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Exact Bounds on the Long Term
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Rings
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The motion in weakly nonlinear systems such as circular accelerators and
storage rings can be described very well by high order Taylor maps representing
the action on phase space. These transfer maps allow to obtain families of
six-dimensional approximate invariants of motion. We present a method for
obtaining a rigorous quantitative stability estimate which relies on bounding
the deviation function describing fluctuations of the approximate invariants.
To accomplish the task of maximizing the complicated functions involved, a
very specialized interval maximizer had to be utilized. All calculations are
performed within the COSY object-oriented language environment. In the
paper, first, an overview of the problems occurring in weakly nonlinear systems
in general and specifically in particle accelerators is presented. Then we discuss
the computation of approximate invariants of motion in detail. Finally, the
computer implementation and some results are described. Special emphasis is
put on the interval optimization procedure.

Точные границы долговременной
устойчивости слабо нелинейных

систем в применении к
конструированию больших

кольцевых накопителей
М. Берц, Г. Хоффштеттер

Движение в слабо нелинейных системах, таких как циклические ускорите-
ли и кольцевые накопители, хорошо описывается отображениями Тейлора
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высоких порядков, представляющими действия в фазовом пространстве.
Эти отображения переноса позволяют получать семейства приближенных
шестимерных инвариантов движения. Представлен метод получения точ-
ной количественной оценки устойчивости через вычисление границ функ-
ций отклонения, описывающих флуктуации таких приближенных инва-
риантов. Чтобы справиться с задачей максимизации встречающихся при
этом сложных функций, мы применили узко специализированный интер-
вальный максимизатор. Все вычисления проводились в среде объектно-
ориентированного языка COSY. В начале статьи представлен обзор про-
блем, связанных как со слабо нелинейными системами вообще, так и кон-
кретно с ускорителями частиц. Затем подробно рассматривается вычис-
ление приближенных инвариантов движения. В заключение описана ре-
ализация метода на ЭВМ и представлены некоторые результаты. Особое
внимание уделено интервальной процедуре оптимизации.

1 Weakly nonlinear systems

In many ways, the study of the dynamics and in particular the global be-
havior of nonlinear systems is triggering a renaissance of classical mechanics.
The concepts of chaos in nonlinear systems, albeit known per se for a long
time, is generating fascination in circles far beyond the scientific community,
and their study has become a fashion of remarkable proportion.

Nonlinear motions ~x(t) with initial value ~xi are usually characterized by
certain nonlinear differential equations

d

dt
~x = ~f(~x, t).

Of particular interest are the cases in which the function ~f is periodic in t
with period T ; in these cases, the action of the system is often described in
terms of the flow ~M which relates an initial condition ~xi at time t = 0 to
the final condition ~xf at t = T :

~xf = ~M(~xi).

In general it is not possible to determine the nonlinear map ~M in closed
form, even if the function ~f is known in such a form, and for practical com-
putations, ~M often has to be evaluated by numerical integration. In many
important cases, however, the function ~f and with it the map ~M are actu-
ally dominated by linear parts and have only weak nonlinear perturbations.
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In this case ~f and ~M can be described well by Taylor expansions. The use
of high order automatic differentiation [5] as part of a differential algebraic
approach has recently been shown [3, 4, 6] to allow the computation of the
Taylor series of ~M to orders beyond ten in six or more variables. In its most
elementary way, the method to compute the nonlinearities of ~M describ-
ing the flow of a certain differential equation is strikingly simple: viewing
the numerical integrator as a method to evaluate the map ~M at any point,
one just evaluates this functional dependence using automatic differentiation
techniques.

In actuality, several refinements are needed to make the method practi-
cal. First of all, instead of automatic differentiation of the numerical inte-
gration process, which is very time consuming, one uses differential algebraic
methods [4, 7] to evaluate the flow of short pieces, and obtains the flow for
one period by composition of polynomials. In other cases, efficient scaling
methods are used to obtain the maps for short sections [8].

