question we follow the general idea outlined in [15] and [19]). It means that
we have some criterion that enables us to choose between the two fami-
lies. This criterion can be computational simplicity, predictions ability as
in [25] or something else. The most frequent criteria are numeric ones,
when to every family we assign some value expressing its performance, and
choose a family for which this value is maximal. However, it is not nec-
essary to restrict ourselves to such numeric criteria only. E.g., if we have
several different families that have the same prediction ability P, we can
choose between them the one that has the minimal computational com-
plexity C. In this case the actual criterion that we use to compare two
families is not numeric, but more complicated: a family F1 is better than
the family F2 if and only if either P (F1) > P (F2), or P (F1) = P (F2)
and C(F1) < C(F2). A criterion can be even more complicated. The
only thing that a criterion must do is to allow us for every pair of fam-
ilies to tell whether the first family is better with respect to this crite-
rion (we’ll denote it by F1 > F2), or the second is better (F1 < F2) or
with respect to this criterion these families have the same quality (we’ll
denote it by F1 ∼ F2). Of course, it is necessary to demand that these
choices be consistent. For example, if F1 > F2 and F2 > F3 then F1 >
F3.

The criterion must be final, i.e., it must pick the unique family
as the best one. A natural demand is that this criterion must choose
a unique optimal family (i.e., a family that is better with respect to this
criterion than any other family). The reason for this demand is very simple.
If a criterion does not choose any family at all, then it is of no use. If several
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different families are the best according to this criterion, then we still have
a problem to choose among those best. Therefore we need some additional
criterion for that choice, like in the above example: if several families turn
out to have the same prediction ability, we can choose among them a family
with minimal computational complexity. So what we actually do in this case
is abandon that criterion for which there were several “best” families, and
consider a new “composite” criterion instead: F1 is better than F2 according
to this new criterion if either it was better according to the old criterion,
or they had the same quality according to the old criterion and F1 is better
than F2 according to the additional criterion.

In other words, if a criterion does not allow us to choose a unique best
family it means that this criterion is not final, we’ll have to modify it until
we come to a final criterion that will have that property.

This criterion must not depend on the (unknown) number of
errors that we revealed before typing the program in. The next
natural demand on the criterion is connected with the above-mentioned
uncertainty in counting the number of errors. Suppose that we have two
programmers who have the same abilities to debug (so they reveal the same
errors in the same order), but the first programmer discovers the first 20
faults in his mind and only then starts testing the program on the computer,
while the second programmer starts executing his program from the very
beginning. Then what is the error number 3 for the first programmer, for
the second programmer it will be the error number 23, because the second
programmer also counts the 20 errors that the first programmer discovered
before he started computer testing.

On the other hand, an error number 4 for the second programmer was
discovered by the first programmer before he went to the computer and
started computer testing. If the first programmer assigns number 1 to the
first error that he discovered during computer testing, then it is natural to
assign numbers 0,−1,−2, . . . ,−19 to the errors that he discovered before
typing the program into the computer. In particular, an error number 4 for
the second programmer is error number −16 for the first one. This example
show that although at first glance the expression t(n) makes sense not only
for positive n, but in all the cases when some errors were detected before
the testing (and it is a very frequent case) it is quite reasonable to consider
negative values of n as well.
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Let’s denote by n0 the total number of errors that the first programmer
discovered before he started testing on a computer. Then an error number
n for a first programmer is error number n + n0 for the second one. So if
we denote the moment of time, when i-th programmer discovers his error
number n, by ti(n), we can conclude that t1(n) = t2(n+ n0).

It is natural to demand that the fact that a family is better (in some
reasonable sense) that some other family should not depend on the number
of bugs that were discovered before we started computer testing. In other
words, if a family {f(n), g(n), . . .} is better than the family that consists of
the functions h(n), k(n), . . . , and n0 is an integer, then the family {f(n +
n0), g(n+ n0), . . .} is better than the family

{h(n+ n0), k(n+ n0), . . .}.

It is also reasonable to demand that the criterion should not
depend on how we define a bug. Another reasonable demand is associ-
ated with another uncertainty in counting bugs: depending on how detailed
we are, we can either count failures or count the lines that demanded cor-
rection, etc. Crudely speaking, if we count lines instead of counting failures,
then we count C bugs where we initially counted just one, where C is an
average number of changed lines per failure. So what was t(n) for one pro-
grammer turns out to be t(Cn) for another. This transformation means that
we have changed a scale for measuring bugs just like we change scales from
kilograms to pounds: what was 1 kg is now ≈ 2.2 lb; likewise what was 1
bug in the old scale is C bugs in the new one. It may also seem reasonable
to demand that the fact that one of the families is better should be still true
if we change the way we count bugs.