2 The physics of beams

Perhaps currently the most important application of the above mentioned
techniques for weakly nonlinear systems is the study of the motion in electro-
magnetic fields in the discipline of particle optics, which comprises the design
of particle accelerators, particle spectrographs, and electron microscopes. In
this case the motion is expressed in terms of three pairs of canonical vari-
ables which describe differences from a reference particle in horizontal (x)
and vertical (y) positions and the relative energy deviation (δk) as well as
canonical conjugate momenta a, b, and τ . The equations of motion take the
form

x′ = a (1 + hx)
p0
pz

a′ =

[
(1 + δm)

1 + η

1 + η0

p0
pz

Ex

χE0

− By

χM0

+ b
p0
pz

Bz

χM0

]
(1 + hx)(1 + δz) + h

pz
p0

y′ = b (1 + hx)
p0
pz

b′ =

[
(1 + δm)

1 + η

1 + η0

p0
pz

Ey

χE0

+
Bx

χM0

− ap0
pz

Bz

χM0

]
(1 + hx)(1 + δz)



Exact Bounds on the Long Term Stability. . . 71

τ ′ =
1− η0
2− η0

[
1− (1 + δm)(1 + hx)

1 + η

1 + η0

p0
pz

]
δ′k = 0

where ~E and ~B are the electric and magnetic fields, χm and χe are the mag-
netic and electric rigidities, h is the momentary curvature of the reference
orbit, and η and pz/p0 have the form

η =
K0(1 + δk)− z0e(1 + δz)V (x, y, s)

m0c2(1 + δm)

pz
p0

=

√
(1 + δm)2

η(2 + η)

η0(2 + η0)
− a2 − b2

where mo, z0, and K0 describe mass, charge, and energy of the reference
particle, the quantities δm, δz, and δk describe the relative deviations from
these values, and V is the electric potential.

In this case of particle optical motion, the linear coefficients of ~M de-
scribe properties connected to Gaussian optics, whereas the nonlinear terms
describe aberrations. Historically, the computation of aberrations was a
complicated problem, and very complex aberration formulas were derived
for each element in a tedious way. In most cases, however, this could only
be done to rather low orders around three.

Perhaps the most striking examples of beam physical systems where the
above methods are used are the Superconducting Super Collider, the con-
struction of which had begun near Dallas but has recently been terminated,
as well as CERN’s Large Hadron Collider, which is planned to be housed
in the tunnel that is currently already used for the LEP electron positron
collider. Table 1 gives an overview of some of the parameters of the SSC.

In the case of large scale accelerators, the main goal of beam simulation
programs is to estimate the long term behavior of the particles; it is re-
quired that the machine has stable orbits for 100, 000, 000 turns. Describing
its transfer map ~M by a Taylor series of order around 10 gives a relative
accuracy of about 10−12.
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Velocity of Protons 99.99999987 % c
Energy per Proton 2 · 1013 eV
Total Energy of Protons 800 MJ
Circumference 83 km
Number of Revolutions 100,000,000
Number of Dipole Magnets 7,700
Number of Quadrupole Magnets 1,800
Estimated Cost about $ 10 Billion

Table 1: Some parameters of the Superconducting Super Collider

3 Normal form theory

The left picture in Figure 1 shows the motion for several turns in a typical
accelerator, in this case the PSR II at Los Alamos National Laboratory. For
each turn, the position x as well as its canonical conjugate momentum a is
displayed. The irregular form of the band-like structure is due to nonlinear
effects. The finite width of the band is a result of coupling to the other
degree of freedom, the motion in y direction. From the picture one can
see that the particle positions are bounded for the number of turns shown.
However, it is very difficult to estimate if the position is actually growing
or shrinking and what would happen if the number of turns was increased.
The right picture in Figure 1 shows the same motion in phase space after
a nonlinear change of variables. The motion now has nearly circular shape,
and it is much easier to make estimates about the long term stability. In
fact, these methods provide the key to rigorous bounds on the stability of
motion which we will discuss in the next section.

Normal form theory provides a nonlinear change of coordinates such
that the motion in the new variables is rotationally invariant. Probably first
introduced to the field in [9], normal form theory was first implemented to
arbitrary order in a mixed differential algebraic—Lie algebraic framework
[10] and recently simplified by casting it into a purely differential algebraic
form [11]. In case the underlying motion is canonical, the transformation
to normal form coordinates can be chosen canonical. This is the case in all
Hamiltonian systems to which case we want to restrict the discussion for
the remainder of the paper. The details of this normal form method can
be found in [7, 11]. Here we only stress the steps pertaining to the desired
stability estimates.
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Figure 1: Phase Diagram for Motion in an Accelerator. The left picture
shows the motion displayed in standard particle optical coordinates x and
a, and the right picture shows the same motion in normal form coordinates.

The coordinate transformation begins with a diagonalization of the lin-
ear part of the map. In the case of stable symplectic systems, the eigenvalues
occur in complex conjugate pairs of unity modulus [12, 13]. When a vector
is represented in the basis of eigenvectors, we denote its components by the
variables s+j and s−j belonging to the eigenvectors ~n+j and ~n−j with eigen-
values e+iµj and e−iµj , respectively. Complex conjugation of the eigenvector
equation yields that (~n+j )∗ has the eigenvalue e−iµj and is therefore propor-
tional to ~n−j . We choose (~n+j )∗ = ~n−j and therefore (s+j )∗ = s−j . To each
variable pair s±j we associate another pair t±j of variables as follows:

t+j = (s+j + s−j )/2
(1)

t−j = (s+j − s−j )/2i.

In case of complex s±j , which corresponds to the stable case, the t±j are
just the real and imaginary parts of s+j and thus are real. In the unstable
case, t+j is real and t−j is imaginary. The s±j can be expressed in terms of the
t±j as

s+j = t+j + i t−j (2)
s−j = t+j − i t−j .
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In the normal form algorithm, it is advantageous to perform the manip-
ulations in the s±j , while the results are most easily interpreted in the t±j .
For example, the linear map expressed in the t±j described the motion along
circles with frequency µj and hence is already rotationally invariant.

The nonlinear transformation is performed in an order-by-order manner.
The m-th step transforms only the m-th and higher orders of the map and
leaves the lower orders unaffected. We begin the m-th step by splitting
the momentary map ~Mm into its linear and nonlinear parts ~R and ~Sm,
i.e. ~Mm = ~R + ~Sm where ~Mm is computed from the original map ~M by
transforming the first m− 1 orders to normal form. The linear part ~R has
diagonal form. Then we perform a transformation ~Am. To m-th order ~Am

is given by
~Am =m

~E + ~Tm (3)

where ~Tm possesses only monomials of orderm. The equivalence up to order
m is indicated by =m. Because the linear part of ~Am is the unity map ~E,
~Am is invertible. We find that up to order m we have

~A−1m =m
~E − ~Tm. (4)

Of course, the full inversion of ~Am contains higher order terms, which
will turn out to be one of the reasons why iteration is needed. It is also
worth noting that in principle the higher order parts of ~Tm can be chosen
freely, but there is an essentially unique transformation that is canonical.
To study the effect of the transformation, we now infer up to order m:

~Am ◦ ~Mm ◦ ~A−1m =m

(
~E + ~Tm

)
◦
(
~R + ~Sm

)
◦
(
~E − ~Tm

)
=m

(
~E + ~Tm

)
◦
(
~R + ~Sm − ~R ◦ ~Tm

)
(5)

=m
~R + ~Sm +

(
~Tm ◦ ~R− ~R ◦ ~Tm

)
.

For the first step, we have used ~Sm ◦
(
~E − ~Tm

)
=m

~Sm which holds
because ~Sm is nonlinear and ~Tm is of order m. In the second step, we used
~Tm ◦

(
~R+ ~Sm− ~R◦ ~Tm

)
=m

~Tm ◦ ~R which holds because ~Tm is of exact order
m and everything in the second term is nonlinear except ~R. This result
can be used to simplify ~Sm by choosing the commutator ~Cm = {~Tm, ~R} =(
~Tm◦ ~R− ~R◦ ~Tm

)
appropriately. Let

(
T±mj|k+1 , k−1 , . . . , k+n , k−n

)
be the Taylor

expansion coefficient of T±mj with respect to (s+1 )k
+
1 (s−1 )k

−
1 ×· · ·×(s+n )k

+
n (s−n )k

−
n
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in the j-th component pair of the map ~Tm. So T±mj is written as

T±mj =
∑

(T±mj|k+1 , k−1 , . . . , k+n , k−n ) ·(s+1 )k
+
1 (s−1 )k

−
1 ×· · ·×(s+n )k

+
n (s−n )k

−
n . (6)

Similarly we identify the coefficients of ~Cm by (C±mj|k+1 , k−1 , . . . , k+n , k−n ).
From here on, the order m is not indicated anymore since the subsequent
steps are identical for all evaluation orders. Because ~R is diagonal, it is
easily possible to express the coefficients of ~C in terms of the ones of ~T . We
obtain

(C±j |k1, k−1 , . . . , k+n , k−n )

=
(
ei~µ·(

~k+−~k−) − e±iµj
)
· (T±j |k+1 , k−1 , . . . , k+n , k−n ) (7)

= C±j (~k+, ~k−) · (T±j |k+1 , k−1 , . . . , k+n , k−n ).

Now it is apparent that a term in S±j can be removed if and only if the
factor C±j (~k+, ~k−) is nonzero. If it is nonzero then the required term in T±j
is just the negative of the respective term in S±j divided by C±j (~k+, ~k−).
Therefore, the outcome of the whole normal form transformation depends
upon the conditions under which the term C±j (~k+, ~k−) vanishes, which is
the case if and only if the phases ±µj and ~µ · (~k+ − ~k−) agree modulo 2π.