This consideration causes an additional problem: previously the number
of bugs was always a positive integer, now we must consider “fractions” of
bugs, because, e.g., a failure in average means that several lines should be
changed, and therefore a line of changed code correspond in average to only
part of a failure.

In this case what was 1 bug for one programmer is part of the bug for
another one. So we come to the notion of a fractional bug (see, e.g., [25]).
From the mathematical viewpoint it means that in this case the argument
n of the desired function t(n) is not necessarily an integer, as before, but it
can be an arbitrary real number.

Now we are ready to introduce formal definitions.
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2.2 Definitions and the main results

Definition 1. By a family of approximations (or family for short) we mean
a set of all functions of the type a + bf0(n), where a is an arbitrary real
number, b is an arbitrary positive number and f0(n) = [f−0 (n), f+0 (n)] is a
function from integers to intervals. Two families are considered equal if the
corresponding sets coincide (i.e., if they consist of the same functions).

Denotation. Let’s denote the set of all families by Φ.
Definition 2 [15, 17, 19]. A pair of relations (<,∼) is called consistent if
it satisfies the following conditions: (1) if a < b and b < c then a < c; (2)
a ∼ a; (3) if a ∼ b then b ∼ a; (4) if a ∼ b and b ∼ c then a ∼ c; (5) if
a < b and b ∼ c then a < c; (6) if a ∼ b and b < c then a < c; (7) if a < b
then it is not true that b < a, and it is not true that a ∼ b.
Definition 3. Assume a set A is given. Its elements will be called alter-
natives. By an optimality criterion we mean a consistent pair (<,∼) of
relations on the set A of all alternatives. If a > b we say that a is better
than b; if a ∼ b we say that the alternatives a and b are equivalent with
respect to this criterion. We say that an alternative a is optimal (or best)
with respect to a criterion (<,∼) if for every other alternative b either a > b
or a ∼ b.

We say that a criterion is final if there exists an optimal alternative, and
this optimal alternative is unique.
Comment. We’ll consider optimality criteria on the set Φ of all families.
Definition 4. By a m–shift of a function f(n) we mean a function g(n) =
f(n + m). By a m–shift of a family F we mean the family consisting of
m–shifts of all functions from F .
Denotation. m–shift of a family F will be denoted by Sm(F ).
Definition 5. We say that an optimality criterion on Φ is shift-invariant
if for every two families F and G and for every integer m the following two
conditions are true:

i) if F is better than G in the sense of this criterion (i.e., F > G), then
Sm(F ) > Sm(G);

ii) if F is equivalent to G in the sense of this criterion (i.e., F ∼ G), then
Sm(F ) ∼ Sm(G).
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Comment. As we have already remarked, the demands that the optimality
criterion is final and shift invariant are quite reasonable. At first glance they
may seem rather trivial and therefore weak. However, these demands are
strong enough, as the following Theorem shows:
Theorem 1. If a family F is optimal in the sense of some optimality
criterion that is final and shift-invariant, then it either contains functions
a + b exp(kn) (that corresponds to the logarithmic model), or functions of
the type a + bn.
(The proofs are given in Section 4).
Comment. In addition to a logarithmic model we get an additional case,
when t(n) = a+bn. This case corresponds to a disastrous situation when the
bugs are found again and again with a non-decreasing rate. Such situations
happen sometimes; the usual reaction is to throw away this software as
non-repairable and write everything anew.
Proposition 1. If an optimality criterion is final and shift-invariant then
the optimal family Fopt is also shift-invariant, i.e., Sm(Fopt) = Fopt.
Comment. This Proposition shows that if we use an optimal approximation
family then it does not matter how you count bugs: if you start counting
them fromm-th bug you still get the same approximation family; therefore if
you use this family for extrapolation, you get the same extrapolation results!
This irrelevance to the choice of the starting point for bugs explains why it
is so difficult to choose such a point; on the other hand, what this result
says is that there is no need to worry about that: no matter how we count,
the reliability estimates will still be the same.
Comment. We have used shift-invariance. Let us now express the demand of
scale-invariance in mathematical terms. Before we write down the definitions
we have to make two remarks related to the problem of how to count bugs.

First, since scale invariance corresponds to the question “what is a bug”:
from one point of view this particular error is a bug, from another it is a
part of a bug, the number of bugs n is not necessarily an integer, it can be
a real number.