There are two cases when this can happen. The first case corresponds to
k+i − k−i = ±δij, ∀i ∈ {1, . . . , n}. Besides this unavoidable case, the phases
can also agree modulo 2π if

∑
i µini = 0 mod 2π has nontrivial integer

solutions ni. The second case is called resonant; usually ring accelerators
are designed to avoid this case. If Taylor maps up to order n are analysed,
the successive application of this order by order approach is described by

~M1 = ~M, ~Mm+1 =n
~Am ◦ ~Mm ◦ ~A−1m , ~N = ~Mn+1. (8)

~M is the original map and ~N is called the corresponding normal form map.
The definition of ~A = ~An ◦ · · · ◦ ~A1 allows the short hand notation

~N = ~A ◦ ~M ◦ ~A−1. (9)

Removing all possible terms by an appropriate choice of the ~Am leaves
only the terms associated with k+i − k−i = ±δij:

N+
j =

(∑
(N±j |k+1 , k+1 , . . . , k+j + 1, k+j , . . .)|s+1 |2k

+
1 . . . |s+n |2k

+
n + eiµj

)
s+j ,

N−j =
(∑

(N±j |k+1 , k+1 , . . . , k+j , k+j + 1, . . .)|s+1 |2k
+
1 . . . |s+n |2k

+
n + e−iµj

)
s−j .
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where the fact that s+i = (s−i )∗ was used. This shows that the dependence
of the final coordinates s±j |f on the initial coordinates s±j |i is rotationally
symmetric since it only depends on the amplitude but not on the phase in
normal form space:

s±j |f = f±j
(
|s+1 |2, . . . , |s+n |2

)
s±j |i. (10)

A detailed analysis reveals that (f+j )∗ = f−j . Therefore, this transformation
in general describes spirals in every t+j –t

−
j subspace. Since for canonical

motion volume in phase space is conserved, the motion has to be on circles
and therefore |f±j | = 1. Thus in all n projections to the two-dimensional
subspaces given by the t±j , the motion is a rotation. The angle of every
rotation can be a different function of the amplitudes (t+j )2 + (t−j )2 in the
n normal form subspaces in which the rotations occur. The invariants of
motion are the radii of the rotations.

A complete transformation of the motion to circles can therefore only be
possible if the motion is integrable. However, even if the motion were inte-
grable, the presented approach involving Taylor maps to a specified order
would only yield the Taylor expansions of the invariant radii to that order
and would therefore recover approximate invariants. Nevertheless, the qual-
ity of the so generated invariants improves rapidly with evaluation order for
weakly nonlinear systems.

As mentioned earlier, the left hand side of Figure 1 shows the motion in
conventional coordinates. The right hand picture shows the same motion in
normal form coordinates. The motion follows almost perfect circles. Both,
the coupling from the other phase space coordinates and the nonlinear effects
that lead to distortion have been removed.

4 Nekhoroshev-like stability estimates

Because of the clean appearance of motion in normal form coordinates, a
rather detailed study of the dynamics is possible. For example, if the nor-
mal form motion would produce perfect circles, we know we have found
an invariant of the system for each degree of freedom. Consider now the
transformation of normal form circles to Cartesian variables. If this trans-
formation is continuous, the resulting set is bounded and we can conclude
that the motion is stable forever, and particles can never get lost.



Exact Bounds on the Long Term Stability. . . 77

Unfortunately, the motion in normal form coordinates does not follow
perfect circles. Even if the system has invariants of motion, circular motion
is approximated by a Taylor map. Another reason is the well known fact
that many systems are nonintegrable, i.e. there is not an invariant for every
degree of freedom. In such a case, the motion in normal form variables can
not actually follow perfect circles even if no Taylor approximation was used,
but must exhibit some very detailed fine structure deviating from perfectly
circular motion.

If it were possible to design a system in such a way that the motion
is indeed perfectly integrable, very small construction errors would entail a
breakdown of this property. While the theory of Kolmogorov, Arnold, and
Moser (see for example [14]) assures the survival of invariants under small
perturbations in a rigorous mathematical way, the actual size of perturba-
tions allowed within this theory is extremely small and certainly out of reach
for all practical considerations.

It is worthwhile to study where this effect of breakdown of invariants
comes from since the order-by-order procedure of the normal form algo-
rithm attempts to obtain perfect circles to any given order. The key is that
unfortunately, while the initial transfer map of the system may have a nicely
and quickly converging Taylor series, this must not be true for the map de-
scribing the transformation to normal form coordinates and hence also not
for the normal form motion. The reason is that, as (8) shows, there is an in-
herent problem of potentially small denominators of the form exp(i~n ·~µ)−1
that can severly limit or even destroy convergence.

To study this property in some more detail, we show the invariant defects,
i.e. the residual deviation from perfect invariance, for several cases. Figure 2
shows a plot of the invariant defects as a function of normal form radius and
angle for a simple one-dimensional pendulum. In the case of this nonlinear
motion, there is an invariant (the energy). Thus in principle, the normal
form algorithm could converge. The left hand picture of Figure 2 shows
the invariant defect for amplitudes of 1/10 rad using a normal form map of
order 16. In this case the scale is approximately 10−17, and all the errors
are of a computational nature. In the right hand picture of Figure 2, the
amplitude of the pendulum is increased to 1/2 rad into a rather nonlinear
regime. Again a normal form transformation map of order 16 was used.
Now the scale of the invariant defects is 10−13, and some systematic effects
due to the limited order become apparent.
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Figure 2: Deviations from invariance for a one-dimensional inharmonic pen-
dulum as functions of normal form radius and angle. The oscillation ampli-
tudes are 1/10 and 1/2 rad, respectively, and the scales on the errors are
10−17 and 3 ·10−13, respectively. In both cases, the order of the normal form
transformation map is 16.

In the next example we study the PSR II, a ring accelerator proposed by
Los Alamos National Laboratory for which phase diagrams in conventional
and normal form variables have been shown in Figure 1. In this case, an
invariant does not have to exist a priori. It is rather likely that the motion
is indeed nonintegrable, preventing convergence of the normal form map.
Figure 3 again shows the invariant defect, i.e. the deviation from perfectly
circular structure, in this case with a normal form transformation map of
order 6. In the left hand picture, the defect is shown as a function of normal
form radius and angle, and the increase with radius due to the limited con-
vergence is clearly visible. The right hand picture shows the invariant defect
as a function of the two normal form angles corresponding to horizontal and
vertical motion. In both cases, the scale is about 10−6.

While the existence of invariant defects makes statements about general
stability impossible, it still allows an estimate of stability for finite but long
times. This has been recognized first by Nekhoroshev [1] and was later
studied for several cases [15–19] by trying to fit models for approximate
invariants to numerical data. Since in practice the invariant defects are very
small, we can make estimates of how long a particle takes to traverse a
certain region of normal form coordinate space for every of the n subspaces
in which the motion follows approximately circular shape. This method is
illustrated in Figure 4 for one of those subspaces. Let us assume that the
whole region of normal form coordinates up to the maximum radius rmax
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Figure 3: Deviations from invariance for the Los Alamos PSR II. The left
hand picture shows the invariant defect as a function of horizontal normal
form radius and angle. The right hand picture shows this defect as a function
of the horizontal and vertical normal form angles.

corresponds to Cartesian coordinates within the area which the accelerator
can accept in its beam pipes. Let us assume further that nowhere in the
r − φ diagram is the invariant defect larger than ∆r. If we launch particles
within the normal form region below rmin, then all these particles require at
least

N =
rmax − rmin

∆r
(11)

turns before they reach rmax. Considering the small size of ∆r in practical
cases, this can often assure stability for a rather large number of turns.

In most cases, the invariant defects grow quickly with increasing values
of r, as shown in Figures 2 and 3. Therefore, this estimate can be refined
in the following rather obvious way. Suppose the region of r values between
rmin and rmax is subdivided in the following manner

rmin = r1 < r2 < · · · < rl = rmax. (12)

Let us assume that in each of these regions the maximum invariant defect
is bounded by ∆ri. Then we can predict stability for

N =
l−1∑
i=1

ri+1 − ri
∆ri

(13)
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Figure 4: Nekhoroshev-type estimate of the number of stable turns in a
weakly nonlinear dynamical system. In any turn, the radius of the particle
in normal form coordinates can grow by at most the invariant defect ∆r.
Thus it survives at least N = (rmax − rmin)/∆r turns.

turns. Since in practice, at least for the first values of i, ∆ri can be sub-
stantially less than ∆r, this lower bound can be much greater than N in
(11).

To determine the survival time of a particle, one can determine the cor-
responding numbers N for every of the n normal form subspaces and then
take the smallest N as a lower bound.