The second remark corresponds to the fact that different people can
start counting bugs in different moments of time: a bolder programmer can
start debugging at a point which a more cautious person will still consider a
part of the design process, when a product is not yet ready for real testing
and debugging. In the shift-invariant case we were lucky enough to have
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Proposition 1, that allowed us to disregard this difference. But in scale-
invariant case it may be not true (and it really turns out to be not true), so
we better take this possible difference into consideration in our definitions.

With these remarks in mind we come to the following definitions.
Definition 1′. By a family of approximations (or family for short) we
mean a set of all functions of the type a + bf0(n), where a is an arbitrary
real number, b is an arbitrary positive number and f0(n) = [f−0 (n), f+0 (n)] is
an function from real numbers to intervals for which both f−0 (n) and f+0 (n)
are monotonic. Two families are considered equal if the corresponding sets
coincide (i.e., if we consist of the same functions).
Definition 4′. Assume some value k is fixed. By a k-shift (or simply a shift
for short) of a function f(n) we mean a function f(n+ k). By a k-shift of a
family F we mean a family, that consists of k-shifts of all the functions from
F .
Comment. This k corresponds to the difference between the two starting
points for counting bugs: some fixed starting point that we assumed when
we deduced the specific type of functions from the family, and a starting
point that was really used in the debugging documentation to which we
want to apply these functions.
Denotation. The set of all the families (in the sense of definition 1′) will be
denoted by Φ′.
Definition 6. Suppose C > 0. By a C–rescaling of a function f(n) we
mean a function g(n) = f(Cn). By a C–rescaling of a family F we mean a
family consisting of C–rescalings of all functions from F .
Denotation. C–rescaling of a family F will be denoted by RC(F ).
Definition 7. We say that an optimality criterion on Φ′ is scale-invariant
if for every two families F and G and for every real number C > 0 the
following two conditions are true:

i) if F is better than G in the sense of this criterion (i.e., F > G), then
RC(F ) > RC(G);

ii) if F is equivalent to G in the sense of this criterion (i.e., F ∼ G), then
RC(F ) ∼ RC(G).

Theorem 2. If a family F is optimal in the sense of some optimality
criterion that is final and scale-invariant, then its k-shift consists either of
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the functions of the type a+b ln(k−n) (that correspond to the basic model),
or of the functions of the type a+ b(n+ k)c.
Comment. Models with t ∼ nα (power models) have really been proposed
and experimentally confirmed (see, e.g., Chapter 11 of [25]).
Proposition 2. If an optimality criterion is final and scale-invariant then
the optimal family Fopt is also scale-invariant, i.e., RC(Fopt) = Fopt.
Comment. This Proposition shows that if you use an optimal approxi-
mation family then it does not matter what scale you choose for count-
ing bugs: you still get the same approximation family; therefore if you
use this family for extrapolation, you get the same extrapolation results.

3 Basic conclusions

Theorems 1 and 2 solve the following problems:

• We have solved the problem of what interval software reliability model
to choose: whatever reasonable criterion we use, we shall get either
the basic or the logarithmic model.

• We have thus explained why the basic model and the logarithmic
model are experimentally the best.

These theorems also address the auxiliary problem: that it is difficult
to choose one of the possible reasonable ways to count bugs. Namely, the
corresponding Propositions explain that the optimal family does not change
if we use a different way to count bugs, and therefore the extrapolation
results do not change. So the answer to this problem is as follows:

• One can count bugs in any reasonable way, the approximation function
and hence the extrapolation results will not depend on that choice.

4 Proofs

Let’s first prove Proposition 1.
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Proof of Proposition 1 (the proof is actually the same as in [15, 19]). Since
the optimality criterion is final, there exists a unique family Fopt that is
optimal with respect to this criterion, i.e., for every other F either Fopt > F
or Fopt ∼ F . If Fopt ∼ F for some F 6= Fopt, then from the definition of
the optimality criterion we can easily deduce that F is also optimal, which
contradicts to the assumption that this criterion is final, and hence there is
only one optimal family. So for every F either Fopt > F or Fopt = F .

In particular, this is true for F = Sm(Fopt). If Fopt > Sm(Fopt), then from
shift invariance of the optimality criterion we conclude that S−m(Fopt) >
S−m(Sm(Fopt)) = Fopt, i.e., S−m(Fopt) is better than Fopt, which contra-
dicts to the fact that Fopt is optimal. Therefore Fopt cannot be better than
Sm(Fopt), hence Fopt = Sm(Fopt). 2

Proof of Theorem 1. Since the criterion is final, there exists an optimal
family Fopt = {a + bf0(n)} for some function f0(n). This function f0(n)
belongs to the family Fopt (for a = 0 and b = 1). Due to Proposition 1 this
family is shift-invariant, i.e., Fopt = Sm(Fopt). In particular, for m = 1 we
conclude that Fopt = S1(Fopt). Therefore the function S1(f0(n)) = f0(n+1),
that belongs to S1(Fopt), must also belong to Fopt. But Fopt consists of all
functions of the type a+ bf0(n), therefore there exists a and b, for which the
functions f0(n + 1) and a + bf0(n) coincide (i.e., their values are equal for
all n). So we have a recurrent formula for f0:

f0(n+ 1) = a+ bf0(n)

for all n. Since b > 0, this means that f−0 (n + 1) = a + bf−0 (n) and
f+0 (n+ 1) = a+ bf+0 (n) for all n.

If b = 1, then f−0 (n) is an arithmetic progression and therefore f−0 (n) =
C−+an for some constant C−. Similarly, f+0 (n) = C++an for some C+. As
a result, f0(n) = C+ an. The corresponding family {a+ bf0(n)}, therefore,
consist of the functions of the type C1 + C2n.

If b 6= 1, then we can reduce the equations for f±0 (n) to the equations
for the geometric progression by taking g±(n) = f±0 (n) + C± for some
appropriate constant C±: namely,

g±(n+ 1) = f±0 (n+ 1) + C± = a+ bf±0 (n) + C±

= a+ b(g±(n)− C±) + C± = bg±(n) + (a+ C± − bC±).

If we choose such C± that a+C±−bC± = 0, i.e., C+ = C− = C = a/(b−1),
then the equation for g±(n) turns into the equation g±(n + 1) = bg±(n)
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that describes a geometric progression. Therefore, g±(n) = g±(0)bn, and
f±0 (n) = g±(0)bn − C. Hence, f0(n) = g(0)bn − C. Therefore, the family
{a + bf0(n)} consists of the functions of type C1b

n + a. To conclude the
proof, it is sufficient to use the definition of the logarithm: b = exp(ln b)
and hence bn = exp(kn), where k = ln b. 2

Proposition 2 is proved just like Proposition 1, the only difference is that we
consider RC−1 instead of S−m.

Proof of Theorem 2. Like in the Proof of Theorem 1, from the scale-
invariance of the optimal family Fopt = {a + bf0(n)}, we conclude that
for every λ > 0 there exist a and b, depending on λ, such that f0(λn) =
a(λ) + b(λ)f0(n) for all n > 0. In other words, f−0 (λn) = a(λ) + b(λ)f−0 (n)
and f+0 (λn) = a(λ) + b(λ)f+0 (n). We want to reduce these functional equa-
tions to the equations whose solutions are already known. In order to do that
let’s introduce a new variable x = lnn and express f±0 in terms of this new
variable. Since n = exp(x), this new expression is F±(x) = f±0 (exp(x)).
When we multiply n by a constant, we thus add a constant (= lnλ) to
its logarithm x. So in terms of F±(x) the above equations takes the form
F±(x+C) = A(C) +B(C)F±(x) for some functions A and B. Since both
functions f±0 are assumed to be monotonic, the functions F± are monotonic
as well. According to [1], Section 3.1, the most general monotonic solution
of this functional equation is F±(x) = ax + b or F±(x) = a exp(cx) + b.
Substituting x = lnn, we get f±0 (n) = F±(lnn) = a± + b± lnn and
f±0 (n) = a±nc

±
+ b±.

For logarithmic f±0 , we have f
−
0 (λn) = a−+b− ln(λn) = (a−+b− lnn)+

b− lnλ. Therefore, in this case, b(λ) = 1, and a(λ) = b− lnλ. Likewise,
a(λ) = b+ lnλ, so b− = b+ = b, and the function f0(n) takes the form
a + b lnn.

For exponential f±0 (n), we have f±(λn) = a±(λn)c
±
)+b± = (a±nc

±
)λc

±
+

b± = (f−0 (n)− b±)λc
±

+ b± = f−0 (n)λc
±

+ b±(1−λc±). So, here, b(λ) = λc
±,

and a(λ) = b±(1 − λc
±
). Since the values of a(λ) and b(λ) are the same

for f−0 (n) and f+0 (n), we conclude that c− = c+, and b+ = b−. Therefore,
f0(n) = C1 + C2n

c.

Now, it is sufficient to write down all possible k-shifts of these families,
and we get the desired result. 2
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