The appeal of the mathematically rigorous method outlined here hinges
critically on the ability to determine rigorous bounds for the ∆ri and its
practical usefulness is directly connected to how sharp these bounds are.
However, in practice these functions have a rather large number of local
maxima, and a computation of their bounds requires quite some care. For
every of the l−1 regions in phase space, we are faced with the task of finding
n bounds for the maxima ∆r(j) of deviation functions:

∆r(j) ≥ max
[
r(j)
(
~M(~x)

)
− r(j)(~x)

]
(14)

where r(j)(~x) is the normal form radius in the j-th normal form subspace of
a particle at position ~x. The regions in which the bounds for the maxima
have to be found are the regions where r(j)(~x) ∈ [r

(j)
i , r

(j)
i+1]. As illustrated
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in Figures 2 and 3, those functions exhibit several local maxima in a six-
dimensional space. To be useful, the bounds for the maxima have to be
sharp to about 10−6, and for some applications to 10−12. The next section
describes implementational issues as well as practical results of lower bounds
on the number of stable revolutions for a variety of cases.

5 Questions of implementation

In order to use the techniques outlined in the previous section, a package
of elementary interval routines was written for use in the object oriented
language of COSY [20]. Since no direct access to hardware floating options is
available, forced rounding is achieved by multiplication. In rather insensitive
cases it is simply ignored.

A general difficulty with the problem at hand is that the objective func-
tion is rather complex. Furthermore, there are many large terms which
cancel each other to finally give an approximate invariant such that a bound
on very small fluctuations has to be found. This problem can be alleviated
noticeably by rewriting the polynomial composition in such a way that some
of the cancellations are actually performed by hand. It is possible to achieve
this goal for the linear and the second order part of the polynomials. Since
the contributions of the higher orders of the polynomials decrease rather
quickly with the order, this eliminates a large source of blow-up.

However, even advanced methods of interval evaluation of polynomials,
including rewriting of the involved polynomials as Horner factorizations up
to fifth order and accurate bounding of the fifth order polynomials, does not
reduce the blow-up sufficiently for the multidimensional functions of interest.

A satisfactory performance could only be achieved with the new data
type of interval chains which is discussed in the following chapter. This
specific method takes advantage of all the cancellations in the objective
function.
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6 Maximizing the deviation function with in-
terval chains

The deviation function (14) is a polynomial with coefficients that cancel
up to order n if the map ~M and the normal form transformation ~A were
computed to order n − 1. The bothersome blow-up occurs because of this
cancellation. If we found a method to bound only the contributions to a
polynomial of order higher than n, we could evaluate the deviation function
by bounding only the relevant orders. The cancellation of lower orders would
not influence this result and thus all blow-up due to cancellations would be
avoided. The concept of interval chains will achieve this goal.

An interval chain I consists of a finite sequence of intervals Ii, i ∈
{0, . . . , n+ 1}:

I = (I0, I1, I2, . . . , In+1) (15)
where Ii is called the i-th order of the interval chain. For interval chains, we
define the elementary operations addition, scalar multiplication, and mul-
tiplication. The results of those operations are interval chains with the
following elements:

(I + J)i = Ii + Ji, 0 ≤ i ≤ n+ 1,

(rI)i = rIi, 0 ≤ i ≤ n+ 1, r ∈ R,

(I · J)i =
i∑

j=0

IjJi−j, 0 ≤ i ≤ n,

(I · J)n+1 =
n+1∑
i=0

(Ii

n+1∑
j=n+1−i

Jj). (16)

For convenience of notation we denote the i-th order contribution of an
m-th order polynomial p by pi. Then p : Rν → R can be written as
p : p(~x) =

∑m
i=0 pi(~x). For i greater than m, pi is chosen to be zero. Call

an interval chain P (Aν) = (P0, . . . , Pn+1) an interval chain (IC) evaluation
of a polynomial p of order m on the interval box Aν = A1 × · · · × Aν if
Pi ⊇ {pi(~x)|~x ∈ Aν}, 0 ≤ i ≤ n and Pn+1 ⊇ {

∑m
i=n+1 pi(~x)|~x ∈ Aν}. Thus

Pn+1 bounds all contributions to the polynomial of order higher than n.
If F (Aν) is an IC evaluation of a polynomial f on Aν and G(Aν) is an IC

evaluation of a polynomial g on Aν, then F (Aν)+G(Aν), F (Aν)·G(Aν), and
rF (Aν), r ∈ R are IC evaluations of f +g, f ·g, and rf on Aν, respectively.
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This can be seen as follows: Given the polynomials f : f(~x) =
∑α

i=0 fi(~x)

and g : g(~x) =
∑β

i=0 gi(~x), then by definition

Fi ⊇ {fi(~x)|~x ∈ Aν}, Gi ⊇ {gi(~x)|~x ∈ Aν}, 0 ≤ i ≤ n,

Fn+1 ⊇ {
∑α

i=n+1 fi(~x)|~x ∈ Aν}, Gn+1 ⊇ {
∑β

i=n+1 gi(~x)|~x ∈ Aν}
(17)

from this we infer(
F (Aν) +G(Aν)

)
i

= Fi +Gi ⊇ {(f + g)i(~x)|~x ∈ Aν}, 0 ≤ i ≤ n+ 1,(
rF (Aν)

)
i

= rFi ⊇ {(rf)i(~x)|~x ∈ Aν}, 0 ≤ i ≤ n+ 1,(
F (Aν) ·G(Aν)

)
i

=
i∑

j=0

FjGi−j ⊇
{ i∑

j=0

fj(~x)gi−j(~x)|~x ∈ Aν
}

= {(fg)i(~x)|~x ∈ Aν}, 0 ≤ i ≤ n,

(
F (Aν) ·G(Aν)

)
n+1

=
n+1∑
i=0

(
Fi

n+1∑
j=n+1−i

Gj

)
=

n∑
i=0

[
Fi
( n∑
j=n+1−i

Gj +Gn+1

)]
+ Fn+1

( n∑
j=0

Gj +Gn+1

)

⊇
[ n∑
i=0

[
fi

( n∑
j=n+1−i

gj +

β∑
j=n+1

gj

)]
+
( α∑
i=n+1

fi

)( n∑
j=0

gj +

β∑
j=n+1

gj

)]
(Aν)

=
[ α∑
i=0

(
fi

β∑
j=max(n+1−i,0)

gi

)]
(Aν)

=
[ α+β∑
i=n+1

( β∑
j=0

fi−jgj

)]
(Aν) =

{ α+β∑
i=n+1

(fg)i(~x)|~x ∈ Aν
}
. (18)

The expression in the fourth line from the bottom contains the expression
in the next line since it is an interval evaluation of the function in the third
line from the bottom.

Let now A be any algorithm based on addition, scalar multiplication,
and multiplication that evaluates a polynomial p at ~x = (x1, . . . , xν). Then
performing A on ~I = [(0, A1, 0, . . . , 0), . . . , (0, Aν, 0, . . . , 0)], a vector of in-
terval chains, yields an IC evaluation of p on Aν.
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The following arguments prove this statement. For all l ∈ {1, . . . , ν},
(0, Al, 0, . . . , 0) is an IC evaluation of the polynomial il : il(~x) = xl and
P (Aν) is the result of finitely many elementary operations which evaluate
p and therefore, using equations (6) and (18), we infer that P (Aν) is an IC
evaluation of p on Aν.

Bearing this in mind, it is easy to see that for an IC evaluation D(Aν) of
the deviation function d on Aν it holds that {d(~x)|~x ∈ Aν} ⊆ Dn+1 since d
is known to have no orders lower than n+ 1. In this approach cancellations
up to order n do not contribute and blow-up caused by such cancellations
is avoided.

For practical purposes it proved essential to utilize a data type of vectors
of interval chains. This is important since, as outlined in the previous sec-
tion, the evaluation of the objective functions (14) requires three repeated
evaluations of multidimensional polynomials. Because of symmetries, the
coefficients usually exhibit sparseness, which suggests the determination of
an optimal tree representation of the polynomials involved. Since the setup
of this tree requires nonnegligible CPU time and is repeated for every eval-
uation of a multidimensional polynomial, it proved efficient to evaluate the
polynomial with vectors of interval chains as arguments. In this way, the
computation is facilitated by pushing many interval chains through the poly-
nomial at once using the same tree representation.

But even with these simplifications, the resulting objective functions
have a tendency to exhibit interval blow-up because of complexity, while
the bounds of the function have to be determined rather tightly in order to
guarantee large numbers of stable turns. Furthermore, the functions have a
very large number of local maxima. All these effects make the exclusion of
intervals rather difficult and not practically possible unless in the order of 104

intervals per dimension are used. These large numbers make bookkeeping
of intervals for later exclusion rather cumbersome if not impossible.

Because of this situation, the conventional methods based on disposing of
intervals that can be excluded and halving of the remaining ones combined
with occasional local optimization in real arithmetic [21, 22] are not directly
applicable. For this reason, we are currently restricting ourselves to a mere
rastering of the objective function with a large number of intervals of equal
size. The results in the next section were obtained by choosing 630 intervals
for the examples with one degree of freedom and 1000188 for the example
with two degrees of freedom. Without the concept of interval chains a re-
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alization af the described method was virtually impossible. For examples
with two degrees of freedom approximately 1012 times more intervals would
have been needed for similar results.

7 Results

Using the technique discussed in the previous sections, several nonlinear
systems were studied using the interval chain rastering methods to provide
upper bounds for the invariant defects. In order to get a feeling for the qual-
ity of these upper bounds, the numbers were compared with approximations
for the maximal invariant defects obtained by a rather tight rastering in
real arithmetic. Because of the large number of local maxima, this method
proved to be the most robust noninterval way to estimate the absolute max-
ima of the functions involved. Lower bounds on the number of stable turns
obtained by conventional intervals are given in the Tables 1 to 3 in order
to illustrate the usefulness of interval chains. When conventional intervals
were used, the deviation function was simplified as much as possible by ac-
counting for cancellations up to second order analytically. The number of
conventional intervals and the number of interval chains used in the bound-
ing are equivalent. In all of the examples below, the choice of rmax is given,
and rmin was chosen half as large.

Order of Interval Interval Conventional
Invariant Bounding Chains Rastering

(guaranteed) (guaranteed) (optimistic)
3 11252 743,667 849,195
4 11252 743,667 849,195
5 11306 876,059,284 982,129,435
6 11306 876,059,284 982,129,435
7 11306 432,158,877,713 636,501,641,854
8 11306 432,158,877,713 636,501,641,854

Table 2: Predictions of the number of stable turns as a function of the
order of the polynomials describing the normal form transformation for the
physical pendulum d2/dt2φ + sin(φ) = 0 for a time step of t=1 and an
amplitude of 1/10 rad. Because of energy conservation, the map is known
to be permanently stable for any amplitude.
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As the first example to check the method, we used a one-dimensional
physical pendulum. This is a good test case since energy conservation re-
quires the nonlinear motion to be stable. Table 2 shows the results of the
stability analysis for this case. As is to be expected, the number of stable
turns predicted increases with the order and hence accuracy of the approx-
imate invariants. While the approximate scanning method can take full
advantage of this increased accuracy, the interval bounding method shows a
saturation at 11306 turns. This asymptotic behavior is connected to the size
of the intervals because of the unavoidable blow-up of intervals in the pro-
cess of cancellation of large terms. The blow-up in third order dominates the
calculation, causing the higher order improvements to not materialize. The
method of interval chains takes care of all the cancellations and consequently
the estimate is much better.

Order of Interval Interval Conventional
Invariant Bounding Chains Rastering

(guaranteed) (guaranteed) (optimistic)
2 895 891 1,086
3 1736 9,926 11,450
4 1668 54,016 65,667
5 1674 678,725 809,612
6 1670 3,389,641 4,351,679
7 1671 42,640,927 52,474,387
8 1671 192,650,961 263,904,035

Table 3: Predictions of the number of stable turns for the Henon map at
tune 0.13, strength parameter k = 1.1, and starting position of .01 as a
function of the order of the polynomials in the normal form transformation.

As another example, we chose the Henon Map (see for example [14]),
which is a standard test case for the analysis of nonlinear motion because
it exhibits almost all of the phenomena encountered in Hamiltonian nonlin-
ear dynamics. These include stable and unstable regions, chaotic motion,
and periodic elliptic fixed points. The Henon map can even serve as a very
simplistic model of an accelerator under the presence of sextupoles for chro-
maticity correction. The results of these calculations are shown in Table 3.
Similar to the previous case, the number of predicted turns increases with
order. In the case of interval bounding, the number of periodic turns shows
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asymptotic behavior limited by blow-up. Again the superiority of strict
bounding with interval chains is obvious.

Order of Interval Interval Conventional
Invariant Bounding Chains Rastering

(guaranteed) (guaranteed) (optimistic)
3 179 16,137 38,385
4 179 18,197 38,857
5 173 309,356 560,309
6 173 347,312 613,135
7 171 925,531 2,184,998
8 171 1,004,387 2,248,621

Table 4: Predictions of the number of stable turns as a function of order of
the approximate invariant for the Los Alamos PSR II storage ring for the
motion in a phase space of 100 mm mrad.

In the final example, we study the Los Alamos PSR II already described
above. The same data are shown as for the two previous examples. To limit
the calculation time, the intervals used for the optimization were 5 times as
wide as the intervals used for the previous two tables. While the guaranteed
prediction of the interval chain method is about a factor of two lower than
the optimistic estimate obtained from rastering, it is again far superior than
the conventional interval method.
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